# Uni/Multi Variate Polynomial Embeddings for zkSNARKs 

Guang Gong

Department of Electrical and Computer Engineering University of Waterloo<br>CANADA https://uwaterloo.ca/scholar/ggong<br>Boolean Functions and their Applications (BFA) September 3-8, 2023, Fleischer's Hotel, Voss, Norway

## Outline

- Overview of zero-knowledge proofs and zkSNARKs
- Polynomial embeddings for R1CS relation
- Uni/Multi variate polynomial embeddings for R1CS Polaris/Spartan protocols
- Efficiency comparisons for different encoding methods
- Concluding remarks and some open problems


## Motivation: blockchain privacy

- Blockchain, a decentralized peer-to-peer (P2P) ledger system, in addition of applications in cryptocurrency, is gaining interest to many different applications, such as
- decentralized identity management,
- supply chain management,
- private data management,
- ...
- Blockchains can provide trusted consensus, computation, and immutable data between untrusted entities.
- However, those applications need privacy!
- Tool for blockchain privacy: zero-knowledge proofs.


## Zero-Knowledge Proofs

Loosely speaking, zero-knowledge proofs are proofs that yields nothing beyond the validity of the assertion.


## Zero-Knowledge Proofs (cont.)



Completeness: $\mathcal{P}$ can convince $\mathcal{V}$ if $X$ is true
Soundness: No malicious $\mathcal{P}^{*}$ cannot convince $V$ if $X$ is not true
Zero Knowledge: $\mathcal{V}^{*}$ learns nothing except for the validity of $X$

## Zero-Knowledge Proofs (cont.)



- Completeness: $\mathcal{P}$ can convince $\mathcal{V}$ if $X$ is true

Soundness: No malicious $\mathcal{P}^{*}$ cannot convince $\mathcal{V}$ if $X$ is not true
Zero Knowledge: $\mathcal{V}^{*}$ learns nothing except for the validity of $X$

## Zero-Knowledge Proofs (cont.)



- Completeness: $\mathcal{P}$ can convince $\mathcal{V}$ if $X$ is true
- Soundness: No malicious $\mathcal{P}^{*}$ cannot convince $\mathcal{V}$ if $X$ is not true

Zero Knowledge: $\mathcal{V}^{*}$ learns nothing except for the validity of $X$

## Zero-Knowledge Proofs (cont.)



- Completeness: $\mathcal{P}$ can convince $\mathcal{V}$ if $X$ is true
- Soundness: No malicious $\mathcal{P}^{*}$ cannot convince $\mathcal{V}$ if $X$ is not true
- Zero Knowledge: $\mathcal{V}^{*}$ learns nothing except for the validity of $X$
- Prover complexity: Computational cost for the prover to run the protocol.
- Round complexity: Number of transmissions between prover and verifier.
- Proof length (or communication): Total size of communication between prover and verifier.
- Verifier complexity: Computational cost for the verifier.
- Setup cost: Size of setup parameters, e.g. a common reference string (CRS), and computational cost of creating the setup.


## How about integrity of computation?



- How can Alice to prove to Bob that a hash value $y=h(x)$ is correctly evaluated without sending Bob the pre-image $x$ ?
- In other words, how can the prover convince the verifier the following NP statement without giving out $x$ :

$$
X=\{\text { I know that } x \text { such that } y=f(x) .\}
$$

## Verifiable computation

The integrity of computation is achieved by verifiable computation. It can be done through representing an algorithm/program as a circuit.

## A special ZK class: zkSNARK

## zkSNARK

zero-knowledge Succinct Non-interactive ARgument of Knowledge.

## Properties of zkSNARK

- Zero-Knowledge: does not leak any information about witness
- Succinct: Proof size is independent of NP witness sizes, i.e., the computing complexity of the prover/verifier and communication (i.e., the proof length) are computationally bounded.
- Non-interactive: only one message is sent by prover.
- ARgument of Knowledge.


## Constructions of zkSNARKs

A general approach for zkSNARKs consists of four steps:
(1) Convert a program/algorithm to an arithmetic circuit.
(2) Convert the arithmetic circuit to polynomials.
(3) Build an argument to prove something about the polynomial using (fully) homomorphic encryption or probabilistic checkable proof (PCP) with error correcting codes.
(4) Add zero-knowledge and using Fiat-Shamir transform to convert interactive to non-interactive if not done in the steps 2 and 3.
In the rest of the talk, we focus on Step 2.

## Some recent zkSNARKs

| input | Properties of different zkSNARK schemes |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | scheme | setup | security | implementation |
|  | QAP/QSP based (GGPR13, Groth16) (BCTV14a) | private | KOE | libsnark (BCTV14) <br> Pinocchio, Zcach Hawk |
| $\stackrel{\downarrow}{\alpha_{1}} \stackrel{\downarrow}{\alpha_{2}}$ | Bullet proof (BCCGP16) | public | DLOG | experiments |
|  | Marlin (CHMMVW20) | private | Strong DH | experiments |
|  | Spartan $_{\text {DL }}, O R$ (Setty20) | public | DLOG, (CRH, PRG) | experiments |
|  | Ligero (AHIV17) | public | CRH, PRG | Ligero cryptocurrency |
|  | Stark (BBHR18) | public | CRH, PRG | libstark |
|  | Aurora (BCRSVW19) | public | CRH, PRG | libiop |
|  | Virgo (ZXZS20) | public | CRH, PRG | security below 128 bit |
|  | Polaris (HG2022) | public | CRH, PRG | partial tests |

## Rank 1 Constraint Satisfiability (R1CS) Relation

From now on, we assume that we have obtained R1CS relation from a circuit converted from a given algorithm/program.

## R1CS instance

$\mathcal{T}=(\mathbb{F}, A, B, C, v, m, n)$ and corresponding witness $w$

- $A, B, C$ are $m \times m$ matrices over a large finite field $\mathbb{F}$ representing the computation circuit
- $v$ is the public input and output vector of the instance
- $w$ is the private input vector of the instance
- there are at most $n$ non-zero entries in each matrix


## R1CS relation

There exists a witness $w \in \mathbb{F}^{m-|v|-1}$ such that

$$
(A \cdot z) \circ(B \cdot z)-(C \cdot z)=\overrightarrow{\mathbf{0}}
$$

where $z:=(1, w, v) \in \mathbb{F}^{m}$, "." is the matrix-vector product, and "o" denotes the Hadamard product (i.e., term-wise product).

- The goal of a zkSNARK scheme is to prove the above relation.
- R1CS relation generalizes the problem of arithmetic circuit satisfiability.
- For the three matrices $A, B, C$, the vectors $A z, B z$ and $C z$ represent the left input, right input and output vectors of the multiplicative gates in the circuit respectively. The witness $w$ consists of the circuit's private input and wire values.


