
Resemblance

Robert Coulter

Department of Mathematical Sciences
University of Delaware
Newark, DE 19716 USA

coulter@udel.edu

September 2023



Joint work

This is joint work with

Dr. Li-An Chen
Department of Mathematical Sciences
Boise State University
Boise, ID 83725 USA

The work presented here comes from her Ph.D dissertation, which she
completed recently with me at the University of Delaware.

Robert Coulter (UD) Resemblance September 2023 2 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate – I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate – I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before

. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate – I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate – I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate

– I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Disclaimers

It is not once, nor twice, but times without number that the same
ideas make their appearance in the world – Aristotle

To the best of my knowledge, the central idea to be discussed in this talk
has not been studied before. . . but that doesn’t mean it has not.

The utility of the basic idea is up for debate – I think it could be
important, but we haven’t yet got something astounding from it.

Robert Coulter (UD) Resemblance September 2023 3 / 34



Some notation

Throughout G denotes a finite group of order q, written additively but not
necessarily abelian, and G⋆ = G \ {0}.
For a finite set S , #S denotes the cardinality of S .

Now let f : G → G .

Then Im(f ) = {f (x) : x ∈ G} denotes the image set of f ,

and V (f ) = # Im(f ) denotes the cardinality of the image set.

Robert Coulter (UD) Resemblance September 2023 4 / 34



Some notation

Throughout G denotes a finite group of order q, written additively but not
necessarily abelian, and G⋆ = G \ {0}.
For a finite set S , #S denotes the cardinality of S .

Now let f : G → G .

Then Im(f ) = {f (x) : x ∈ G} denotes the image set of f ,

and V (f ) = # Im(f ) denotes the cardinality of the image set.

Robert Coulter (UD) Resemblance September 2023 4 / 34



Let f : G → G .

Question: How do we measure how close f is to being a permutation?

The standard answer is V (f ), the size of the image set of f .
(Or #G + 1− V (f ), if you’re that way inclined.)

Robert Coulter (UD) Resemblance September 2023 5 / 34



Let f : G → G .

Question: How do we measure how close f is to being a permutation?

The standard answer is V (f ), the size of the image set of f .
(Or #G + 1− V (f ), if you’re that way inclined.)

Robert Coulter (UD) Resemblance September 2023 5 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Question: Do you think f is nearly a permutation?

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The motivating example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define g : G → G by g(h) = 0 and g(a+ h) = a for all h ∈ H .

Then it is easy to see that g + f is a permutation.

Question: Do you think f is nearly a permutation now?

Robert Coulter (UD) Resemblance September 2023 6 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The following facts are easily observed.

Res(f , h) = Res(h, f ).

Res(f , c + h) = Res(f , h) for any constant c ∈ G .

1 ≤ Res(f , h) ≤ #G .
The minimum is achieved when f = h, while the maximum can be
achieved when one of f or h is a constant and the other a bijection.

Robert Coulter (UD) Resemblance September 2023 7 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The following facts are easily observed.

Res(f , h) = Res(h, f ).

Res(f , c + h) = Res(f , h) for any constant c ∈ G .

1 ≤ Res(f , h) ≤ #G .
The minimum is achieved when f = h, while the maximum can be
achieved when one of f or h is a constant and the other a bijection.

Robert Coulter (UD) Resemblance September 2023 7 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The following facts are easily observed.

Res(f , h) = Res(h, f ).

Res(f , c + h) = Res(f , h) for any constant c ∈ G .

1 ≤ Res(f , h) ≤ #G .
The minimum is achieved when f = h, while the maximum can be
achieved when one of f or h is a constant and the other a bijection.

Robert Coulter (UD) Resemblance September 2023 7 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The following facts are easily observed.

Res(f , h) = Res(h, f ).

Res(f , c + h) = Res(f , h) for any constant c ∈ G .

1 ≤ Res(f , h) ≤ #G .
The minimum is achieved when f = h, while the maximum can be
achieved when one of f or h is a constant and the other a bijection.

Robert Coulter (UD) Resemblance September 2023 7 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The following facts are easily observed.

Res(f , h) = Res(h, f ).

Res(f , c + h) = Res(f , h) for any constant c ∈ G .

1 ≤ Res(f , h) ≤ #G .
The minimum is achieved when f = h, while the maximum can be
achieved when one of f or h is a constant and the other a bijection.

Robert Coulter (UD) Resemblance September 2023 7 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The utility of this idea is in its application in certain directions.

For a given function f : G → G , consider

min{Res(f , h) : h has property P}.

This is a way to measure how far f is from having property P.

Robert Coulter (UD) Resemblance September 2023 8 / 34



The basic idea

Definition
Let f , h : G → G .
The resemblance Res(f , h) of f to h is defined by

Res(f , h) = V (f − h).

