On bent functions satisfying the dual bent condition ${ }^{1,2}$

Alexandr Polujan ${ }^{a}$, Enes Pasalic ${ }^{b}$, Sadmir Kudin ${ }^{b}$, Fengrong Zhang ${ }^{c}$
${ }^{a}$ Otto von Guericke University Magdeburg, Germany
${ }^{b}$ University of Primorska, FAMNIT \& IAM, Koper, Slovenia
${ }^{c}$ Xidian University, Xian, P.R. China

BFA 2023
The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

[^0]
Boolean functions

- Mappings $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ are called Boolean functions
- Let \mathcal{B}_{n} be the set of all Boolean functions in n variables
- The Walsh-Hadamard transform of $f \in \mathcal{B}_{n}$ at $a \in \mathbb{F}_{2}^{n}$ is defined by

$$
\hat{\chi}_{f}(a)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+a \cdot x}
$$

- The first-order derivative of $f \in \mathcal{B}_{n}$ at $a \in \mathbb{F}_{2}^{n}$ is defined by is

$$
D_{a} f(x)=f(x+a)+f(x)
$$

- The second-order derivative of a function $f \in \mathcal{B}_{n}$ w.r.t $a, b \in \mathbb{F}_{2}^{n}$ is

$$
D_{a, b} f(x)=f(x+a+b)+f(x+a)+f(x+b)+f(x)
$$

Boolean bent functions

- For $n=2 m$, a function $f \in \mathcal{B}_{n}$ is called bent if

$$
\hat{\chi}_{f}(a)= \pm 2^{\frac{n}{2}} \quad \text { for all } \quad a \in \mathbb{F}_{2}^{n}
$$

- For a bent function $f \in \mathcal{B}_{n}$, a Boolean function $f^{*} \in \mathcal{B}_{n}$ defined by

$$
\hat{\chi}_{f}(a)=2^{\frac{n}{2}}(-1)^{f^{*}(a)} \quad \text { for all } \quad a \in \mathbb{F}_{2}^{n}
$$

is a bent function, called the dual of f

Boolean bent functions

- For $n=2 m$, a function $f \in \mathcal{B}_{n}$ is called bent if

$$
\hat{\chi}_{f}(a)= \pm 2^{\frac{n}{2}} \quad \text { for all } \quad a \in \mathbb{F}_{2}^{n}
$$

- For a bent function $f \in \mathcal{B}_{n}$, a Boolean function $f^{*} \in \mathcal{B}_{n}$ defined by

$$
\hat{\chi}_{f}(a)=2^{\frac{n}{2}}(-1)^{f^{*}(a)} \quad \text { for all } \quad a \in \mathbb{F}_{2}^{n}
$$

is a bent function, called the dual of f

Example (Maiorana-McFarland bent functions)

- Let $\mathbb{F}_{2}^{n} \cong \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}, \pi$ be a permutation of $\mathbb{F}_{2^{m}}$, and $h \in \mathcal{B}_{m}$
- For $x, y \in \mathbb{F}_{2^{m}}$, the function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ is bent
- Its dual is $f^{*}(x, y)=\operatorname{Tr}\left(y \pi^{-1}(x)\right)+h\left(\pi^{-1}(x)\right)$

Decompositions of Boolean functions

- Let $f \in \mathcal{B}_{n+2}$ and $\langle a, b\rangle \subset \mathbb{F}_{2}^{n+2}$ be a two-dimensional subspace
- Consider the restrictions of $f \in \mathcal{B}_{n+2}$ w.r.t. affine subspaces

$$
\underbrace{\left.f\right|_{0+\mathbb{F}_{2}^{n}}}_{f_{1} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{a+\mathbb{F}_{2}^{n}}}_{f_{2} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{b+\mathbb{F}_{2}^{n}}}_{f_{3} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{a+b+\mathbb{F}_{2}^{n}}}_{f_{4} \in \mathcal{B}_{n}}
$$

- We call $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ a decomposition of $f \in \mathcal{B}_{n+2}$ w.r.t. $\langle a, b\rangle$