## Example - a Boolean circuit with three AND gates



## Example - R1CS instance

- $z=\left(z_{0}, z_{1}, \cdots, z_{7}\right)$ where $z_{0}=1$.


$|$| $\mid A N D ~$ | $g_{l} \cdot g_{r}-g_{o}=0$ |
| :--- | :--- |
|  | 1 |
| 2 | $z_{1} \cdot\left(1 \oplus z_{2}\right)-z_{5}=0$ |
|  | $z_{2} \cdot z_{3}-z_{6}=0$ |
| 3 | $\left(z_{5} \oplus z_{6}\right) \cdot\left(1 \oplus z_{3} \oplus z_{4}\right)-z_{7}=0$ |

- Encoding the circuit to an R1CS instance: $A$
- Encoding the circuit to an R1CS instance: $B, C$


## Example - R1CS instance

- $z=\left(z_{0}, z_{1}, \cdots, z_{7}\right)$ where $z_{0}=1$.


| AND $i$ | $g_{l} \cdot g_{r}-g_{o}=0$ |
| :---: | :--- |
| 1 | $z_{1} \cdot\left(1 \oplus z_{2}\right)-z_{5}=0$ |
|  | $z_{2} \cdot z_{3}-z_{6}=0$ |
| 3 | $\left(z_{5} \oplus z_{6}\right) \cdot\left(1 \oplus z_{3} \oplus z_{4}\right)-z_{7}=0$ |

- Encoding the circuit to an R1CS instance: $A$

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \quad \Longrightarrow \quad A \mathbf{z}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
z_{5} \oplus z_{6}
\end{array}\right)
$$

- Encoding the circuit to an R1CS instance: $B, C$






## Example - R1CS instance

- $z=\left(z_{0}, z_{1}, \cdots, z_{7}\right)$ where $z_{0}=1$.


$|$| AND $i$ | $g_{l} \cdot g_{r}-g_{o}=0$ |
| :--- | :--- |
| 1 | $z_{1} \cdot\left(1 \oplus z_{2}\right)-z_{5}=0$ |
| 2 | $z_{2} \cdot z_{3}-z_{6}=0$ |
| 3 | $\left(z_{5} \oplus z_{6}\right) \cdot\left(1 \oplus z_{3} \oplus z_{4}\right)-z_{7}=0$ |

- Encoding the circuit to an R1CS instance: $A$

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \quad \Longrightarrow \quad A \mathbf{z}=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
z_{5} \oplus z_{6}
\end{array}\right)
$$

- Encoding the circuit to an R1CS instance: $B, C$

$$
\begin{aligned}
& B=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \quad \Longrightarrow \quad B \mathbf{z}=\left(\begin{array}{c}
1 \oplus z_{2} \\
z_{3} \\
1 \oplus z_{3} \oplus z_{4}
\end{array}\right) \\
& C=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \Longrightarrow \quad C \mathbf{z}=\left(\begin{array}{c}
z_{5} \\
z_{6} \\
z_{7}
\end{array}\right)
\end{aligned}
$$

## Example - R1CS instance (cont.)

- R1CS relation

$$
\begin{equation*}
(A \mathbf{z}) \circ(B \mathbf{z})-C \mathbf{z}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\circ$ is the bit-wise Hadamard product in this case.

- In this case, we have a R1CS instance
where $m=8$, the size of $\mathbf{z}, n=6$, the maximum among the number of nonzero entries in each matrix, and
- If we take
then (1) is true. So, this is an R1CS instance. But if we take $\mathbf{z}^{\prime}=11011100$, then (1) is not true.


## Example - R1CS instance (cont.)

- R1CS relation

$$
\begin{equation*}
(A \mathbf{z}) \circ(B \mathbf{z})-C \mathbf{z}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\circ$ is the bit-wise Hadamard product in this case.

- In this case, we have a R1CS instance

$$
(\mathbb{F}, A, B, C, v, m, n)=\left(G F\left(2^{3 t}\right), A, B, C, 1,8,6\right)
$$

where $m=8$, the size of $\mathbf{z}, n=6$, the maximum among the number of nonzero entries in each matrix, and

$$
w=\left(z_{1}, \cdots, z_{6}\right), v=z_{7}
$$

- If we take
then (1) is true. So, this is an R1CS instance. But if we take $\mathbf{z}^{\prime}=11011100$, then
(1) is not true.


## Example - R1CS instance (cont.)

- R1CS relation

$$
\begin{equation*}
(A \mathbf{z}) \circ(B \mathbf{z})-C \mathbf{z}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $\circ$ is the bit-wise Hadamard product in this case.

- In this case, we have a R1CS instance

$$
(\mathbb{F}, A, B, C, v, m, n)=\left(G F\left(2^{3 t}\right), A, B, C, 1,8,6\right)
$$

where $m=8$, the size of $\mathbf{z}, n=6$, the maximum among the number of nonzero entries in each matrix, and

$$
w=\left(z_{1}, \cdots, z_{6}\right), v=z_{7}
$$

- If we take

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=(1011) \Rightarrow\left(z_{5}, z_{6}, z_{7}\right)=(101)
$$

then (1) is true. So, this is an R1CS instance. But if we take $\mathbf{z}^{\prime}=11011100$, then (1) is not true.

## Encoding Methods

Two different methods to encode R1CS:

- to represent the matrices as biivariate polynomials and vector $\mathbf{z}$ as a univariate polynomial and
- to represent them as multi-variate polynomials.


## Example

$\mathbf{z}=(11011101)$, let $\mathbb{F}_{2^{3}}$ be defined by the primitive polynomial $t(x)=x^{3}+x+1$ and $t(\alpha)=0$ :


## Example

$\mathbf{z}=(11011101)$, let $\mathbb{F}_{2^{3}}$ be defined by the primitive polynomial $t(x)=x^{3}+x+1$ and $t(\alpha)=0$ :


## Example

$\mathbf{z}=(11011101)$, let $\mathbb{F}_{2^{3}}$ be defined by the primitive polynomial $t(x)=x^{3}+x+1$ and $t(\alpha)=0$ :


## Detour: some basic properties of uni/multi variate polynomials

- Given any sequence of length $N=2^{s}$ over $\mathbb{F}$, say $\mathbf{u}=\left(u_{0}, \cdots, u_{2^{s}-1}\right)$, we can represent it as a univariate polynomial, say $f(x)$ through Lagrange interpolation over the evaluating set $H=\left\{\alpha_{0}, \cdots, \alpha_{2^{s}-1}\right\} \subset \mathbb{F}$ :

$$
f(x)=\sum_{i=0}^{2^{s}-1} u_{i} \sigma_{i}(x), f\left(\alpha_{i}\right)=u_{i}, i=0, \cdots, 2^{s}-1
$$

where $\left\{\sigma_{i}(x)\right\}$ is the Lagrange basis.