The utility of this idea is in its application in certain directions.

For a given function f : G → G , consider

min{Res(f , h) : h has property P}.

This is a way to measure how far f is from having property P.

Robert Coulter (UD) Resemblance September 2023 8 / 34



Two examples

Let ΩG denote the set of all permutation functions on G ,
and let Hom(G) be the set of all homomorphisms on G .

Definition
For f : G → G , we define

the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

the linear resemblance of f by

L-Res(f ) = min{Res(f , h) : h ∈ Hom(G)},

Robert Coulter (UD) Resemblance September 2023 9 / 34



Two examples

Let ΩG denote the set of all permutation functions on G ,
and let Hom(G) be the set of all homomorphisms on G .

Definition
For f : G → G , we define

the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

the linear resemblance of f by

L-Res(f ) = min{Res(f , h) : h ∈ Hom(G)},

Robert Coulter (UD) Resemblance September 2023 9 / 34



Two examples

Let ΩG denote the set of all permutation functions on G ,
and let Hom(G) be the set of all homomorphisms on G .

Definition
For f : G → G , we define

the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

the linear resemblance of f by

L-Res(f ) = min{Res(f , h) : h ∈ Hom(G)},

Robert Coulter (UD) Resemblance September 2023 9 / 34



The central idea

Definition
For f : G → G , we define the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

or equivalently,

by writing f − h = −g ,

P-Res(f ) =

Robert Coulter (UD) Resemblance September 2023 10 / 34



The central idea

Definition
For f : G → G , we define the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

or equivalently,

by writing f − h = −g ,

P-Res(f ) = min{Res(f , h) : h ∈ ΩG}

Robert Coulter (UD) Resemblance September 2023 10 / 34



The central idea

Definition
For f : G → G , we define the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

or equivalently,

by writing f − h = −g ,

P-Res(f ) = min{V (f − h) : h ∈ ΩG}

Robert Coulter (UD) Resemblance September 2023 10 / 34



The central idea

Definition
For f : G → G , we define the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

or equivalently, by writing f − h = −g ,

P-Res(f ) = min{V (f − h) : h ∈ ΩG}

Robert Coulter (UD) Resemblance September 2023 10 / 34



The central idea

Definition
For f : G → G , we define the permutation resemblance of f by

P-Res(f ) = min{Res(f , h) : h ∈ ΩG},

or equivalently, by writing f − h = −g ,

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

Robert Coulter (UD) Resemblance September 2023 10 / 34



First things first

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

We’re hoping to use permutation resemblance as a reasonable measure of
how far a function f over G is from being a permutation.

We do at least have the extremes doing what we would want, for we have:

P-Res(f ) = 1 if and only if f is a permutation, and

P-Res(f ) = #G if and only if f is a constant.

And no, P-Res(f ) ̸= #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 11 / 34



First things first

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

We’re hoping to use permutation resemblance as a reasonable measure of
how far a function f over G is from being a permutation.

We do at least have the extremes doing what we would want, for we have:

P-Res(f ) = 1 if and only if f is a permutation, and

P-Res(f ) = #G if and only if f is a constant.

And no, P-Res(f ) ̸= #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 11 / 34



First things first

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

We’re hoping to use permutation resemblance as a reasonable measure of
how far a function f over G is from being a permutation.

We do at least have the extremes doing what we would want, for we have:

P-Res(f ) = 1 if and only if f is a permutation, and

P-Res(f ) = #G if and only if f is a constant.

And no, P-Res(f ) ̸= #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 11 / 34



First things first

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

We’re hoping to use permutation resemblance as a reasonable measure of
how far a function f over G is from being a permutation.

We do at least have the extremes doing what we would want, for we have:

P-Res(f ) = 1 if and only if f is a permutation, and

P-Res(f ) = #G if and only if f is a constant.

And no, P-Res(f ) ̸= #G + 1− V (f ). (At least not always!)

Robert Coulter (UD) Resemblance September 2023 11 / 34



Intuition behind the idea

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

Permutation resemblance is equal to the minimum value V (g) (the
smallest image size) as g runs through all functions on G for which g + f
is a permutation.

So P-Res measures the smallest number of different shifts required to alter
a function so that it becomes a permutation.

It isn’t hard to see that this is very different from V (f ); just think back to
that example.

Robert Coulter (UD) Resemblance September 2023 12 / 34



Intuition behind the idea

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

Permutation resemblance is equal to the minimum value V (g) (the
smallest image size) as g runs through all functions on G for which g + f
is a permutation.

So P-Res measures the smallest number of different shifts required to alter
a function so that it becomes a permutation.

It isn’t hard to see that this is very different from V (f ); just think back to
that example.

