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Theorem

All bijective S-boxes admit a threshold implementation.



Introduction



Symmetric cryptography
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Advanced Encryption Standard (AES)
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Side-channel attacks

We consider passive attacks in hardware.

The attacker

knows how the cryptographic algorithm is implemented

has access to the physical device

can measure the power consumption

So they can recover intermediate values during the encryption.

Boolean sharing: Take (x1, x2) : x1 + x2 = x .
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Threshold Implementation

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. “Threshold implementations
against side-channel attacks and glitches”. In: International conference on information and
communications security. Springer. 2006

Due to glitches, the attacker can read all the input values which flow to a wire until a register
is reached.

A register stores the intermediate result until the active phase of the next clock cycle.
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Computational search of threshold implementations

Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz. “Threshold
implementations of all 3× 3 and 4× 4 S-boxes”. In: International workshop on cryptographic
hardware and embedded systems. Springer. 2012

Dušan Božilov, Begül Bilgin, and Hacı Ali Sahin. “A note on 5-bit quadratic permutations’
classification”. In: IACR Transactions on Symmetric Cryptology (2017)
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Decomposition of functions

Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. “Decomposition of permutations in a
finite field”. In: Cryptography and Communications (2019)

Instead of F , we implement G1, . . . ,Gℓ with

F = G1 ◦ · · · ◦ Gℓ.

G1, . . . ,Gℓ with lower algebraic degree than F ,

ℓ is small.
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Hardware implementation: Area, Latency, and Randomness trade-off

Area the size of the physical circuit.

Latency the number of cycles.

Randomness the number of random generated bits.
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First Uniform (by-design) implementation of the AES S-box

Table: Hardware cost of the masked AES S-box in the NANGATE 45nm library.

Design Shares Area [kGE ] Latency [cc] Randomness [bits]

Piccione et al. 2023 9 166.37 1 0
Piccione et al. 2023 5 22.05 2 0
Wegener-Moradi 20181 4 4.20 16 0
Sugawara 2019 3 3.50 4 0
Gross et al 2018 2 60.76 1 2 048
Gross et al. 2018 2 6.74 2 416

1. Wegener and Moradi wrote that without serialisation their design costs will be
“more than 20 kGE”.

Remark: x254 = x26 ◦ x49 over F28 .
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Preliminaries



Vectorial Boolean functions

F2n finite field of order 2n.

Fn
2 vector space over F2.

Boolean function f : Fn
2 → F2

f (x1, . . . , xn) =
∑

u∈Fn
2
c(u)

∏n
i=1 x

ui
i , c(u) ∈ F2 (ANF)

d◦(f ) = deg(f ) algebraic degree.

Vectorial Boolean function F : Fn
2 → Fm

2

F = (f1, . . . , fm)

d◦(F ) = maxi∈{1,...,n} d
0(fi ) algebraic degree.
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Vectorial Boolean functions (part 2)

Let F : Fn
2 → Fm

2 .

F is called balanced if |F−1(y)| = 2n−m ∀y ∈ Fm
2 .

A balanced function F with m = n is also called a permutation over Fn
2 (resp. F2n).

If m = n, then F can be represented as

F (x) =
2n−1∑
i=0

cix
i ∈ F2n [x ]

Then
d◦(F ) = max

i : ci ̸=0
w2(i)
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Multivariate functions

A vectorial Boolean function F : Fns
2 → Fms′

2 can be represented as a function (Fn
2)

s → (Fm
2 )

s′

F(x1, . . . , xs) = (F1(x1, . . . , xs), . . . ,Fs′(x1, . . . , xs)),

where F1, . . . ,Fs′ : (Fn
2)

s → Fm
2 .

If n = m, we can represent Fj as a function Fs
2n → F2n

Fj(x1, . . . , xs) =
∑

u∈{0,...,2n−1}s
c(u)

s∏
i=1

xuii , c(u) ∈ F2n .
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Boolean sharing and secure hardware implementations

Boolean sharing is a well-established side-channel countermeasure.

Let x ∈ Fn
2, then Shs(x) is the set of x = (x1, . . . , xs) ∈ (Fn

2)
s :

∑s
i=1 xi = x .

x 7→ F (x) = y

(x1, . . . , xs) = x 7→ F(x) = y = (y1, . . . , ys′)∑s
i=1 xi = x ,

∑s
j=1 yj = y

Let L be linear, L : (x1, . . . , xs) 7→ (L(x1), . . . , L(xs)) because L (
∑s

i=1 xi ) =
∑s

i=1 L(xi ).
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Threshold Implementation



Consequences of glitches

x1, x2, x3 : x1 + x2 + x3 = x

F1(x1, x2, x3) = y1

F2(x1, x2, x3) = y2 (not secure)

F3(x1, x2, x3) = y3

F1(x2, x3) = y1

F2(x1, x3) = y2 (secure)

F3(x1, x2) = y3
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A solution to glitches: the threshold implementation method

Definition

Let F : (Fn
2)

s → (Fm
2 )

s′ and F : Fn
2 → Fm

2 .
We say that F is a Threshold Implementation (TI) of F if F is correct with respect to F ,
non-complete, and uniform.