- The request of $N=2^{s}$ is to facilitate a fast computation through Fast Fourier transform (FFT) and inverse FFT (Lagrange interpolation).


## Bivariate polynomial $\Delta_{H}(x, y)$

- Let $H$ be an $s$-dimensional affine space of $\mathbb{F}$ (so in this case, $\mathbb{F}$ has characteristic 2), and

$$
Z_{H}(x)=\prod_{a \in H}(x+a)=x^{2^{s}}+\sum_{i=1}^{s} c_{i} x^{2^{i-1}}, c_{i} \in \mathbb{F}
$$

a linearized polynomial.

- Define

- Then the Lagrange basis element $\sigma_{i}(x)$ becomes
where $c_{1}$ is the coefficient of $x$ in $Z_{H}(x)$.
- The matrices $A, B, C$ can be represented by bivariate polynomial $\Delta_{H}(x, y)$, and the witness vector z can be represented by $Z_{H}(y)$.


## Bivariate polynomial $\Delta_{H}(x, y)$

- Let $H$ be an $s$-dimensional affine space of $\mathbb{F}$ (so in this case, $\mathbb{F}$ has characteristic 2), and

$$
Z_{H}(x)=\prod_{a \in H}(x+a)=x^{2^{s}}+\sum_{i=1}^{s} c_{i} x^{2^{i-1}}, c_{i} \in \mathbb{F}
$$

a linearized polynomial.

- Define

$$
\begin{equation*}
\Delta_{H}(x, y)=\frac{Z_{H}(x)+Z_{H}(y)}{x+y} \tag{2}
\end{equation*}
$$

- Then the Lagrange basis element $\sigma_{i}(x)$ becomes
where $c_{1}$ is the coefficient of $x$ in $Z_{H}(x)$.
- The matrices $A, B, C$ can be represented by bivariate polynomial $\Delta_{H}(x, y)$, and the witness vector z can be represented by $Z_{H}(y)$.


## Bivariate polynomial $\Delta_{H}(x, y)$

- Let $H$ be an $s$-dimensional affine space of $\mathbb{F}$ (so in this case, $\mathbb{F}$ has characteristic 2), and

$$
Z_{H}(x)=\prod_{a \in H}(x+a)=x^{2^{s}}+\sum_{i=1}^{s} c_{i} x^{2^{i-1}}, c_{i} \in \mathbb{F}
$$

a linearized polynomial.

- Define

$$
\begin{equation*}
\Delta_{H}(x, y)=\frac{Z_{H}(x)+Z_{H}(y)}{x+y} \tag{2}
\end{equation*}
$$

- Then the Lagrange basis element $\sigma_{i}(x)$ becomes

$$
\sigma_{i}(x)=\frac{\Delta_{H}\left(x, \alpha_{i}\right)}{c_{1}}=\frac{1}{c_{1}} \frac{Z_{H}(x)}{x+\alpha_{i}}, 0 \leq i<2^{s}
$$

where $c_{1}$ is the coefficient of $x$ in $Z_{H}(x)$.

- The matrices $A, B, C$ can be represented by bivariate polynomial $\Delta_{H}(x, y)$, and the witness vector $\mathbf{z}$ can be represented by $Z_{H}(y)$.


## Multivariate polynomial encodings of sequences

- For a sequence $\mathbf{u}=\left(u_{0}, \cdots, u_{N-1}\right)$, we associate it with a function $f(t): \mathbb{Z}_{N} \rightarrow \mathbb{F}$ by

$$
f(t)=u_{t}, 0 \leq t<N
$$

i.e.,

$$
\mathbf{u}=(f(0), f(1), \cdots, f(N-1))
$$

- For any $\forall x \in \mathbb{Z}_{N}$,

$$
x=\sum_{v=0}^{s-1} x_{v} \cdot 2^{v} \leftrightarrow \mathbf{x}=\left(x_{0}, x_{1}, \cdots, x_{s-1}\right), x_{v} \in\{0,1\} .
$$

- Let

$$
\begin{equation*}
\delta_{t}(\boldsymbol{x})=\prod_{i=0}^{s-1}\left(x_{i} t_{i}+\left(1-x_{i}\right)\left(1-t_{i}\right)\right) \tag{3}
\end{equation*}
$$

- Then any function $f: \mathbb{Z}_{N} \rightarrow \mathbb{F}$ can be represented by

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{t=0}^{2^{s}-1} f(t) \delta_{t}(\boldsymbol{x}) \tag{4}
\end{equation*}
$$

The representation of Golay sequences!

## Embedding of multilinear extension

- When $x_{i}$ and $t_{i}$ take values in $\mathbb{F}$,

$$
\begin{equation*}
\tilde{f}(\boldsymbol{x})=\sum_{t \in\{0,1\}^{s}} f(\boldsymbol{t}) \delta_{t}(\boldsymbol{x}), \boldsymbol{x} \in \mathbb{F}^{s} . \tag{5}
\end{equation*}
$$

is called a embedding of $f(\boldsymbol{x})$ or a multi-linear extension (MLE) of $f(\boldsymbol{x})$ from $\{0,1\}^{s} \mapsto \mathbb{F}$ to $\mathbb{F}^{s} \mapsto \mathbb{F}$.

## Uni/multi variate embeddings of R1CS

For a given $m \times m$ matrix $A=\left(a_{i j}\right)$ over $\mathbb{F}$, the prover needs to compute the following Lagrange interpolated polynomials $\left(m=2^{s}\right)$ :

$$
\begin{array}{ll}
A(x, y)=\frac{1}{c_{1}^{2}} \sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \Delta_{H}\left(x, \alpha_{i}\right) \Delta_{H}\left(y, \alpha_{j}\right) \quad \text { Univariate in Pol } \\
A(\mathbf{x}, \mathbf{y})=\sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \delta_{(i, j)}(\mathbf{x}, \mathbf{y}),(\mathbf{x}, \mathbf{y}) \in\left(\mathbb{F}^{s}\right)^{2} \quad \text { MLE in Spartan } \tag{6}
\end{array}
$$

Note that $\left[2^{s}\right]=\left\{0,1, \cdots, 2^{s}-1\right\}$.

- From the property of $\Delta(x, y)$, we have the following simplified formulae
- Similarly, we have $B(\cdot, \cdot), C(\cdot, \cdot)$.