Decompositions of Boolean functions

- Let $f \in \mathcal{B}_{n+2}$ and $\langle a, b\rangle \subset \mathbb{F}_{2}^{n+2}$ be a two-dimensional subspace
- Consider the restrictions of $f \in \mathcal{B}_{n+2}$ w.r.t. affine subspaces

$$
\underbrace{\left.f\right|_{0+\mathbb{F}_{2}^{n}}}_{f_{1} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{a+\mathbb{F}_{2}^{n}}}_{f_{2} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{b+\mathbb{F}_{2}^{n}}}_{f_{3} \in \mathcal{B}_{n}}, \underbrace{\left.f\right|_{a+b+\mathbb{F}_{2}^{n}}}_{f_{4} \in \mathcal{B}_{n}}
$$

- We call $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ a decomposition of $f \in \mathcal{B}_{n+2}$ w.r.t. $\langle a, b\rangle$

Theorem (Canteaut and Charpin 2003)

Let $f \in \mathcal{B}_{n+2}$ be bent and $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ be its decomposition w.r.t. $\langle a, b\rangle \subset \mathbb{F}_{2}^{n+2}$. Then the following hold:

1. All f_{i} are bent (bent 4-decomposition) iff $D_{a, b} f^{*}=1$.
2. All f_{i} are semi-bent.
3. All f_{i} are 5-valued, i.e., $\hat{\chi}_{f_{i}}(a) \in\left\{0, \pm 2^{n / 2}, \pm 2^{(n+2) / 2}\right\} \forall a \in \mathbb{F}_{2}^{n}$.

Concatenation of Boolean functions

- If $a=(0, \ldots, 0,1), b=(0, \ldots, 1,0) \in \mathbb{F}_{2}^{n+2}$, then the function $f \in \mathcal{B}_{n+2}$ can be reconstructed from f_{i} as follows

$$
\begin{align*}
f\left(z, z_{n+1}, z_{n+2}\right) & =f_{1}(z)+z_{n+1} z_{n+2}\left(f_{1}+f_{2}+f_{3}+f_{4}\right)(z) \\
& +z_{n+1}\left(f_{1}+f_{3}\right)(z)+z_{n+2}\left(f_{1}+f_{2}\right)(z) \tag{1}
\end{align*}
$$

- The function $f \in \mathcal{B}_{n+2}$ defined as in (1) is called a concatenation of $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$, and denoted by $f=f_{1}| | f_{2}| | f_{3} \| f_{4}$

Concatenation of Boolean functions

- If $a=(0, \ldots, 0,1), b=(0, \ldots, 1,0) \in \mathbb{F}_{2}^{n+2}$, then the function $f \in \mathcal{B}_{n+2}$ can be reconstructed from f_{i} as follows

$$
\begin{align*}
f\left(z, z_{n+1}, z_{n+2}\right) & =f_{1}(z)+z_{n+1} z_{n+2}\left(f_{1}+f_{2}+f_{3}+f_{4}\right)(z) \tag{1}\\
& +z_{n+1}\left(f_{1}+f_{3}\right)(z)+z_{n+2}\left(f_{1}+f_{2}\right)(z)
\end{align*}
$$

- The function $f \in \mathcal{B}_{n+2}$ defined as in (1) is called a concatenation of $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$, and denoted by $f=f_{1}| | f_{2}| | f_{3}| | f_{4}$

Question: Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ be bent. Under which condition is $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ bent again?

The dual bent condition

Theorem (Hodžić, Pasalic and W. Zhang 2019)

Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ be bent. The function $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is bent iff the dual bent condition

$$
f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1
$$

is satisfied.