Robert Coulter (UD) Resemblance September 2023 12 / 34



That easy example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define the function g : G → G given by g(h) = 0 and g(a+ h) = a
for all h ∈ H .

So g + f ∈ ΩG , but we can make n, and hence V (f ), arbitrarily large in
this example, while the permutation resemblance will always be 2.

Robert Coulter (UD) Resemblance September 2023 13 / 34



That easy example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define the function g : G → G given by g(h) = 0 and g(a+ h) = a
for all h ∈ H .

So g + f ∈ ΩG , but

we can make n, and hence V (f ), arbitrarily large in
this example, while the permutation resemblance will always be 2.

Robert Coulter (UD) Resemblance September 2023 13 / 34



That easy example

Let G be any group of order 2n with n odd, and let H be the normal
subgroup of G of index 2.

Choose any a ∈ G \ H , so that H and a+ H are the two cosets of H that
partition G .

Define a function f : G → G so that it is bijective on H and where
f (a+ h) = f (h) for all h ∈ H .

Then V (f ) = n, half the size of the group on which it is defined.

Now define the function g : G → G given by g(h) = 0 and g(a+ h) = a
for all h ∈ H .

So g + f ∈ ΩG , but we can make n, and hence V (f ), arbitrarily large in
this example, while the permutation resemblance will always be 2.

Robert Coulter (UD) Resemblance September 2023 13 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤

P-Res(f )

≤ #G + 1− V (f )

.

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤

P-Res(f )

≤ #G + 1− V (f )

.

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤

P-Res(f )

≤ #G + 1− V (f )

.

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤

P-Res(f ) ≤

#G + 1− V (f )

.

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤

P-Res(f ) ≤ #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f )

≤ P-Res(f ) ≤ #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 14 / 34



Better bounds

Let f : G → G . We define two terms.

For b ∈ G , the set of preimages of b under f is denoted by

PreIm(f , b) = {x ∈ G : f (x) = b}.

The uniformity of f is given by

u(f ) = max
b∈G

#PreIm(f , b).

Theorem
For f : G → G ,

u(f ) ≤ P-Res(f ) ≤ #G + 1− V (f ).

Robert Coulter (UD) Resemblance September 2023 14 / 34



Proving the lower bound

Theorem For f : G → G ,

u(f ) ≤ P-Res(f ).

For any PreIm(f , b) of cardinality at least 2, choose distinct
x , y ∈ PreIm(f , b).

When g + f is a permutation, we have

(g + f )(x) ̸= (g + f )(y) ⇒ g(x) + b ̸= g(y) + b

⇒ g(x) ̸= g(y),

so that g must be injective on every preimage set of f , implying
u(f ) ≤ V (g) whenever g + f is a permutation.

Robert Coulter (UD) Resemblance September 2023 15 / 34



Proving the lower bound

Theorem For f : G → G ,

u(f ) ≤ P-Res(f ).

For any PreIm(f , b) of cardinality at least 2, choose distinct
x , y ∈ PreIm(f , b).

When g + f is a permutation, we have

(g + f )(x) ̸= (g + f )(y) ⇒ g(x) + b ̸= g(y) + b

⇒ g(x) ̸= g(y),

so that g must be injective on every preimage set of f , implying
u(f ) ≤ V (g) whenever g + f is a permutation.

Robert Coulter (UD) Resemblance September 2023 15 / 34



Proving the upper bound

Theorem For f : G → G ,

P-Res(f ) ≤ #G + 1− V (f ).

The proof is by construction (of g).

Let g map exactly one element from each non-empty set PreIm(f , b) to 0.

Then 0 ∈ Im(g) and Im(f ) ⊆ Im(g + f ).

At this point, both the domain and codomain of g have #G − V (f )
elements left unassigned.

Now pair off the unassigned domain/codomain elements (x , y) and set
g(x) = y − f (x).

This ensures g + f ∈ ΩG and V (g) ≤ #G + 1− V (f ) at worst.

Robert Coulter (UD) Resemblance September 2023 16 / 34



Proving the upper bound

Theorem For f : G → G ,

P-Res(f ) ≤ #G + 1− V (f ).

The proof is by construction (of g).

Let g map exactly one element from each non-empty set PreIm(f , b) to 0.

Then 0 ∈ Im(g) and Im(f ) ⊆ Im(g + f ).

At this point, both the domain and codomain of g have #G − V (f )
elements left unassigned.

Now pair off the unassigned domain/codomain elements (x , y) and set
g(x) = y − f (x).

This ensures g + f ∈ ΩG and V (g) ≤ #G + 1− V (f ) at worst.

Robert Coulter (UD) Resemblance September 2023 16 / 34



Proving the upper bound

Theorem For f : G → G ,

P-Res(f ) ≤ #G + 1− V (f ).