## Uni/multi variate embeddings of R1CS

For a given $m \times m$ matrix $A=\left(a_{i j}\right)$ over $\mathbb{F}$, the prover needs to compute the following Lagrange interpolated polynomials $\left(m=2^{s}\right)$ :

$$
\begin{array}{ll}
A(x, y)=\frac{1}{c_{1}^{2}} \sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \Delta_{H}\left(x, \alpha_{i}\right) \Delta_{H}\left(y, \alpha_{j}\right) \quad \text { Univariate in Pol } \\
A(\mathbf{x}, \mathbf{y})=\sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \delta_{(i, j)}(\mathbf{x}, \mathbf{y}),(\mathbf{x}, \mathbf{y}) \in\left(\mathbb{F}^{s}\right)^{2} \quad \text { MLE in Spartan } \tag{6}
\end{array}
$$

Note that $\left[2^{s}\right]=\left\{0,1, \cdots, 2^{s}-1\right\}$.

- From the property of $\Delta(x, y)$, we have the following simplified formulae

$$
\begin{equation*}
A(x, y)=\frac{1}{c_{1}^{2}} \sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \frac{\mathbb{Z}_{H}(x)}{x+\alpha_{i}} \cdot \frac{\mathbb{Z}_{H}(y)}{y+\alpha_{j}} \tag{7}
\end{equation*}
$$

- Similarly, we have $B(\cdot, \cdot), C(\cdot, \cdot)$.


## Uni/multi variate embeddings of R1CS

For a given $m \times m$ matrix $A=\left(a_{i j}\right)$ over $\mathbb{F}$, the prover needs to compute the following Lagrange interpolated polynomials $\left(m=2^{s}\right)$ :

$$
\begin{array}{ll}
A(x, y)=\frac{1}{c_{1}^{2}} \sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \Delta_{H}\left(x, \alpha_{i}\right) \Delta_{H}\left(y, \alpha_{j}\right) & \text { Univariate in Pol } \\
A(\mathbf{x}, \mathbf{y})=\sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \delta_{(i, j)}(\mathbf{x}, \mathbf{y}),(\mathbf{x}, \mathbf{y}) \in\left(\mathbb{F}^{s}\right)^{2} & \text { MLE in Spartan } \tag{6}
\end{array}
$$

Note that $\left[2^{s}\right]=\left\{0,1, \cdots, 2^{s}-1\right\}$.

- From the property of $\Delta(x, y)$, we have the following simplified formulae

$$
\begin{equation*}
A(x, y)=\frac{1}{c_{1}^{2}} \sum_{(i, j) \in\left[2^{s}\right]^{2}} a_{i j} \frac{\mathbb{Z}_{H}(x)}{x+\alpha_{i}} \cdot \frac{\mathbb{Z}_{H}(y)}{y+\alpha_{j}} \tag{7}
\end{equation*}
$$

- Similarly, we have $B(\cdot, \cdot), C(\cdot, \cdot)$.

Uni/multi variate embeddings of R1CS (cont.)

| Univariate | MLE |
| :--- | :--- |
|  |  |
| $\bar{A}(x)=\sum_{y \in H} A(x, y) Z(y)$ | $\bar{A}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} A(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{B}(x)=\sum_{y \in H} B(x, y) Z(y)$ | $\bar{B}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} B(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{C}(x)=\sum_{y \in H} C(x, y) Z(y)$ | $\bar{C}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} C(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |

- Define $F_{w}(\cdot)$ that is used to encode the vector $\mathbf{z}$ :
Univariate


## MLE

Uni/multi variate embeddings of R1CS (cont.)

| Univariate | MLE |
| :--- | :--- |
|  |  |
| $\bar{A}(x)=\sum_{y \in H} A(x, y) Z(y)$ | $\bar{A}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} A(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{B}(x)=\sum_{y \in H} B(x, y) Z(y)$ | $\bar{B}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} B(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{C}(x)=\sum_{y \in H} C(x, y) Z(y)$ | $\bar{C}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} C(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |

- Define $F_{w}(\cdot)$ that is used to encode the vector $\mathbf{z}$ :

| Univariate | MLE |
| :--- | :--- |
| $F_{w}(x)=\bar{A}(x) \cdot \bar{B}(x)-\bar{C}(x)$ | $F_{w}(\mathbf{x})=\bar{A}(\mathbf{x}) \cdot \bar{B}(\mathbf{x})-\bar{C}(\mathbf{x})$ |

## Uni/multi variate embeddings of R1CS (cont.)

| Univariate | MLE |
| :--- | :--- |
|  |  |
| $\bar{A}(x)=\sum_{y \in H} A(x, y) Z(y)$ | $\bar{A}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} A(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{B}(x)=\sum_{y \in H} B(x, y) Z(y)$ | $\bar{B}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} B(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |
| $\bar{C}(x)=\sum_{y \in H} C(x, y) Z(y)$ | $\bar{C}(\mathbf{x})=\sum_{\mathbf{y} \in \mathbb{Z}_{2}^{s}} C(\mathbf{x}, \mathbf{y}) Z(\mathbf{y})$ |

- Define $F_{w}(\cdot)$ that is used to encode the vector $\mathbf{z}$ :

| Univariate | MLE |
| :--- | :--- |
| $F_{w}(x)=\bar{A}(x) \cdot \bar{B}(x)-\bar{C}(x)$ | $F_{w}(\mathbf{x})=\bar{A}(\mathbf{x}) \cdot \bar{B}(\mathbf{x})-\bar{C}(\mathbf{x})$ |

## Lemma

A pair $(\mathcal{T}, w)$ is a valid instance-witness pair, i.e., $(\mathcal{T}, w) \in \mathcal{R}_{\mathrm{R} 1 \mathrm{CS}}$ if and only if

- $F_{w}(x)=0$ for any $x \in H$ if it is encoded by the univariate polynomial and
- $F_{w}(\mathbf{x})=0$ for any $\boldsymbol{x} \in\{0,1\}^{s}$ if it is encoded by the MLE.


## Polaris Protocol: Univariate encoding

Given an R1CS instance over $\mathbb{F} \mathcal{T}=(\mathbb{F}, A, B, C, v, m, n)$, encoded by univariate polynomials over $H$, an affine space of $\mathbb{F} . \mathcal{V}$ in Polaris checks

$$
F_{w}\left(r_{x}\right) \stackrel{?}{=} G\left(r_{x}\right) \cdot \mathbb{Z}_{H}\left(r_{x}\right)
$$

from the claims of $\mathcal{P}$.