- This result was also shown by Preneel, Van Leekwijck, Van Linden, Govaerts and Vandewalle 1991
- A recent application ${ }^{3}$: Generic construction methods of bent functions concatenating Maiorana-McFarland bent functions

[^1]
The main goal

- To provide new explicit constructions of bent functions using the concatenation of four bent functions (the dual bent condition)

The main goal

- To provide new explicit constructions of bent functions using the concatenation of four bent functions (the dual bent condition)

1. New: What you get $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is not what you start with $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ (up to EA-equivalence).
2. Explicit infinite families

The main goal

- To provide new explicit constructions of bent functions using the concatenation of four bent functions (the dual bent condition)

1. New: What you get $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is not what you start with $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ (up to EA-equivalence). We start with $\mathcal{M} \mathcal{M}^{\#}=\{$ All bent functions EA-equivalent to $\operatorname{Tr}(x \pi(y))+h(y)\}$
2. Explicit infinite families

The main goal

- To provide new explicit constructions of bent functions using the concatenation of four bent functions (the dual bent condition)

1. New: What you get $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is not what you start with $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ (up to EA-equivalence). We start with $\mathcal{M} \mathcal{M}^{\#}=\{$ All bent functions EA-equivalent to $\operatorname{Tr}(x \pi(y))+h(y)\}$
2. Explicit infinite families

Main research question: How to specify bent functions $f_{i} \in \mathcal{M} \mathcal{M}^{\#}$ s.t. $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is bent and outside $\mathcal{M} \mathcal{M}^{\#}$?

The main result

Theorem (Polujan, Pasalic, Kudin and F. Zhang 2023)

Let $m \in \mathbb{N}$ with $m \geq 3$ and $d^{2} \equiv 1 \bmod 2^{m}-1$. For $i=1,2,3$, define permutations π_{i} of $\mathbb{F}_{2^{m}}$ by $\pi_{i}(y)=\alpha_{i} y^{d}$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements s.t. $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ with $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Define bent functions $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $x, y \in \mathbb{F}_{2^{m}}$, where

1. $h_{i}(y)=\operatorname{Tr}\left(\frac{\alpha_{i+1}}{\alpha_{i}^{k}} y^{k}\right) \quad$ for $i=1,2,3 \quad$ and $h_{4}(y)=\operatorname{Tr}\left(\frac{\alpha_{1}}{\alpha_{4}} y^{k}\right)+1$,
2. $\pi_{i}(y)=\alpha_{i} y^{d}$ satisfy $D_{a, b} \pi_{i} \neq 0$ for all lin. indep. $a, b \in \mathbb{F}_{2^{m}}$.

If $w t(d)>1$, then $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{2 m+2}$ is bent and outside $\mathcal{M} \mathcal{M}^{\#}$.

- For m odd, the APN permutations $\pi_{i}(y)=\alpha_{i} y^{-1}$ always work

The key steps of the proof

Consider Maiorana-McFarland bent functions

$$
f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)
$$

arising from permutations π_{i} of $\mathbb{F}_{2^{m}}$ with the $\left(\mathcal{A}_{m}\right)$ property

1. Specify the dual bent condition for such bent functions
2. Find explicit constructions of permutations π_{i} of $\mathbb{F}_{2^{m}}$ with the $\left(\mathcal{A}_{m}\right)$ property and suitable $h_{i} \in \mathcal{B}_{m}$ s.t. $f=f_{1}| | f_{2}| | f_{3} \| f_{4}$ is bent
3. Provide conditions for $f_{i} \in \mathcal{M} \mathcal{M}^{\#}$ s.t. $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ is bent and outside $\mathcal{M} \mathcal{M}^{\#}$

Step I: Permutations with the $\left(\mathcal{A}_{m}\right)$ property

Definition (Mesnager 2014)
Let $\pi_{1}, \pi_{2}, \pi_{3}$ be three permutations of $\mathbb{F}_{2^{m}}$. We say that $\pi_{1}, \pi_{2}, \pi_{3}$ have the $\left(\mathcal{A}_{m}\right)$ property if $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ is a permutation and $\pi_{4}^{-1}=\pi_{1}^{-1}+\pi_{2}^{-1}+\pi_{3}^{-1}$.

Step I: Permutations with the $\left(\mathcal{A}_{m}\right)$ property

Definition (Mesnager 2014)

Let $\pi_{1}, \pi_{2}, \pi_{3}$ be three permutations of $\mathbb{F}_{2^{m}}$. We say that $\pi_{1}, \pi_{2}, \pi_{3}$ have the $\left(\mathcal{A}_{m}\right)$ property if $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ is a permutation and $\pi_{4}^{-1}=\pi_{1}^{-1}+\pi_{2}^{-1}+\pi_{3}^{-1}$.