In this talk, we concentrate on the case m = n and s ′ = s.

F : (Fn
2)

s → (Fn
2)

s

F : Fn
2 → Fn

2
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Correctness

Shs(x) :=

{
(x1, . . . , xs) ∈ (Fn

2)
s |

s∑
i=1

xi = x

}
.

F is correct w.r.t. F if ∀x ∈ Fn
2 and ∀x ∈ Shs(x),

F(x) ∈ Shs (F (x)) .

Equivalently, if ∀x = (x1, . . . , xs) ∈ (Fn
2)

s ,

s∑
j=1

Fj(x) = F

(
s∑

i=1

xi

)
.
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Non-completeness

F is non-complete if ∀j ∈ {1, . . . , s} ∃i ∈ {1, . . . , s} : Fj is independent of its i-th input
coordinate.
Equivalently, ∀(x1, . . . , xs) ∈ (Fn

2)
s and ∀a ∈ Fn

2,

Fj(x1, . . . , xs) = Fj(x1, . . . , xi−1, a, xi+1, . . . , xs).

Proposition

Suppose that F is non-complete and correct w.r.t. F .
If F has algebraic degree t, then s ≥ t + 1.
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Uniformity

Let F be correct with respect to F .
F is uniform if ∀x ∈ Fn

2 and ∀y ∈ Shs(F (x)) we have∣∣{x ∈ Shs(x) | F(x) = y}
∣∣ = 1.

Equivalently, if ∀x ∈ Fn
2, the restriction F : Shs(x) → Shs(F (x)) is a balanced.

Proposition

Suppose that F is correct with respect to F .
Then F is a permutation if and only if F is uniform and F is a permutation.

Enrico Piccione 17 / 32



Uniformity

Let F be correct with respect to F .
F is uniform if ∀x ∈ Fn

2 and ∀y ∈ Shs(F (x)) we have∣∣{x ∈ Shs(x) | F(x) = y}
∣∣ = 1.

Equivalently, if ∀x ∈ Fn
2, the restriction F : Shs(x) → Shs(F (x)) is a balanced.

Proposition

Suppose that F is correct with respect to F .
Then F is a permutation if and only if F is uniform and F is a permutation.

Enrico Piccione 17 / 32



Uniformity

Let F be correct with respect to F .
F is uniform if ∀x ∈ Fn

2 and ∀y ∈ Shs(F (x)) we have∣∣{x ∈ Shs(x) | F(x) = y}
∣∣ = 1.

Equivalently, if ∀x ∈ Fn
2, the restriction F : Shs(x) → Shs(F (x)) is a balanced.

Proposition

Suppose that F is correct with respect to F .
Then F is a permutation if and only if F is uniform and F is a permutation.

Enrico Piccione 17 / 32



Threshold Implementations of permutations

F is a permutation.

F is a threshold implementation of F with s shares.

s ≥ t + 1 where t is the algebraic degree of F .

Correctness F (
∑s

i=1 xi ) =
∑s

j=1Fj(x)

Non-completeness ∀i ∃j : Fj(x) is independent of xi

Uniformity F is a permutation.
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Computational investigation



Existence of threshold implementations up to affine equivalence

F ′ = A1 ◦ F ◦ A2

F ′ = A1 ◦ F ◦ A2

Let L = A+ A(0).
A(x) = (L(x1) + A(0), L(x2), . . . , L(xs)).

Remark

The existence of a threshold implementation with s shares is an affine invariant.

Enrico Piccione 19 / 32



Existence of threshold implementations up to affine equivalence

F ′ = A1 ◦ F ◦ A2

F ′ = A1 ◦ F ◦ A2

Let L = A+ A(0).
A(x) = (L(x1) + A(0), L(x2), . . . , L(xs)).

Remark

The existence of a threshold implementation with s shares is an affine invariant.

Enrico Piccione 19 / 32



The cube permutation

F (x) = x3 over F2n with n odd.
F is a permutation since gcd(3, 2n − 1) = 1.
F has algebraic degree t = 2.

Theorem

F (x) = x3 over F23 does not admit a threshold implementation with 3 shares.

So we investigated TIs with 4 shares.
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Computational investigation on the cube permutation

Consider 4 shares x1, x2, x3, x4 ∈ F2n .

(x1 + x2 + x3 + x4)
3 =

∑
i ,j∈{1,2,3,4}

x2i xj .

A simple algorithm:

1 Let M = {x2i xj : i , j ∈ {1, 2, 3, 4}}. and let

Φ =
{
ϕ : M → {1, 2, 3, 4} | ϕ−1(i) is non-complete ∀i ∈ {1, 2, 3, 4}

}
.

2 Choose ϕ ∈ Φ and Φ := Φ \ {ϕ}.
3 Set F : (F2n)

4 → (F2n)
4 where Fi := 0 for i = 1, 2, 3, 4.