- Quad-check: $\mathcal{P}$ computes $\bar{A}\left(r_{x}\right)=v_{A}, \bar{B}\left(r_{x}\right)=v_{B}$, and $\bar{C}\left(r_{x}\right)=v_{C}, G\left(r_{x}\right)=\eta$ and send $\left(v_{A}, v_{B}, v_{C}, \eta\right)$ to $\mathcal{V}$ where $G(x)$ is committed through a polynomial commitment scheme. $\mathcal{V}$ computes $\gamma=\mathcal{Z}_{H}\left(r_{x}\right)$, verifies $\eta=G\left(r_{x}\right)$ by the polynomial commitment. If it is successful, $\mathcal{V}$ checks

$$
v_{A} \cdot v_{B}-v_{C} \stackrel{?}{=} \eta \cdot \gamma
$$

If it is true, continue. Otherwise, it rejects.

- Lin-check: $\mathcal{V}$ chooses $r_{A}, r_{B}, r_{C} \in \mathbb{F}$ uniformly at random, sends them to $\mathcal{P}$, and computes $c=r_{A} \cdot v_{A}+r_{B} \cdot v_{B}+r_{C} \cdot v_{C} \cdot \mathcal{P}$ and $\mathcal{V}$ invoke the univariate sumcheck protocol together with GKR protocol to verify

$$
c \stackrel{?}{=} \sum_{y \in H} Q_{r_{x}}(y)
$$

where

$$
Q_{r_{x}}(y):=\left(r_{A} \cdot A\left(r_{x}, y\right)+r_{B} \cdot B\left(r_{x}, y\right)+r_{C} \cdot C\left(r_{x}, y\right)\right) \cdot Z(y)
$$

## Summary of encoding R1CS relation in Polaris

- Quad-check. Product checking polynomial $F_{w}(x)$ is converted to Poly-SAT

$$
\begin{gathered}
F_{w}(x)=\mathbb{Z}_{H}(x) \cdot G(x) \\
\downarrow \uparrow \Uparrow_{\text {soundness }} \\
F_{w}\left(r_{x}\right)=\mathbb{Z}_{H}\left(r_{x}\right) \cdot G\left(r_{x}\right) \text { for a random } r_{x} \in \mathbb{F} \backslash H
\end{gathered}
$$

- Lin-check. Univariate sum check together with GKR protocol This is to check whether the validity of three evaluations: $v_{A}=\bar{A}\left(r_{x}\right), v_{B}=\bar{B}\left(r_{x}\right), v_{C}=\bar{C}\left(r_{x}\right)$ through a random combination:



## Spartan Protocol: multivariate encoding

Given an R1CS instance over $\mathbb{F}, \mathcal{T}=(\mathbb{F}, A, B, C, v, m, n)$, encoded by multivariate polynomials. The verifier needs to check $\tilde{F}_{w}(\boldsymbol{x})=0, \forall \boldsymbol{x} \in\{0,1\}^{s}$. This converts to check
$\sum_{\boldsymbol{x} \in\{0,1\}^{s}} \tilde{F_{w}}(\boldsymbol{x}) \delta_{t_{0}}(\boldsymbol{x})=0$ through the mutivariate sumcheck protocol converted to check

$$
\tilde{F_{w}}(\boldsymbol{x}) \delta_{\boldsymbol{t}_{0}}(\boldsymbol{x})=e_{x}, \boldsymbol{t}_{0}, \boldsymbol{r}_{x} \in_{R} \mathbb{F}^{s} .
$$

- Quad-check: So $\mathcal{P}$ computes three claims: $\tilde{A}\left(\boldsymbol{r}_{x}\right)=v_{A}^{\prime}, \tilde{B}\left(\boldsymbol{r}_{x}\right)=v_{B}^{\prime}$, and $\tilde{C}\left(\boldsymbol{r}_{x}\right)=v_{C}^{\prime}$, sends them to $\mathcal{V}$ and commits $e_{x} . \mathcal{V}$ computes $\delta_{t_{0}}\left(\boldsymbol{r}_{x}\right)$ and checks

$$
\left(v_{A}^{\prime} v_{B}^{\prime}-v_{C}^{\prime}\right) \delta_{t_{0}}\left(\boldsymbol{r}_{x}\right) \stackrel{?}{=} e_{x}
$$

If it is true, continue. Otherwise, it rejects.

- Lin-check: $\mathcal{V}$ chooses $r_{A}^{\prime}, r_{B}^{\prime}, r_{C}^{\prime} \in \mathbb{F}$ uniformly at random, sends them to $\mathcal{P}$, and computes $c^{\prime}=r_{A}^{\prime} \cdot v_{A}^{\prime}+r_{B}^{\prime} \cdot v_{B}^{\prime}+r_{C}^{\prime} \cdot v_{C}^{\prime} . \mathcal{P}$ and $\mathcal{V}$ invoke the multivariate sumcheck protocol to verify

$$
c^{\prime}=\sum_{\mathbf{y} \in\{0,1\}^{s}} Q_{\boldsymbol{r}_{x}}^{\prime}(\mathbf{y}) \Longrightarrow \text { to check } Q_{\boldsymbol{r}_{x}}^{\prime}\left(\boldsymbol{r}_{y}\right) \stackrel{?}{=} e_{y}, \boldsymbol{r}_{y} \in_{R} \mathbb{F}^{s}, e_{y} \in \mathbb{F}
$$

## UNIVERSITY OF

## Summary of two protocols

Recall $[2]=\{0,1\}$.

| Univariate | MLE |
| :--- | :--- |
| R1CS instance $F_{w}(x), x \in \mathbb{F}$ | $F_{w}(\mathbf{x}), \mathbf{x} \in \mathbb{F}^{s}$ |
| $F_{w}(x)=0, \forall x \in H$ | $F_{w}(\mathbf{x})=0, \forall \mathbf{x} \in[2]^{s}$ |
| $F_{w}(x)=G_{w}(x) \mathbb{Z}_{H}(x)$ | $J_{w}(\mathbf{t})=\sum_{\mathbf{t} \in[2]^{s}} F_{w}(\mathbf{x}) \delta_{\mathbf{t}}(\mathbf{x})$ |
| To check | To prove $J_{w}(\mathbf{t})$ a zero polynomial |
| $F_{w}\left(r_{x}\right) \stackrel{?}{=} G_{w}\left(r_{x}\right) \mathbb{Z}_{H}\left(r_{x}\right), r_{x} \in_{R} \mathbb{F}$ | $J_{w}\left(\mathbf{t}_{0}\right)=0, \mathbf{t}_{0} \in_{R} \mathbb{F}^{s}$ |
|  | invoking the multi sumcheck protocol |
|  | $\Longrightarrow F_{w}\left(\boldsymbol{r}_{x}\right) \delta_{\mathbf{t}_{0}}\left(\boldsymbol{r}_{x}\right) \stackrel{?}{=} e_{x}, \boldsymbol{r}_{x} \in{ }_{R} \mathbb{F}^{s}, e_{x} \in \mathbb{F}$ |
| Quad-check: | Quad-check: |
| $v_{A} \cdot v_{B}-v_{C} \stackrel{?}{=} G_{w}\left(r_{x}\right) \mathbb{Z}_{H}\left(r_{x}\right)$ | $\left(v_{A}^{\prime} v_{B}^{\prime}-v_{C}^{\prime}\right) \delta_{t_{0}}\left(\boldsymbol{r}_{x}\right) \stackrel{?}{=} e_{x}$ |
| Lin-check: | Lin-check: |
| $c=r_{A} \cdot v_{A}+r_{B} \cdot v_{B}+r_{C} \cdot v_{C}$ | $c^{\prime}=r_{A}^{\prime} v_{A}^{\prime}+r_{B}^{\prime} v_{B}^{\prime}+r_{C}^{\prime} v_{C}^{\prime}$ |
| $\Longrightarrow \Longrightarrow$ | $\Longrightarrow \quad c^{\prime} \stackrel{?}{=} \sum_{\mathbf{y} \in[2]^{s}} Q_{r_{x}(\mathbf{y})}^{\Longrightarrow}$ |
| $c \stackrel{?}{=} \sum_{y \in H} Q_{r_{x}}(y)$ | second time multi sumcheck $=$ |
| Univariate sumcheck and GKR |  |