The proof is by construction (of g).

Let g map exactly one element from each non-empty set PreIm(f , b) to 0.

Then 0 ∈ Im(g) and Im(f ) ⊆ Im(g + f ).

At this point, both the domain and codomain of g have #G − V (f )
elements left unassigned.

Now pair off the unassigned domain/codomain elements (x , y) and set
g(x) = y − f (x).

This ensures g + f ∈ ΩG and V (g) ≤ #G + 1− V (f ) at worst.

Robert Coulter (UD) Resemblance September 2023 16 / 34



Proving the upper bound

Theorem For f : G → G ,

P-Res(f ) ≤ #G + 1− V (f ).

The proof is by construction (of g).

Let g map exactly one element from each non-empty set PreIm(f , b) to 0.

Then 0 ∈ Im(g) and Im(f ) ⊆ Im(g + f ).

At this point, both the domain and codomain of g have #G − V (f )
elements left unassigned.

Now pair off the unassigned domain/codomain elements (x , y) and set
g(x) = y − f (x).

This ensures g + f ∈ ΩG and V (g) ≤ #G + 1− V (f ) at worst.

Robert Coulter (UD) Resemblance September 2023 16 / 34



The bounds can be the same

u(f ) ≤ P-Res(f ) ≤ #G + 1− V (f ).

Theorem
Let f : G → G .
Then u(f ) = #G + 1− V (f ) if and only if f is a permutation or there
exists a unique element b ∈ G for which #PreIm(f , b) > 1.

The immediate implication is that P-Res can meet either bound.

But the real question is how does P-Res really behave?

For starters, perhaps we should determine if it can be equal to either
bound when they are not the same?

The proof of that upper bound is on a worst-case scenario, so we don’t
expect that most functions will be at or near it, so we concentrated on the
lower bound.

Robert Coulter (UD) Resemblance September 2023 17 / 34



The bounds can be the same

u(f ) = P-Res(f ) = #G + 1− V (f ).

Theorem
Let f : G → G .
Then u(f ) = #G + 1− V (f ) if and only if f is a permutation or there
exists a unique element b ∈ G for which #PreIm(f , b) > 1.

The immediate implication is that P-Res can meet either bound.

But the real question is how does P-Res really behave?

For starters, perhaps we should determine if it can be equal to either
bound when they are not the same?

The proof of that upper bound is on a worst-case scenario, so we don’t
expect that most functions will be at or near it, so we concentrated on the
lower bound.

Robert Coulter (UD) Resemblance September 2023 17 / 34



The bounds can be the same

u(f ) = P-Res(f ) = #G + 1− V (f ).

Theorem
Let f : G → G .
Then u(f ) = #G + 1− V (f ) if and only if f is a permutation or there
exists a unique element b ∈ G for which #PreIm(f , b) > 1.

The immediate implication is that P-Res can meet either bound.

But the real question is how does P-Res really behave?

For starters, perhaps we should determine if it can be equal to either
bound when they are not the same?

The proof of that upper bound is on a worst-case scenario, so we don’t
expect that most functions will be at or near it, so we concentrated on the
lower bound.

Robert Coulter (UD) Resemblance September 2023 17 / 34



The bounds can be the same

u(f ) = P-Res(f ) = #G + 1− V (f ).

Theorem
Let f : G → G .
Then u(f ) = #G + 1− V (f ) if and only if f is a permutation or there
exists a unique element b ∈ G for which #PreIm(f , b) > 1.

The immediate implication is that P-Res can meet either bound.

But the real question is how does P-Res really behave?

For starters, perhaps we should determine if it can be equal to either
bound when they are not the same?

The proof of that upper bound is on a worst-case scenario, so we don’t
expect that most functions will be at or near it, so we concentrated on the
lower bound.

Robert Coulter (UD) Resemblance September 2023 17 / 34



The bounds can be the same

u(f ) = P-Res(f ) = #G + 1− V (f ).

Theorem
Let f : G → G .
Then u(f ) = #G + 1− V (f ) if and only if f is a permutation or there
exists a unique element b ∈ G for which #PreIm(f , b) > 1.

The immediate implication is that P-Res can meet either bound.

But the real question is how does P-Res really behave?

For starters, perhaps we should determine if it can be equal to either
bound when they are not the same?

The proof of that upper bound is on a worst-case scenario, so we don’t
expect that most functions will be at or near it, so we concentrated on the
lower bound.

Robert Coulter (UD) Resemblance September 2023 17 / 34



Two classes of functions that achieve the lower bound, I

Let p be prime and Fp denote the finite field of p elements.

Theorem
Let η(X ) = X (p−1)/2 ∈ Fp[X ] with p an odd prime. Then

P-Res(η) =

{
u(η) + 1 = p+1

2 , if p ≡ 1 (mod 4);

u(η) = p−1
2 , if p ≡ 3 (mod 4).