Theorem (Cepak, Pasalic and Muratović-Ribić 2019)

Let $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $i \in\{1,2,3\}$ and $x, y \in \mathbb{F}_{2^{m}}$, where the permutations π_{i} have the $\left(\mathcal{A}_{m}\right)$ property and $f_{4}=f_{1}+f_{2}+f_{3}$. If

$$
\sum_{i=1}^{3} h_{i}\left(\pi_{i}^{-1}(y)\right)+\left(h_{1}+h_{2}+h_{3}\right)\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right)=1,
$$

then $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is bent.

Step I: Generalizing the previous result

Theorem (Polujan, Pasalic, Kudin and F. Zhang 2023)

Let $n=2 m$ and $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $i \in\{1,2,3\}$ and $x, y \in$ $\mathbb{F}_{2^{m}}$, where the permutations π_{j} have the $\left(\mathcal{A}_{m}\right)$ property, and let $s \in \mathcal{B}_{m}$. Define $h_{4} \in \mathcal{B}_{m}$ as $h_{4}(y)=h_{1}(y)+h_{2}(y)+h_{3}(y)+s(y)$ and a bent function $f_{4} \in \mathcal{B}_{n}$ as $f_{4}(x, y)=f_{1}(x, y)+f_{2}(x, y)+f_{3}(x, y)+s(y)$. If

$$
\sum_{i=1}^{3} h_{i}\left(\pi_{i}^{-1}(y)\right)+\underbrace{\left(h_{1}+h_{2}+h_{3}+s\right)}_{h_{4}}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right)=1,
$$

then $f_{1}| | f_{2}| | f_{3}| | f_{4} \in \mathcal{B}_{n+2}$ is bent.

Step I: Generalizing the previous result

Theorem (Polujan, Pasalic, Kudin and F. Zhang 2023)

Let $n=2 m$ and $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $i \in\{1,2,3\}$ and $x, y \in$ $\mathbb{F}_{2^{m}}$, where the permutations π_{j} have the $\left(\mathcal{A}_{m}\right)$ property, and let $s \in \mathcal{B}_{m}$. Define $h_{4} \in \mathcal{B}_{m}$ as $h_{4}(y)=h_{1}(y)+h_{2}(y)+h_{3}(y)+s(y)$ and a bent function $f_{4} \in \mathcal{B}_{n}$ as $f_{4}(x, y)=f_{1}(x, y)+f_{2}(x, y)+f_{3}(x, y)+s(y)$. If

$$
\sum_{i=1}^{3} h_{i}\left(\pi_{i}^{-1}(y)\right)+\underbrace{\left(h_{1}+h_{2}+h_{3}+s\right)}_{h_{4}}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right)=1,
$$

then $f_{1}| | f_{2}| | f_{3}| | f_{4} \in \mathcal{B}_{n+2}$ is bent.

- The case $s=0$ corresponds to the result of Cepak, Pasalic and Muratović-Ribić 2019
- Advantage: More freedom to choose the function f_{4}

Step II: Permutations with the $\left(\mathcal{A}_{m}\right)$ property explicitly

Theorem (Mesnager, Cohen and Madore 2015)
Let $m \in \mathbb{N}$ with $m \geq 3$ and $d^{2} \equiv 1 \bmod 2^{m}-1$. For $i=1,2,3$, define permutations π_{i} of $\mathbb{F}_{2^{m}}$ by $\pi_{i}(y)=\alpha_{i} y^{d}$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements s.t. $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ with $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then, the permutations π_{i} of $\mathbb{F}_{2^{m}}$ have the $\left(\mathcal{A}_{m}\right)$ property and furthermore $\pi_{1}, \pi_{2}, \pi_{3}$ and $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ are involutions.