## Efficiency analysis

## Univariate poly in Polaris

- $\mathcal{P}$ : complevity is bounded by the complexity of computing $G(x)=F_{w}(x) / Z_{H}(x)$. The most efficient way is to apply additive FFT, bounded by $O\left(s 2^{s}\right)$
- Proof size is bounded by $O\left(s^{2}\right)$.
- $\mathcal{V}$ : the complexity is bounded by $O\left(s^{2}\right)$ from the univariate sumcheck and GKR protocol.

```
Multivariate poly in Spartan
    - \mathcal{P}}\mathrm{ : It does not actually compute
    Fw}(x)\mathrm{ instead it only needs to
    evaluate }\mp@subsup{\tilde{F}}{w}{}(x)\mathrm{ at a random
    point }\mp@subsup{r}{x}{}\in\mp@subsup{\mathbb{F}}{}{s}\mathrm{ . So the
    complexity for the prover is
    linear on 2s
e The proof size is similar as the
    univariate case.
- V: this has a problem to make
    it logarithmic on 2 's, like the
    univariate case. Spartan gets
    the result by using special
    memory structure.
```


## Efficiency analysis

## Univariate poly in Polaris

- $\mathcal{P}$ : complexity is bounded by the complexity of computing $G(x)=F_{w}(x) / Z_{H}(x)$. The most efficient way is to apply additive FFT, bounded by $O\left(s 2^{s}\right)$.
- Proof size is bounded by $O\left(s^{2}\right)$.
- $\mathcal{V}$ : the complexity is bounded by $O\left(s^{2}\right)$ from the univariate sumcheck and GKR protocol.


## Multivariate poly in Spartan

- $\mathcal{P}$. It does not actually compute $F_{w}(x)$ instead it only needs to evaluate $F_{w}(\boldsymbol{x})$ at a random point $\boldsymbol{r}_{x} \in \mathbb{F}^{s}$. So the complexity for the prover is linear on $2^{s}$
- The proof size is similar as the univariate case.
- U: this has a problem to make it logarithmic on $2^{s}$, like the univariate case. Spartan gets the result by using special


## Efficiency analysis

## Univariate poly in Polaris

- $\mathcal{P}$ : complexity is bounded by the complexity of computing $G(x)=F_{w}(x) / Z_{H}(x)$. The most efficient way is to apply additive FFT, bounded by $O\left(s 2^{s}\right)$.
- Proof size is bounded by $O\left(s^{2}\right)$.
- $\mathcal{V}$ : the complexity is bounded by $O\left(s^{2}\right)$ from the univariate sumcheck and GKR protocol.


## Multivariate poly in Spartan

- $\mathcal{P}$ : It does not actually compute $\tilde{F}_{w}(\boldsymbol{x})$ instead it only needs to evaluate $\tilde{F}_{w}(\boldsymbol{x})$ at a random point $\boldsymbol{r}_{x} \in \mathbb{F}^{s}$. So the complexity for the prover is linear on $2^{s}$.
- The proof size is similar as the univariate case.
- $\mathcal{V}$ : this has a problem to make it logarithmic on $2^{s}$, like the univariate case. Spartan gets the result by using special memory structure.


## Problem on the number of multiplication gates

- How does the number of multiplication gates effect the performance of zkSNARKs?
- The degrees of the polynomials or the number of variables of multivariate polynomials involved in R1CS are determined by the number of multiplication gates of the circuit.
- For example, in Zcash, one needs to prove $y=S H A 256(x)$ where $x$ is the number of Bitcoin for which the user wishes to spend. SH A256 has about 23k AND gates and proof is based on a Merkle tree with high 64 . In this case $s=[\log (64 \times 23000)\rceil=21$.
- The size of $H$ is $2^{21}$, and those polynomials has degree $2^{21}-1$ for $\bar{M}(x), M \in\{A, B, C\}$.
- In the multivariate case, the number of variables is 21 and there are $2^{21}$ monomials involved in the computation.
- Thus it requests the underline hash functions should have minimal multiplicative complexity $\rightarrow$ MiMC for symmetric-key cryptography!


## Problem on the number of multiplication gates

- How does the number of multiplication gates effect the performance of zkSNARKs?
- The degrees of the polynomials or the number of variables of multivariate polynomials involved in R1CS are determined by the number of multiplication gates of the circuit.
- For example, in Zcash, one needs to prove $y=S H A 256(x)$ where $x$ is the number of Bitcoin for which the user wishes to spend. SH A256 has about 23k AND gates and proof is based on a Merkle tree with high 64 . In this case $s=\lceil\log (64 \times 23000)\rceil=21$.
- In the multivariate case, the number of variables is 21 and there are $2^{21}$ monomials involved in the computation.
- Thus it requests the underline hash functions should have minimal multiplicative complexity $\rightarrow$ MiMC for symmetric-key cryptography!


## Problem on the number of multiplication gates

- How does the number of multiplication gates effect the performance of zkSNARKs?
- The degrees of the polynomials or the number of variables of multivariate polynomials involved in R1CS are determined by the number of multiplication gates of the circuit.
- For example, in Zcash, one needs to prove $y=S H A 256(x)$ where $x$ is the number of Bitcoin for which the user wishes to spend. SHA256 has about 23k AND gates and proof is based on a Merkle tree with high 64 . In this case $s=\lceil\log (64 \times 23000)\rceil=21$.
- The size of $H$ is $2^{21}$, and those polynomials has degree $2^{21}-1$ for $\bar{M}(x), M \in\{A, B, C\}$.
- In the multivariate case, the number of variables is 21 and there are $2^{21}$ monomials involved in the computation.
- Thus it requests the underline hash functions should have minimal multiplicative complexity $\rightarrow$ MiMC for symmetric-key cryptography!