Note that η(X ) is the quadratic character over Fp, so that V (η) = 3.
Thus we see

p ± 1

2
= P-Res(η) < p − 2

provided p ≥ 7.

Indeed, we see P-Res is roughly half of the possible upper bound for this
class of functions.

Robert Coulter (UD) Resemblance September 2023 18 / 34



Two classes of functions that achieve the lower bound, I

Let p be prime and Fp denote the finite field of p elements.

Theorem
Let η(X ) = X (p−1)/2 ∈ Fp[X ] with p an odd prime. Then

P-Res(η) =

{
u(η) + 1 = p+1

2 , if p ≡ 1 (mod 4);

u(η) = p−1
2 , if p ≡ 3 (mod 4).

Note that η(X ) is the quadratic character over Fp, so that V (η) = 3.
Thus we see

p ± 1

2
= P-Res(η) < p − 2

provided p ≥ 7.

Indeed, we see P-Res is roughly half of the possible upper bound for this
class of functions.

Robert Coulter (UD) Resemblance September 2023 18 / 34



Two classes of functions that achieve the lower bound, I

Let p be prime and Fp denote the finite field of p elements.

Theorem
Let η(X ) = X (p−1)/2 ∈ Fp[X ] with p an odd prime. Then

P-Res(η) =

{
u(η) + 1 = p+1

2 , if p ≡ 1 (mod 4);

u(η) = p−1
2 , if p ≡ 3 (mod 4).

Note that η(X ) is the quadratic character over Fp, so that V (η) = 3.
Thus we see

p ± 1

2
= P-Res(η) < p − 2

provided p ≥ 7.

Indeed, we see P-Res is roughly half of the possible upper bound for this
class of functions.

Robert Coulter (UD) Resemblance September 2023 18 / 34



Two classes of functions that achieve the lower bound, II

Now let q = pe for some natural number e.

Recall that the set of p-polynomials over Fq, that is those of the form∑
i

aiX
pi ,

represents the set of all linear operators of (Fq,+) when viewed as a
vector space over Fp.

Theorem
Any p-polynomial L ∈ Fq[X ] satisfies P-Res(L) = u(L).

Robert Coulter (UD) Resemblance September 2023 19 / 34



Two classes of functions that achieve the lower bound, II

Now let q = pe for some natural number e.

Recall that the set of p-polynomials over Fq, that is those of the form∑
i

aiX
pi ,

represents the set of all linear operators of (Fq,+) when viewed as a
vector space over Fp.

Theorem
Any p-polynomial L ∈ Fq[X ] satisfies P-Res(L) = u(L).

Robert Coulter (UD) Resemblance September 2023 19 / 34



Proof that linear operators meet the lower bound

Let L ∈ Fpe [X ] be a linear operator.

Its image set is a k-dimensional subspace of Fq.

Thus V (L) = pk .

Further, we can partition Fq into pe−k additive cosets of Im(L) with coset
representatives {ci}.
Its null set N is an (e − k)-dimensional subspace.

Further, for any b ∈ Im(L), PreIm(L, b) = N + z where L(z) = b.

Thus u(L) = pe−k .

Further, we can partition Fq into pe−k subsets Ai of size pk in such a way
that each Ai contains exactly one preimage for every element of Im(L).

All of this allows for a nice little argument.

Robert Coulter (UD) Resemblance September 2023 20 / 34



Proof that linear operators meet the lower bound

Let L ∈ Fpe [X ] be a linear operator.

Its image set is a k-dimensional subspace of Fq.

Thus V (L) = pk .

Further, we can partition Fq into pe−k additive cosets of Im(L) with coset
representatives {ci}.

Its null set N is an (e − k)-dimensional subspace.

Further, for any b ∈ Im(L), PreIm(L, b) = N + z where L(z) = b.

Thus u(L) = pe−k .

Further, we can partition Fq into pe−k subsets Ai of size pk in such a way
that each Ai contains exactly one preimage for every element of Im(L).

All of this allows for a nice little argument.

Robert Coulter (UD) Resemblance September 2023 20 / 34



Proof that linear operators meet the lower bound

Let L ∈ Fpe [X ] be a linear operator.

Its image set is a k-dimensional subspace of Fq.

Thus V (L) = pk .

Further, we can partition Fq into pe−k additive cosets of Im(L) with coset
representatives {ci}.
Its null set N is an (e − k)-dimensional subspace.

Further, for any b ∈ Im(L), PreIm(L, b) = N + z where L(z) = b.

Thus u(L) = pe−k .

Further, we can partition Fq into pe−k subsets Ai of size pk in such a way
that each Ai contains exactly one preimage for every element of Im(L).