Step II: Permutations with the $\left(\mathcal{A}_{m}\right)$ property explicitly

Theorem (Mesnager, Cohen and Madore 2015)

Let $m \in \mathbb{N}$ with $m \geq 3$ and $d^{2} \equiv 1 \bmod 2^{m}-1$. For $i=1,2,3$, define permutations π_{i} of $\mathbb{F}_{2^{m}}$ by $\pi_{i}(y)=\alpha_{i} y^{d}$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements s.t. $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ with $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then, the permutations π_{i} of $\mathbb{F}_{2^{m}}$ have the $\left(\mathcal{A}_{m}\right)$ property and furthermore $\pi_{1}, \pi_{2}, \pi_{3}$ and $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ are involutions.

- How to specify h_{i}, s.t. for $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ the dual bent condition $\sum_{i=1}^{4} h_{i}\left(\pi_{i}^{-1}(y)\right)=1$ is satisfied?

Step II: Permutations with the $\left(\mathcal{A}_{m}\right)$ property explicitly

Theorem (Mesnager, Cohen and Madore 2015)

Let $m \in \mathbb{N}$ with $m \geq 3$ and $d^{2} \equiv 1 \bmod 2^{m}-1$. For $i=1,2,3$, define permutations π_{i} of $\mathbb{F}_{2^{m}}$ by $\pi_{i}(y)=\alpha_{i} y^{d}$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements s.t. $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ with $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then, the permutations π_{i} of $\mathbb{F}_{2^{m}}$ have the $\left(\mathcal{A}_{m}\right)$ property and furthermore $\pi_{1}, \pi_{2}, \pi_{3}$ and $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ are involutions.

- How to specify h_{i}, s.t. for $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ the dual bent condition $\sum_{i=1}^{4} h_{i}\left(\pi_{i}^{-1}(y)\right)=1$ is satisfied?

Proposition (Polujan, Pasalic, Kudin and F. Zhang 2023)

Additionally, define Boolean functions $h_{i} \in \mathcal{B}_{m}$ as follows

$$
h_{i}(y)=\operatorname{Tr}\left(\frac{\alpha_{i+1}}{\alpha_{i}^{k}} y^{k}\right) \quad \text { for } i=1,2,3 \quad \text { and } h_{4}(y)=\operatorname{Tr}\left(\frac{\alpha_{1}}{\alpha_{4}} y^{k}\right)+1
$$

Then $f=f_{1}| | f_{2}| | f_{3} \| f_{4} \in \mathcal{B}_{2 m+2}$ is bent.

Step III: \mathcal{M}-subspaces of bent functions from $\mathcal{M} \mathcal{M}^{\#}$

Theorem (Dillon 1974)

A Boolean bent function $f \in \mathcal{B}_{2 m}$ belongs to $\mathcal{M} \mathcal{M}^{\#}$ iff there exists an m-dimensional linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$.

Step III: \mathcal{M}-subspaces of bent functions from $\mathcal{M} \mathcal{M}^{\#}$

Theorem (Dillon 1974)

A Boolean bent function $f \in \mathcal{B}_{2 m}$ belongs to $\mathcal{M} \mathcal{M}^{\#}$ iff there exists an m-dimensional linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$.

Definition (Polujan and Pott 2020)

For $f \in \mathcal{B}_{n}$, we call a linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$ an \mathcal{M}-subspace of f

Step III: \mathcal{M}-subspaces of bent functions from $\mathcal{M} \mathcal{M}^{\#}$

Theorem (Dillon 1974)

A Boolean bent function $f \in \mathcal{B}_{2 m}$ belongs to $\mathcal{M} \mathcal{M}^{\#}$ iff there exists an m-dimensional linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$.

Definition (Polujan and Pott 2020)

For $f \in \mathcal{B}_{n}$, we call a linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$ an \mathcal{M}-subspace of f

- Let $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ be bent on $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$

Step III: \mathcal{M}-subspaces of bent functions from $\mathcal{M} \mathcal{M}^{\#}$

Theorem (Dillon 1974)

A Boolean bent function $f \in \mathcal{B}_{2 m}$ belongs to $\mathcal{M} \mathcal{M}^{\#}$ iff there exists an m-dimensional linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$.