## Problem on the number of multiplication gates

- How does the number of multiplication gates effect the performance of zkSNARKs?
- The degrees of the polynomials or the number of variables of multivariate polynomials involved in R1CS are determined by the number of multiplication gates of the circuit.
- For example, in Zcash, one needs to prove $y=S H A 256(x)$ where $x$ is the number of Bitcoin for which the user wishes to spend. SHA256 has about 23k AND gates and proof is based on a Merkle tree with high 64 . In this case $s=\lceil\log (64 \times 23000)\rceil=21$.
- The size of $H$ is $2^{21}$, and those polynomials has degree $2^{21}-1$ for $\bar{M}(x), M \in\{A, B, C\}$.
- In the multivariate case, the number of variables is 21 and there are $2^{21}$ monomials involved in the computation.
- Thus it requests the underline hash functions should have minimal multiplicative complexity $\rightarrow$ MiMC for symmetric-key cryptography!


## Can we do better?

By selecting a special $H$, for example, to take $H$ as a subfield of $\mathbb{F}$ instead of an affine subspace (or a multiplicative coset of $\mathbb{F}$ ).

- In this case, we have

$\Longrightarrow$ no computation needed!
- Can we reduce the degrees of those uni/multi variate polynomials?
- Yes, we have algebraic attacks/selective DFT attack in our area to make it happen (undergoing)


## Can we do better?

By selecting a special $H$, for example, to take $H$ as a subfield of $\mathbb{F}$ instead of an affine subspace (or a multiplicative coset of $\mathbb{F}$ ).

- In this case, we have

$$
Z_{H}(x)=x^{2^{s}}+x
$$

$\Longrightarrow$ no computation needed!

- Can we reduce the degrees of those uni/multi variate polynomials?
- Yes, we have algebraic attacks/selective DFT attack in our area to make it happen (undergoing)


## Can we do better?

By selecting a special $H$, for example, to take $H$ as a subfield of $\mathbb{F}$ instead of an affine subspace (or a multiplicative coset of $\mathbb{F}$ ).

- In this case, we have

$$
Z_{H}(x)=x^{2^{s}}+x
$$

$\Longrightarrow$ no computation needed!

- Can we reduce the degrees of those uni/multi variate polynomials?
- Yes, we have algebraic attacks/selective DFT attack in our area
to make it happen (undergoing).


## Can we do better?

By selecting a special $H$, for example, to take $H$ as a subfield of $\mathbb{F}$ instead of an affine subspace (or a multiplicative coset of $\mathbb{F}$ ).

- In this case, we have

$$
Z_{H}(x)=x^{2^{s}}+x
$$

$\Longrightarrow$ no computation needed!

- Can we reduce the degrees of those uni/multi variate polynomials?
- Yes, we have algebraic attacks/selective DFT attack in our area to make it happen (undergoing).


## UNIVERSITY OF

## Concluding remarks

- We have presented how uni/multi variate polynomial embeddings work for R1CS.
- As examples, we use Polaris and Spartan for demonstrating those post zkSNARK schemes. Those constructions of zkSNARKS are quantum secure, since they only involve polynomial operations and hash functions.
- We have showed that the computation of univariate polynomial embeddings can be optimized by selecting affine space/multiplicative cosets as a subfield.
- Applications are immense, but our focus is for implementing blockchain privacy.
- Currently, we are investigating to their concrete computational cost for both embeddings.


## UNIVERSITY OF

## Remarks on some related areas

(1) Recently, NIST called the post-quantum secure digital signature schemes which has the deadline in June 2023. Currently it has 50 submissions.
(2) A zkSNARK scheme with post-quantum security is naturally a post-quantum secure digital signature scheme. (E.g. Picnic style digital signatures are in this class.)
(3) In other words, let $p k=F(s k)$ where $F$ is either an encryption or a hash function. A zkSNARK to prove the NP statement:
"I know $s k$ such that $p k=F(s k)$ "
without giving out $s k$ to verifiers yields a signature scheme where the proof is the signature, $s k$ is the signing key and $p k$ is the verification key.
(4) However, we need the underline symmetric key algorithm $F$ is MiMC.

## Open problems on MiMC design

- How small can we go to get MiMC symmetric key algorithm at a designated security level?
- If we take $H$ as a multiplicative coset of $\mathbb{F}$, where $|H|=2^{s}$. Then $\mathbb{F}$ has to be a prime field, i.e., $\mathbb{F}=G F(q)$ where $q$ is a prime or a power of a prime $\neq 2$.
- Can we find good permutations of $K^{t}$ where $K$ is a subfield of $\mathbb{F}$, with $\left|K^{t}\right| \approx|H|$ ?
- In other words, the permutations with good nonlinearity, differential uniformity or APN property, ... .


## Open problems on MiMC design (cont.)

- We have proposed to apply WAGE's (NIST LWC Round 2 Candidate) structure for obtaining MiMC for the binary field case. However, even for WG permutations of $\mathbb{F}_{2^{n}}$, we do not know the above mentioned properties for nonbinary fields.


WAGE one round function

- WAGE, an authenticated WG encryption, is obtained by taking parameters of LFSR of order 37 over $\mathbb{F}_{2^{7}}$ in the WG stream cipher with additionally added nonlinear operations SB.

Open problem on uni/multi variate poly. interp./eval

- For multivariate polynomial embedded R1CS (e.g. Spartan), at the end, the verifier has to evaluate $Q_{r_{x}}(\mathbf{y})$ at a random point $\boldsymbol{r}_{y}=\left(r_{0}, r_{1}, \cdots, r_{s-1}\right)$ in $\mathbb{F}^{s}$ in order to check the equality (we shorten $Q_{\boldsymbol{r}_{x}}(\mathbf{y})$ as $Q(\mathbf{y})$ ):

$$
Q\left(\boldsymbol{r}_{y}\right) \stackrel{?}{=} e_{y}, \boldsymbol{r}_{y} \in_{R} \mathbb{F}^{s}, e_{y} \in \mathbb{F}
$$

- We may consider the coefficients of $Q(y)$ as a vector (or equivalently a sequence) say $\boldsymbol{o}=\left(o_{0}, \cdots, 0_{d-1}\right)$ and its monomial terms $r_{0}^{e_{0}} r_{1}^{e_{1}} \cdots r_{s-1}^{e_{s}-1}$ as another vector, say $\boldsymbol{p}=\left(p_{0}, \cdots, p_{d-1}\right)$ where $d$ is the number of monomials in $Q(\mathbf{y})$
- In this way, we can interpolate $o$ and $p$ over another affine space of $\mathbb{F}$, say $H^{\prime}$, say $O(x)$ and $P(x)$ respectively, Thus

So this is converted to the univariate polynomial sumcheck for polynomial $S(x)=O(x) P(x)$ (used in Virgo in [ZXZS20]) $\rightarrow$ Polaris' verification!