All of this allows for a nice little argument.

Robert Coulter (UD) Resemblance September 2023 20 / 34



Proof that linear operators meet the lower bound

Let L ∈ Fpe [X ] be a linear operator.

Its image set is a k-dimensional subspace of Fq.

Thus V (L) = pk .

Further, we can partition Fq into pe−k additive cosets of Im(L) with coset
representatives {ci}.
Its null set N is an (e − k)-dimensional subspace.

Further, for any b ∈ Im(L), PreIm(L, b) = N + z where L(z) = b.

Thus u(L) = pe−k .

Further, we can partition Fq into pe−k subsets Ai of size pk in such a way
that each Ai contains exactly one preimage for every element of Im(L).

All of this allows for a nice little argument.

Robert Coulter (UD) Resemblance September 2023 20 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

V (L) = pk
...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

Im(L) + 0

= Im(L)

Im(L) + c2

Im(L) + cpe−k

...

...

...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

Im(L) + 0

= Im(L)

Im(L) + c2

Im(L) + cpe−k

...

...

...

g(x) = 0 on A1

+0

+0

+0
...

...

...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

Im(L) + 0

= Im(L)

Im(L) + c2

Im(L) + cpe−k

...

...

...

g(x) = c2 on A2

+0

+0

+0

+c2

...

...

...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

Im(L) + 0

= Im(L)

Im(L) + c2

Im(L) + cpe−k

...

...

...

g(x) = cpe−k on Ape−k

+0

+0

+0

+c2

+cpe−k

...

...

...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



Proof that linear operators meet the lower bound

pe−k

pe−k

pe−k

L(x)

...

...

...

Im(L) + 0

= Im(L)

Im(L) + c2

Im(L) + cpe−k

...

...

...

g(x) = cpe−k on Ape−k

+0

+0

+0

+c2

+cpe−k

...

...

...

So u(L) ≤ P-Res(L) ≤ pe−k = u(L).

Robert Coulter (UD) Resemblance September 2023 21 / 34



An application of permutation resemblance

Robert Coulter (UD) Resemblance September 2023 22 / 34



Differential uniformity

Let G be an abelian group and f : G → G .

Define the differential operator of f with respect to a ∈ G by

∆f ,a(x) = f (x + a)− f (x).

For (a, b) ∈ G⋆ × G , define

δf (a, b) = #PreIm(∆f ,a, b).

The differential uniformity of f (DU) is given by

δf = max
a∈G∗,b∈G

δf (a, b).

Robert Coulter (UD) Resemblance September 2023 23 / 34



Differential uniformity

The applications of DU are famous.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.

As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.
And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.

Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



Differential uniformity

The applications of DU are famous to those present.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.

As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.
And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.

Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



Differential uniformity

Low DU permutations are, of course, highly desirable.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.

As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.
And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.

Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



Differential uniformity

Low DU permutations are, of course, highly desirable.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.
As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.

And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.

Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



Differential uniformity

Low DU permutations are, of course, highly desirable.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.
As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.
And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.

Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



Differential uniformity

Low DU permutations are, of course, highly desirable.

For finite fields Fq, our best possible differential uniformities are:

When q is even, we have APN functions, which are 2-DU.
As we all know, constructing APN permutations in square ordered
fields of characteristic 2 is a big problem.
And we’re not doing very well.

When q is odd, we have planar functions, which are 1-DU.
Here, we’ve got a bigger issue, as we know planar functions cannot be
permutations, meaning the best we can hope for is near-optimal DU
permutations.

Robert Coulter (UD) Resemblance September 2023 24 / 34



P-Res and DU

Theorem
Let G be a finite abelian group and f , g : G → G . Then

δg+f ≤ δf ·
(
V (g)2 − V (g) + 1

)
.

Again, the bound comes from a worst-case scenario we don’t expect to
happen in most cases.

Robert Coulter (UD) Resemblance September 2023 25 / 34



P-Res and DU

Theorem
Let G be a finite abelian group and f , g : G → G . Then

δg+f ≤ δf ·
(
V (g)2 − V (g) + 1

)
.

Again, the bound comes from a worst-case scenario we don’t expect to
happen in most cases.

Robert Coulter (UD) Resemblance September 2023 25 / 34



The whole point

δg+f ≤ δf ·
(
V (g)2 − V (g) + 1

)
.

Now apply the bound in the case where g is one of those functions for
which g + f is a permutation that most resembles f .

This means V (g) = P-Res(f ), and g + f ∈ ΩG . So

δg+f ≤ δf ·
(
P-Res(f )2 − P-Res(f ) + 1

)
We are therefore constructing permutations from f whose differential
uniformity is bounded above by only δf and P-Res(f ).