Definition (Polujan and Pott 2020)

For $f \in \mathcal{B}_{n}$, we call a linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$ an \mathcal{M}-subspace of f

- Let $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ be bent on $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$
- The max. number of \mathcal{M}-subspaces of dim. m is $\prod_{i=1}^{m}\left(2^{i}+1\right)$, and it is achieved iff f is quadratic (Kolomeec 2017)
- The min. number of \mathcal{M}-subspaces of dim. m is 1 , since $U=\mathbb{F}_{2^{m}} \times\{0\}$ always works (Dillon 1974)

Step III: \mathcal{M}-subspaces of bent functions from $\mathcal{M} \mathcal{M}^{\#}$

Theorem (Dillon 1974)

A Boolean bent function $f \in \mathcal{B}_{2 m}$ belongs to $\mathcal{M} \mathcal{M}^{\#}$ iff there exists an m-dimensional linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$.

Definition (Polujan and Pott 2020)

For $f \in \mathcal{B}_{n}$, we call a linear subspace U of \mathbb{F}_{2}^{n} s.t. $D_{a} D_{b} f=0$ for any $a, b \in U$ an \mathcal{M}-subspace of f

- Let $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ be bent on $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$
- The max. number of \mathcal{M}-subspaces of dim. m is $\prod_{i=1}^{m}\left(2^{i}+1\right)$, and it is achieved iff f is quadratic (Kolomeec 2017)
- The min. number of \mathcal{M}-subspaces of dim. m is 1 , since $U=\mathbb{F}_{2^{m}} \times\{0\}$ always works (Dillon 1974)
- How to achieve the min. number and why it is important?

Step III: \mathcal{M}-subspaces of $f=f_{1}\left\|\mid f_{2}\right\| f_{3} \| f_{4}$

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let π be a permutation of $\mathbb{F}_{2^{m}}$. If $D_{a} D_{b} \pi \neq 0$ for all linearly independent $a, b \in \mathbb{F}_{2^{m}}$, then for any $h \in \mathcal{B}_{m}$ the Maiorana-McFarland bent function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ has the unique \mathcal{M}-subspace.

Step III: \mathcal{M}-subspaces of $f=f_{1}\left\|\mid f_{2}\right\| f_{3} \| f_{4}$

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let π be a permutation of $\mathbb{F}_{2^{m}}$. If $D_{a} D_{b} \pi \neq 0$ for all linearly independent $a, b \in \mathbb{F}_{2^{m}}$, then for any $h \in \mathcal{B}_{m}$ the Maiorana-McFarland bent function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ has the unique \mathcal{M}-subspace.

- E.g., one can take an APN permutation π

Step III: \mathcal{M}-subspaces of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let π be a permutation of $\mathbb{F}_{2^{m}}$. If $D_{a} D_{b} \pi \neq 0$ for all linearly independent $a, b \in \mathbb{F}_{2^{m}}$, then for any $h \in \mathcal{B}_{m}$ the Maiorana-McFarland bent function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ has the unique \mathcal{M}-subspace.

- E.g., one can take an APN permutation π

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let $f_{1}, \ldots, f_{4} \in \mathcal{B}_{n}$ be Maiorana-McFarland bent functions, each having the unique \mathcal{M}-subspaces $U=\mathbb{F}_{2^{m}} \times\{0\}$ of dim. $n / 2$. Then, the shape of an \mathcal{M}-subspace of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ of $\operatorname{dim} . n / 2+1$ is determined.

Step III: \mathcal{M}-subspaces of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let π be a permutation of $\mathbb{F}_{2^{m}}$. If $D_{a} D_{b} \pi \neq 0$ for all linearly independent $a, b \in \mathbb{F}_{2^{m}}$, then for any $h \in \mathcal{B}_{m}$ the Maiorana-McFarland bent function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ has the unique \mathcal{M}-subspace.

- E.g., one can take an APN permutation π

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let $f_{1}, \ldots, f_{4} \in \mathcal{B}_{n}$ be Maiorana-McFarland bent functions, each having the unique \mathcal{M}-subspaces $U=\mathbb{F}_{2^{m}} \times\{0\}$ of dim. $n / 2$. Then, the shape of an \mathcal{M}-subspace of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ of $\operatorname{dim} . n / 2+1$ is determined.