Can we do this conversion with time
complexity

## UNIVERSITY OF

WATERLOO
Open problem on uni/multi variate poly. interp./eval

- For multivariate polynomial embedded R1CS (e.g. Spartan), at the end, the verifier has to evaluate $Q_{\boldsymbol{r}_{x}}(\mathbf{y})$ at a random point $\boldsymbol{r}_{y}=\left(r_{0}, r_{1}, \cdots, r_{s-1}\right)$ in $\mathbb{F}^{s}$ in order to check the equality (we shorten $Q_{r_{x}}(\mathbf{y})$ as $Q(\mathbf{y})$ ):

$$
Q\left(\boldsymbol{r}_{y}\right) \stackrel{?}{=} e_{y}, \boldsymbol{r}_{y} \in_{R} \mathbb{F}^{s}, e_{y} \in \mathbb{F}
$$

- We may consider the coefficients of $Q(\mathbf{y})$ as a vector (or equivalently a sequence), say $\boldsymbol{o}=\left(o_{0}, \cdots, 0_{d-1}\right)$ and its monomial terms $r_{0}^{e_{0}} r_{1}^{e_{1}} \cdots r_{s-1}^{e_{s-1}}$ as another vector, say $\boldsymbol{p}=\left(p_{0}, \cdots, p_{d-1}\right)$ where $d$ is the number of monomials in $Q(\mathbf{y})$.
$O(x)$ and $P(x)$ respectively, Thus

So this is converted to the univariate polynomial sumcheck for polynomial $S(x)=O(x) P(x)$ (used in Virgo in [ZXZS20]) $\rightarrow$ Polaris' verification!
$\square$

## UNIVERSITY OF

WATERLOO

## Open problem on uni/multi variate poly. interp./eval

- For multivariate polynomial embedded R1CS (e.g. Spartan), at the end, the verifier has to evaluate $Q_{r_{x}}(\mathbf{y})$ at a random point $\boldsymbol{r}_{y}=\left(r_{0}, r_{1}, \cdots, r_{s-1}\right)$ in $\mathbb{F}^{s}$ in order to check the equality (we shorten $Q_{r_{x}}(\mathbf{y})$ as $Q(\mathbf{y})$ ):

$$
Q\left(\boldsymbol{r}_{y}\right) \stackrel{?}{=} e_{y}, \boldsymbol{r}_{y} \in_{R} \mathbb{F}^{s}, e_{y} \in \mathbb{F}
$$

- We may consider the coefficients of $Q(\mathbf{y})$ as a vector (or equivalently a sequence), say $\boldsymbol{o}=\left(o_{0}, \cdots, 0_{d-1}\right)$ and its monomial terms $r_{0}^{e_{0}} r_{1}^{e_{1}} \cdots r_{s-1}^{e_{s-1}}$ as another vector, say $\boldsymbol{p}=\left(p_{0}, \cdots, p_{d-1}\right)$ where $d$ is the number of monomials in $Q(\mathbf{y})$.
- In this way, we can interpolate $\boldsymbol{o}$ and $\boldsymbol{p}$ over another affine space of $\mathbb{F}$, say $H^{\prime}$, say $O(x)$ and $P(x)$ respectively, Thus

$$
Q\left(\boldsymbol{r}_{y}\right)=\sum_{a \in H^{\prime}} O(a) P(a) \stackrel{?}{=} e_{y} .
$$

So this is converted to the univariate polynomial sumcheck for polynomial $S(x)=O(x) P(x)$ (used in Virgo in [ZXZS20]) $\rightarrow$ Polaris' verification!

## UNIVERSITY OF

WATERLOO

## Open problem on uni/multi variate poly. interp./eval

- For multivariate polynomial embedded R1CS (e.g. Spartan), at the end, the verifier has to evaluate $Q_{r_{x}}(\mathbf{y})$ at a random point $\boldsymbol{r}_{y}=\left(r_{0}, r_{1}, \cdots, r_{s-1}\right)$ in $\mathbb{F}^{s}$ in order to check the equality (we shorten $Q_{r_{x}}(\mathbf{y})$ as $Q(\mathbf{y})$ ):

$$
Q\left(\boldsymbol{r}_{y}\right) \stackrel{?}{=} e_{y}, \boldsymbol{r}_{y} \in_{R} \mathbb{F}^{s}, e_{y} \in \mathbb{F}
$$

- We may consider the coefficients of $Q(\mathbf{y})$ as a vector (or equivalently a sequence), say $\boldsymbol{o}=\left(o_{0}, \cdots, 0_{d-1}\right)$ and its monomial terms $r_{0}^{e_{0}} r_{1}^{e_{1}} \cdots r_{s-1}^{e_{s-1}}$ as another vector, say $\boldsymbol{p}=\left(p_{0}, \cdots, p_{d-1}\right)$ where $d$ is the number of monomials in $Q(\mathbf{y})$.
- In this way, we can interpolate $\boldsymbol{o}$ and $\boldsymbol{p}$ over another affine space of $\mathbb{F}$, say $H^{\prime}$, say $O(x)$ and $P(x)$ respectively, Thus

$$
Q\left(\boldsymbol{r}_{y}\right)=\sum_{a \in H^{\prime}} O(a) P(a) \stackrel{?}{=} e_{y} .
$$

So this is converted to the univariate polynomial sumcheck for polynomial $S(x)=O(x) P(x)$ (used in Virgo in [ZXZS20]) $\rightarrow$ Polaris' verification!

- Can we do this conversion with time $\begin{gathered}\text { complexity } O\left(\left|H^{\prime}\right|\right) \text { instead of } O\left(\left|H^{\prime}\right| \log \left|H^{\prime}\right|\right) \text { ? } \\ \text { coner }\end{gathered}$


## References

- Guang Gong, Hybrid uni/multivariate encoded R1CS, 2023. Internal report.
- Shihui Fu and Guang Gong, Polaris: Transparent Succinct Zero-Knowledge Arguments for R1CS with Efficient Verifier, the Proceedings on Privacy Enhancing Technologies (PPETs), 2022 (1), pp. 544-564.
- Nusa Zidaric, Kalikinkar Mandal, Guang Gong, Mark Aagaard, The Welch-Gong stream cipher - evolutionary path. Cryptogr. Commun. (2023). https://doi.org/10.1007/s12095-023-00656-0.

