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Abstract

We have recently proved [10] the conjecture by Ahmadi and Monsef-Shokri [2] that
f(x) = x3 + x2 +1 is stable over F2. In this paper, we introduce a periodic sequence
(Sk,n,i)i≥−1 for each k ∈ N, n ∈ N0 satisfying a non-linear recurrence relation, and
establish connections between the stability of f over F2k and properties of (Sk,n,i)i≥−1

(namely, its recurrence relations, least period and distribution of zero terms). We
also give equivalent characterizations of the roots of (fk,n)n≥0 as well as closed-form
formulas for (Sk,n,i)i≥−1 in terms of the Fibonacci sequence.

1 Introduction and main results

We say a polynomial t(x) ∈ K[x], where K is a field, is stable over K if for each
n ∈ N, the n-th iterate t(n)(x) = t(t(. . . t(t(x)))) of t is irreducible over K. Problems
concerning stability of polynomials over fields date back to the 1980s, when Odoni
came up with one of the first examples [11, Proposition 4.1] and one of the first
counter-examples [12, Corollary 1.6], respectively, of stable polynomials over a field.
Stability of polynomials, especially those of low degrees, over various fields have been
extensively studied ever since.

In 2012, Jones and Boston [8, Proposition 2.3] gave necessary and sufficient con-
ditions for a quadratic polynomial to be stable over a finite field of odd characteristic
in terms of the so-called adjusted critical orbits (using which Ostafe and Shparlinski
[13, Corollary 2] estimated the complexity of testing stability of quadratic polyno-
mials over a finite field of odd characteristic.) Then Ahmadi et al. [1, Theorem 4,
Corollary 11] showed that almost all monic quadratic polynomials in Z[x] are stable
over Q and that no quadratic polynomial is stable over a finite field of characteristic
2. In 2014, Goméz-Pérez and Nicolás, in collaboration with Ostafe and Sardonil [6,
Theorem 5.5], estimated the number of stable polynomials of any degree d ∈ N over
a finite field of odd characteristic.

When it comes to polynomials of degree greater than 2, determining whether
they are stable over a field is more sophisticated than in the quadratic case. It is
conjectured in [2, Conjecture 14] that f(x) = x3 + x2 + 1 is stable over F2, and a
stability test based on Capelli’s Lemma is proposed.
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Lemma 1.1 ([2, Lemma 13]). Let q > 1 be a prime power, and let F (x) ∈ Fq[x]
be an irreducible polynomial of degree d ∈ N. If G(x) ∈ Fq[x], then F (G(x)) is
irreducible over Fq iff G(x)− α is irreducible over Fqd

∼= Fq[x]/ ⟨F (x)⟩, where α is a
root of F (x) in Fqd.

Let k ∈ N. Using the above result, we construct a sequence (αk,n)n≥0 such that
for each n ∈ N0, αk,n is a root of f (n) in F23nk and that f(αk,n+1) = αk,n. Two new
sequences (βk,n)n≥0 and (fk,n)n≥0 arise from (αk,n)n≥0. More precisely,

βk,n = 1 + αk,n ∈ F23
nk (1)

fk,n(x) = x3 + x+ βk,n (2)

In [10], with the help of the above-mentioned sequences, we proved the following
result having [2, Conjecture 14] as a special case.

Theorem 1.2. Let k ∈ N.

(1) If 3 ∤ k, then fk,n is irreducible over F23nk for each n ∈ N0. In particular,
f(x) = x3 + x2 + 1 is stable over F2k .

(2) If 3 | k, then fk,n splits completely into linear factors over F23nk for each n ∈ N0.

We note that for each k ∈ N, n ∈ N0, xfk,n(x) = x4 + x2 + βk,nx is a linearized
polynomial over F23nk . From works in [7] and [14, Corollary 4] on inverses of linearized
polynomials, we construct a sequence (Sk,n,i)i≥−1, where

(1) Sk,n,−1 = 0 and Sk,n,0 = 1;

(2) Sk,n,i = Sk,n,i−1 + β2i−1

k,n Sk,n,i−2.