- If $f=f_{1}| | f_{2}\left\|f_{3}\right\| f_{4} \in \mathcal{B}_{n+2}$ is in $\mathcal{M} \mathcal{M}^{\#}$, there are a few witnesses

Step III: \mathcal{M}-subspaces of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let π be a permutation of $\mathbb{F}_{2^{m}}$. If $D_{a} D_{b} \pi \neq 0$ for all linearly independent $a, b \in \mathbb{F}_{2^{m}}$, then for any $h \in \mathcal{B}_{m}$ the Maiorana-McFarland bent function $f(x, y)=\operatorname{Tr}(x \pi(y))+h(y)$ has the unique \mathcal{M}-subspace.

- E.g., one can take an APN permutation π

Proposition (Pasalic, Polujan, Kudin and F. Zhang 2023)

Let $f_{1}, \ldots, f_{4} \in \mathcal{B}_{n}$ be Maiorana-McFarland bent functions, each having the unique \mathcal{M}-subspaces $U=\mathbb{F}_{2^{m}} \times\{0\}$ of dim. $n / 2$. Then, the shape of an \mathcal{M}-subspace of $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ of $\operatorname{dim} . \quad n / 2+1$ is determined.

- If $f=f_{1}| | f_{2}\left\|f_{3}\right\| f_{4} \in \mathcal{B}_{n+2}$ is in $\mathcal{M} \mathcal{M}^{\#}$, there are a few witnesses
- Hence, easier to check the Dillon's criterion

Back to the main result

Theorem (Polujan, Pasalic, Kudin and F. Zhang 2023)

Let $m \in \mathbb{N}$ with $m \geq 3$ and $d^{2} \equiv 1 \bmod 2^{m}-1$. For $i=1,2,3$, define permutations π_{i} of $\mathbb{F}_{2^{m}}$ by $\pi_{i}(y)=\alpha_{i} y^{d}$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements s.t. $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ with $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Define bent functions $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $x, y \in \mathbb{F}_{2^{m}}$, where

1. $h_{i}(y)=\operatorname{Tr}\left(\frac{\alpha_{i+1}}{\alpha_{i}^{k}} y^{k}\right) \quad$ for $i=1,2,3 \quad$ and $h_{4}(y)=\operatorname{Tr}\left(\frac{\alpha_{1}}{\alpha_{4}} y^{k}\right)+1$,
2. $\pi_{i}(y)=\alpha_{i} y^{d}$ satisfy $D_{a, b} \pi_{i} \neq 0$ for all lin. indep. $a, b \in \mathbb{F}_{2^{m}}$.

If $w t(d)>1$, then $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{2 m+2}$ is bent and outside $\mathcal{M} \mathcal{M}^{\#}$.

- For m odd, the APN permutations $\pi_{i}(y)=\alpha_{i} y^{-1}$ always work

Conclusion and future work

Summary

I. An explicit construction method of bent functions, including the construction from APN permutations
II. More results in the extended abstract:

1. A recursive construction of permutations with the $\left(\mathcal{A}_{m}\right)$ property
2. Further analysis of homogeneous cubic bent functions

Open problems

1. Find further explicit constructions of bent functions of the form $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$.
2. Particularly, if $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$, what are the other choices of π_{i} and h_{i} ?

On bent functions satisfying the dual bent condition ${ }^{1,2}$

Alexandr Polujan ${ }^{a}$, Enes Pasalic ${ }^{b}$, Sadmir Kudin ${ }^{b}$, Fengrong Zhang ${ }^{c}$
${ }^{a}$ Otto von Guericke University Magdeburg, Germany
${ }^{b}$ University of Primorska, FAMNIT \& IAM, Koper, Slovenia
${ }^{c}$ Xidian University, Xian, P.R. China

BFA 2023
The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

[^2]
Further Reading I

[CC03] A. Canteaut and P. Charpin. "Decomposing bent functions". In: IEEE Transactions on Information Theory 49.8 (2003),
pp. 2004-2019. DOI:
https://doi.org/10.1109/TIT. 2003. 814476 (cit. on pp. 5, 6).
[CPM19] Nastja Cepak, Enes Pasalic and Amela Muratović-Ribić. "Frobenius linear translators giving rise to new infinite classes of permutations and bent functions". In: Cryptography and Communications 11.6 (Nov. 2019), pp. 1275-1295. DOI: https://doi.org/10.1007/s12095-019-00395-1 (cit. on pp. 16-19).