In the case where we start with a planar function, we find we are
guaranteed to construct permutations h = g + f for which

δh ≤ P-Res(f )2 − P-Res(f ) + 1.

Robert Coulter (UD) Resemblance September 2023 26 / 34



The whole point

δg+f ≤ δf ·
(
V (g)2 − V (g) + 1

)
.

Now apply the bound in the case where g is one of those functions for
which g + f is a permutation that most resembles f .

This means V (g) = P-Res(f ), and g + f ∈ ΩG . So

δg+f ≤ δf ·
(
P-Res(f )2 − P-Res(f ) + 1

)

We are therefore constructing permutations from f whose differential
uniformity is bounded above by only δf and P-Res(f ).

In the case where we start with a planar function, we find we are
guaranteed to construct permutations h = g + f for which

δh ≤ P-Res(f )2 − P-Res(f ) + 1.

Robert Coulter (UD) Resemblance September 2023 26 / 34



The whole point

δg+f ≤ δf ·
(
V (g)2 − V (g) + 1

)
.

Now apply the bound in the case where g is one of those functions for
which g + f is a permutation that most resembles f .

This means V (g) = P-Res(f ), and g + f ∈ ΩG . So

δg+f ≤ δf ·
(
P-Res(f )2 − P-Res(f ) + 1

)
We are therefore constructing permutations from f whose differential
uniformity is bounded above by only δf and P-Res(f ).

In the case where we start with a planar function, we find we are
guaranteed to construct permutations h = g + f for which

δh ≤ P-Res(f )2 − P-Res(f ) + 1.

Robert Coulter (UD) Resemblance September 2023 26 / 34



And what of P-Res for planar functions?

Theorem
Let f ∈ Fq[X ] be planar. Then

2 < P-Res(f ) ≤ q + 1

2
.

This is quite disappointing

, and it doesn’t get much better if we weaken
the hypothesis to. . .

Theorem
Let f ∈ Fq[X ], q odd, and suppose f (0) = 0 and f is two-to-one on F⋆

q.
Then

P-Res(f ) ≤
⌈
2
√
q − 1

⌉
− 1.

When q − 1 is a perfect square, the bound can be improved to

P-Res(f ) ≤ 2
√
q − 1− 2.

Robert Coulter (UD) Resemblance September 2023 27 / 34



And what of P-Res for planar functions?

Theorem
Let f ∈ Fq[X ] be planar. Then

2 < P-Res(f ) ≤ q + 1

2
.

This is quite disappointing

, and it doesn’t get much better if we weaken
the hypothesis to. . .

Theorem
Let f ∈ Fq[X ], q odd, and suppose f (0) = 0 and f is two-to-one on F⋆

q.
Then

P-Res(f ) ≤
⌈
2
√
q − 1

⌉
− 1.

When q − 1 is a perfect square, the bound can be improved to

P-Res(f ) ≤ 2
√
q − 1− 2.

Robert Coulter (UD) Resemblance September 2023 27 / 34



And what of P-Res for planar functions?

Theorem
Let f ∈ Fq[X ] be planar. Then

2 < P-Res(f ) ≤ q + 1

2
.

This is quite disappointing

, and it doesn’t get much better if we weaken
the hypothesis to. . .

Theorem
Let f ∈ Fq[X ], q odd, and suppose f (0) = 0 and f is two-to-one on F⋆

q.
Then

P-Res(f ) ≤
⌈
2
√
q − 1

⌉
− 1.

When q − 1 is a perfect square, the bound can be improved to

P-Res(f ) ≤ 2
√
q − 1− 2.

Robert Coulter (UD) Resemblance September 2023 27 / 34



And what of P-Res for planar functions?

Theorem
Let f ∈ Fq[X ] be planar. Then

2 < P-Res(f ) ≤ q + 1

2
.

This is quite disappointing, and it doesn’t get much better if we weaken
the hypothesis to. . .

Theorem
Let f ∈ Fq[X ], q odd, and suppose f (0) = 0 and f is two-to-one on F⋆

q.
Then

P-Res(f ) ≤
⌈
2
√
q − 1

⌉
− 1.

When q − 1 is a perfect square, the bound can be improved to

P-Res(f ) ≤ 2
√
q − 1− 2.

Robert Coulter (UD) Resemblance September 2023 27 / 34



And what of P-Res for planar functions?

Theorem
Let f ∈ Fq[X ] be planar. Then

2 < P-Res(f ) ≤ q + 1

2
.

This is quite disappointing, and it doesn’t get much better if we weaken
the hypothesis to. . .

Theorem
Let f ∈ Fq[X ], q odd, and suppose f (0) = 0 and f is two-to-one on F⋆

q.
Then

P-Res(f ) ≤
⌈
2
√

q − 1
⌉
− 1.