Remark 1.3. We note that every three consecutive terms in (Sk,n,i)i≥−1 satisfy a
different non-linear relation. However, (Sk,n,i)i≥−1 can be defined by means of a
single non-linear recurrence relation, namely, for each i ∈ N,

Sk,n,i = S2
k,n,i−1 + β2

k,nS
4
k,n,i−2 (3)

To view stability of f over F2k (or equivalently, irreducibility of (fk,n)n≥0) from
the perspective of (Sk,n,i)i≥−1, we present our main results.

Theorem 1.4. Let k ∈ N be odd. For each n ∈ N0, (Sk,n,i)i≥−1 is periodic, and if
tk,n is its least period, then the following are equivalent.

(1) fk,n is irreducible over F23nk ;

(2) xfk,n(x) is a permutation polynomial over F23nk ;

(3) Sk,n,3nk + βk,nS
2
k,n,3nk−2 = 1;

(4) Sk,n,3nk−1 ̸= 0;

(5) tk,n = 3n+1k;

(6) 3 ∤ k.

Moreover, f is stable over F2k iff for each n ∈ N0, any of the above conditions holds.

We remark that for general k ∈ N, (1), (2), (3), (4), (6) are still equivalent and (5)
implies all of them.
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2 Properties of (Sk,n,i)i≥−1

In order to structurally understand the solutions to the equation x2
ℓ+1 + x + a = 0

in F2m , where ℓ < m are positive integers and a ∈ F∗
2m , a sequence of polynomials

(Ci(x))
r+1
i=1 , where m = rd and d = gcd(ℓ,m), defined over F2 is introduced in [7,

Equation (5)]. (We also note that a more general sequence is studied in [9].)

(1) C1(x) = C2(x) = 1;

(2) Ci+2(x) = Ci+1(x) + x2
iℓ
Ci(x) (1 ≤ i ≤ r − 1).

Clearly, (Ci(x))
r+1
i=1 can be extended to an infinite sequence satisfying the above

relations. Let C0(x) = 0. Let k ∈ N, n ∈ N0. When ℓ = d = 1 and m = r = 3nk,
induction yields that Sk,n,i = Ci+1(βk,n). Moreover, the following results follow
immediately from properties of (Ci(x))i≥0.

Proposition 2.1. For each i ∈ N,
(1) Sk,n,i = S2

k,n,i−1 + β2
k,nS

4
k,n,i−2;

(2) β2i

k,n+1 = Sk,n,i−1β
2
k,n+1 +

(
S2
k,n,i−2βk,n

)
βk,n+1;

(3) Sk,n,m + βk,nS
2
k,n,m−2 ∈ F2.

As a consequence of the above results, one can show that (Sk,n,i)i≥−1 is periodic.
For each n ∈ N0, let F2

rk,n be the smallest subfield of F23nk containing βk,n.

Proposition 2.2. For each n ∈ N0,

(1) rk,n+1 = rk,n or 3rk,n;

(2) if rk,n < rk,n+1, then (Sk,n,i)i≥−1 is of least period rk,n+1;

(3) if rk,n = rk,n+1, then Sk,n,rk,n = 1 or β−1
k,nβk,n+1;

(4) if rk,n = rk,n+1, Sk,n,rk,n = 1, then (Sk,n,i)i≥−1 is of least period rk,n;

(5) if rk,n = rk,n+1, Sk,n,rk,n = β−1
k,nβk,n+1, then (Sk,n,i)i≥−1 is of least period 2rk,n.

While studying solutions to x3 + x + a = 0, where a ∈ F∗
2m for some m ∈ N,

Berlekamp et al. constructed the following polynomial sequence (Pi(x))i≥1, which
turns out to be also closely related to (Sk,n,i)i≥−1.