Further Reading II

[Dil74] J. F. Dillon. "Elementary Hadamard Difference Sets". PhD thesis. University of Maryland, 1974. Doi:
https://doi.org/10.13016/M2MS3K194 (cit. on
pp. 23-27).
[HPZ19] Samir Hodžić, Enes Pasalic and Weiguo Zhang. "Generic Constructions of Five-Valued Spectra Boolean Functions". In:
IEEE Transactions on Information Theory 65.11 (2019),
pp. 7554-7565. DOI:
https://doi.org/10.1109/TIT. 2019. 2910808 (cit. on
p. 9).

Further Reading III

[Kol17] Nikolay Kolomeec. "The graph of minimal distances of bent functions and its properties". In: Designs, Codes and Cryptography 85.3 (Dec. 2017), pp. 395-410. ISSN: 1573-7586. DOI:
https://doi.org/10.1007/s10623-016-0306-4 (cit. on pp. 23-27).
[MCM15] Sihem Mesnager, Gérard Cohen and David Madore. "On Existence (Based on an Arithmetical Problem) and Constructions of Bent Functions". In: Cryptography and Coding. Ed. by Jens Groth. Cham: Springer International Publishing, 2015, pp. 3-19. ISBN: 978-3-319-27239-9. DOI: https://doi.org/10.1007/978-3-319-27239-9_1 (cit. on pp. 20-22).

Further Reading IV

[Mes14] Sihem Mesnager. "Several New Infinite Families of Bent Functions and Their Duals". In: IEEE Transactions on Information Theory 60.7 (2014), pp. 4397-4407. DOI: https://doi.org/10.1109/TIT. 2014.2320974 (cit. on pp. 16, 17).
[Pas+23] Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. Design and analysis of bent functions using M-subspaces. 2023. DOI:
https://doi.org/10.48550/arXiv.2304.13432. arXiv: 2304.13432 [cs.IT] (cit. on pp. 1, 9, 28-30, 33).
[Pol+23] Alexandr Polujan, Enes Pasalic, Sadmir Kudin and Fengrong Zhang. Bent functions satisfying the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property. 2023 (cit. on pp. 1, 14, 18-22, 31, 33).

Further Reading V

[PP20] Alexandr Polujan and Alexander Pott. "Cubic bent functions outside the completed Maiorana-McFarland class". In:
Designs, Codes and Cryptography 88.9 (Sept. 2020),
pp. 1701-1722. DOI:
https://doi.org/10.1007/s10623-019-00712-y (cit. on
pp. 23-27).
[Pre+91] Bart Preneel, Werner Van Leekwijck, Luc Van Linden, René Govaerts and Joos Vandewalle. "Propagation
Characteristics of Boolean Functions". In: Advances in
Cryptology - EUROCRYPT '90. Ed. by
Ivan Bjerre Damgård. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1991, pp. 161-173. ISBN: 978-3-540-46877-6.
DOI: https://doi.org/10.1007/3-540-46877-3_14 (cit. on p. 9).

[^0]: ${ }^{1}$ Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. Design and analysis of bent functions using \mathcal{M}-subspaces. 2023. arXiv: 2304.13432 [cs.IT].
 ${ }^{2}$ Alexandr Polujan, Enes Pasalic, Sadmir Kudin and Fengrong Zhang. Bent functions satisfying the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property.

[^1]: ${ }^{3}$ Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. Design and analysis of bent functions using \mathcal{M}-subspaces. 2023. arXiv: 2304.13432 [cs.IT].

[^2]: ${ }^{1}$ Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. Design and analysis of bent functions using \mathcal{M}-subspaces. 2023. arXiv: 2304.13432 [cs.IT].
 ${ }^{2}$ Alexandr Polujan, Enes Pasalic, Sadmir Kudin and Fengrong Zhang. Bent functions satisfying the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property.