When q − 1 is a perfect square, the bound can be improved to

P-Res(f ) ≤ 2
√
q − 1− 2.

Robert Coulter (UD) Resemblance September 2023 27 / 34



Computational aspects

Robert Coulter (UD) Resemblance September 2023 28 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



You really can!

P-Res(f ) = min{V (g) : g + f ∈ ΩG}.

At first glance, finding a decent algorithm for determining permutation
resemblance would appear to be hard.

However, to my great surprise, Li-An found a nice way of turning this into
an optimization problem which could be solved using linear integer
programming techniques.

With her IP techniques, we can determine:

P-Res(f ) for any function f defined on a group, and

permutations with the best possible DU over a given field (or even
specifying a desired maximum DU).

The two algorithms can also be combined in such a way as to significantly
reduce the number of variables of the combined IP while finding low DU
functions among those permutations that most resemble a given f . The
cost is that you can no longer insist upon optimal low DU.

Robert Coulter (UD) Resemblance September 2023 29 / 34



Using the P-Res algorithm on x2

All of the computational results I give here were generated on a simple
laptop.

Our initial concerns with resemblance have been to prove some theoretical
results and establish the feasiblility of computational results.

Robert Coulter (UD) Resemblance September 2023 30 / 34



Using the P-Res algorithm on x2

Robert Coulter (UD) Resemblance September 2023 30 / 34



Using the P-Res algorithm on x2

Prime p P-Res(x2) ⌈2
√
q − 1⌉ − 1

13 to 37 4 6 to 11
41 5 12

43,47,103 4 12,13,20
53 to 101 5 14 to 19
107 to 251 5 20 to 31

257 6 31
263,269,271 5 32
277,281 6 33

293,307,311 5 34,34,35
313 6 35
317 5 35

331,337 6 36

Note the very slow growth of P-Res.

We obtained similar results for prime powers q ≤ 343, and for xd with
d | (q − 1).

Robert Coulter (UD) Resemblance September 2023 30 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the optimal DU algorithm

Using the optimal DU strategy:

We first tested the full algorithm in some small fields.
For F17 and F19 the algorithm found optimal solutions in under half
an hour. In both cases, we found 2-DU permutation polynomials with
many terms.

On the otherhand, over F9 we only find 3-DU permutations, showing
there is no 2-DU permutation over F9.

Not surprisingly, for larger q, we start to run into memory and time
issues.

The optimal DU IP algorithm is sufficiently adaptable that we can weaken
the optimality condition, insisting only that the algorithm find a
permutation with DU≥ 3.

When we do so, the algorithm finds 3-DU permutations over Fq for all
q ≤ 37 in decent time frames.

Robert Coulter (UD) Resemblance September 2023 31 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.

Robert Coulter (UD) Resemblance September 2023 32 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.

Robert Coulter (UD) Resemblance September 2023 32 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.

Robert Coulter (UD) Resemblance September 2023 32 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.

Robert Coulter (UD) Resemblance September 2023 32 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.

Robert Coulter (UD) Resemblance September 2023 32 / 34



Using the 2-step P-Res/DU algorithm

When we use the 2-step algorithm, the reduction in variables drastically
improves the efficiency of the algorithm.

In odd characteristic, we tested the algorithm against x2.

We find optimal 3-DU permutations over Fq for all odd q in the
range 17 ≤ q ≤ 37. The algorithm takes under 4 seconds (on a
laptop) to complete in each of these cases.

For q ∈ {41, 43, 47, 49}, we find 4-DU permutations, all in under 3
minutes. These are again optimal.

We also did some initial testing against APN functions.

Over F64, the APN function x3 has P-Res = 7. It took under 2
seconds to find a 6-DU permutation among those that resemble x3

the closest. (This may or may not be optimal.)
For the APN function f (x) = x24 + α59x17 + α60x3, which has
P-Res = 5, we find an optimal 6-DU permutation in under 3 minutes.

Over F256, again using the APN function x3, with a non-optimal
setting the algorithm finds an 8-DU permutation in under 4 minutes.
Robert Coulter (UD) Resemblance September 2023 32 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Open problems

The most pressing ones might be:

Expand the computational results for P-Res, especially with regard to
finding new low-DU permutations in odd characteristic and in simply
carrying out much more work on APN functions. (Also using some
significant computing power might be an idea!)

Understand the behavior of P-Res better, especially the
computational results on P-Res(x2), which suggests we should be
able to prove much better bounds in such cases.

Linear resemblance seems an obvious direction. Li-An and I have
done some work in this direction.

Apply resemblance in other settings.

Conjecture
There exists a 2-DU permutation over all sufficiently large finite fields.

Robert Coulter (UD) Resemblance September 2023 33 / 34



Many thanks for your time.

Robert Coulter (UD) Resemblance September 2023 34 / 34