4 For each m ∈ M, Fi := Fi +m where i = ϕ(m).

5 If F is a permutation, print F .

6 If Φ is empty, then terminate. Otherwise, go back to 2.
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Results and generalization

F


x1
x2
x3
x4


T

=


x31
x32 + x22x3 + x22x4 + x2x

2
3 + x2x

2
4

x34 +
∑

i ,j∈{1,3,4}, i ̸=j x
2
i xj

x33 + x21x2 + x1x
2
2


T

,

F


x1
x2
x3
x4


T

=


x31
(x3 + x4)

3 + (x2 + x3 + x4)
3

x33 + x31 + (x1 + x3 + x4)
3

x33 + (x1 + x2)
3 + x31 + x32


T

,

F


x1
x2
x3
x4


T

=


F (x1)
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F (x3) + F (x1) + F (x1 + x3 + x4)
F (x3) + F (x1 + x2) + F (x1) + F (x2)


T

.
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Observations for t = 3

We tried to replicate for t = 3.
We investigated F (x) = x7 over F24 .

There is no known TIs with t + 1 = 4 shares for F (but no non-existence result).
So we investigated 5 shares.

Problems:

The domain of F is minimum (F24)
5.

The pattern for t = 2 is misleading.
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Construction



Functions of algebraic degree t

F is affine (t = 1)
F (x1 + x2) + F (x1) + F (x2) + F (0) = 0

F is quadratic (t = 2)
F (x1 + x2 + x3) + F (x1 + x2) + F (x1 + x3) + F (x2 + x3) + F (x1) + F (x2) + F (0) = 0

Lemma

F of algebraic degree t =⇒
∑

I⊆{1,...,t}

F

(∑
i∈I

xi

)
= 0.
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Algebraic decomposition (Carlet et al. 2015)

Lemma

Let F : Fn
2 → Fm

2 be of algebraic degree at most t ≥ 1 and let s > t.
Then for every x1, x2, . . . , xs ∈ Fn

2 we have that

F

(
s∑

i=1

xi

)
=

t∑
j=0

µs,t(j)
∑

I∈Ps , |I |=j

F

(∑
i∈I

xi

)

where µs,t(j) =
(s−j−1

t−j

)
mod 2 for every j = 0, . . . , t (with the convention that

(0
0

)
= 1).

We recall that F is correct w.r.t. F if

F

(
s∑

i=1

xi

)
=

s∑
j=1

Fj(x).
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The universal optimal construction

Notation: Pk = {I | I ⊆ {1, . . . , k}} and
∑

i∈∅ xi = 0.
Let F be a permutation over Fn

2 with algebraic degree t ≥ 2.
Then F defined as

F1(x) = x1

F2(x) =
t+2∑
i=3

xi + F

(
t+2∑
i=2

xi

)

Fj(x) = xj +
∑

I∈Pj−2

F

∑
i∈I

xi +
t+2∑
i=j

xi

 , j = 3, . . . , t + 1

Ft+2(x) = xt+2 + x1 +
∑
I∈Pt

F

(∑
i∈I

xi

)

is a threshold implementation of F .
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Proving the correctness property

Let t be the algebraic degree of F .

Proposition

F

(
t+2∑
i=1

xi

)
= F

(
t+2∑
i=2

xi

)
+

t+1∑
j=3

∑
I∈Pj−2

F

∑
i∈I

xi +
t+2∑
i=j

xi

+
∑
I∈Pt

F

(∑
i∈I

xi

)
.
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Proving the uniformity property

Let F be a permutation over Fn
2 with algebraic degree t ≥ 2.

Lemma

F is uniform if and only if F is a permutation.

The system defined by
F(x) = y

can be solved like a triangular system by using the equation

s∑
i=1

xi = F−1

(
s∑

i=1

yi

)
.
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On the existence of threshold implementations with t+1 shares



Reaching t + 1 shares (Bilgin et al. 2012, Božilov et al. 2017)

size degree 3 shares 4 shares 5 shares

3 2 2 1

4 2 5 1
3 - 4 291

5 2 30 45
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Two known infinite constructions with t + 1 shares

Feistel permutations[Boss et al. 2017] Let F : Fn
2 × Fn

2 → Fn
2 × Fn

2 be defined as

F (x , y) = (x , y + G (x)).

Let G : (Fn
2)

t+1 → (Fn
2)

t+1 be non-complete and correct with respect to G .
Then

F(x , y) = (x , y + G(x)).

is a TI of F with t + 1 shares.

Going upward in dimension[Varici et al. 2019]: They construct new (n + 1)-bit and
(n + 2)-bit bijective S-boxes from F .
If F admits a TI with t + 1 shares, then also those functions admit a TI with t + 1 shares.
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Conjectures on the existence of TIs with t+1 shares

Conjecture

No power permutation of algebraic degree t ≥ 2 admits a threshold implementation with t + 1
shares.

Conjecture

No APN permutation of algebraic degree t admits a threshold implementation with t + 1
shares.
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Conclusions

What we achieved:

Low latency implementations with no additional randomness

Every permutation has a t + 2 share TI

What we can do next:

Which permutations do not admit a TI with t + 1 shares?

Can we do t + 1 shares constructions for interesting classes of permutations?
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Thanks for your attention!
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