Theorem 2.3. [4, Theorem 4] Let m ∈ N and a ∈ F∗
2m. The polynomial x3 + x+ a

splits completely into linear factors over F2m iff Pm(a) = 0, where

(1) P1(x) = P2(x) = x;

(2) Pi(x) = Pi−1(x) + x2
i−3

Pi−2(x) for each i ≥ 3.

In fact, if we add an initial term P0(x) = 0 to (Pi(x))i≥1, then it is easy to see
that the extended sequence (Pi(x))i≥0 satisfies the above relations. By induction,
the following holds.

Proposition 2.4. For each k ∈ N, n, t ∈ N0 and each i ∈ N0 ∪ {−1},

S2t−1

k,n,i = β−2t

k,n Pi+1

(
β2t

k,n

)
(4)

Together, these propositions lead to Theorem 1.4.
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3 Formulas for (Sk,n,i)i≥−1

Let k ∈ N, n ∈ N0. We give three closed-form formulas for (Sk,n,i)i≥−1.

Proposition 3.1. For each i ∈ N0, if m =

⌊
i

2

⌋
, then

Sk,n,i = 1 +
i−1∑
j1=1

β2j1
k,n +

i−1∑
j2=3

j2−2∑
j1=1

β2j1+2j2
k,n + · · ·+

i−1∑
jm=2m−1

· · ·
j2−2∑
j1=1

β2j1+···+2jm
k,n (5)

In fact, this result follows from a property of (Pi(x))i≥1. Let (Bi)i≥0 be such
that B0 = 0 and that the subsequence (Bi)i≥1 is the ascending sequence of positive
integers whose binary representations start with 1 and contain no consecutive 1’s.
Let (Fi)i≥0 be the Fibonacci sequence. Then Eq. (5) is equivalent to the following.

Proposition 3.2. For each i ∈ N0 ∪ {−1},

Sk,n,i =

Fi+1−1∑
j=0

β
2Bj

k,n (6)

A third formula of (Sk,n,i)i≥−1 as a polynomial in β−1
k,n can also be derived to

reduce computational complexity that comes with the usage of Eq. (6). Let C0 = 0
and (Cj)j≥1 = (1, 3, 5, 7, 11, . . . ) be the ascending sequence of positive integers whose
binary representations begin and end with 1 and contain no consecutive 0’s.

Proposition 3.3. If T ∈ N is a period of (Sk,n,i)i≥−1, then

Sk,n,T−i =

Fi+1−1∑
j=Fi

β
−Cj2

T−(i−1)

k,n (0 ≤ i ≤ T ) (7)

4 Characterization of roots of (fk,n)n≥0

Let k ∈ N. In view of Theorem 1.2, studying stability of f over F2k is equivalent
to determining whether fk,n is irreducible over F23nk for each n ∈ N0. When fk,n is
reducible over F23nk , it is natural to ask what its roots are in F23nk . Using the fact

that β3
k,n+1 + βk,n+1 = βk,n and that Tr3nk

(
β−1
k,n

)
= Tr3nk(1), one can show that if

fk,n has a root in F23nk , then it splits completely into linear factors over F23nk . [10]

Remark 4.1. According to [3, Equations 8, 9], we note that fk,n splits completely
into linear factors over F23nk iff there exists some v ∈ F23nk \ F22 such that

βk,n =
v + v−1

(1 + v + v−1)3
(8)

If Eq. (8) is satisfied, then the roots of fk,n in F23nk are

x0 =
v + v−1

1 + v + v−1
, x1 =

v

1 + v + v−1
, x2 =

v−1

1 + v + v−1
(9)
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Alternatively, if x0 is a root of fk,n in F23nk , then

fk,n(x) = (x+ x0)
(
x2 + x0x+

(
x20 + 1

))
(10)

where the quadratic factor have two roots in F23nk . Then by Vieta’s formulas, the
three roots of fk,n in F23nk are x0, u

2x0 and
(
1 + u2

)
x0. The two characterizations

are equivalent, and the latter in fact follows from [5, Theorem 2.5], [9, Theorem 8].
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