A computation of D(9) using FPGA
Supercomputing

Lennart Van Hirtum'?3, Patrick De Causmaecker®, Jens
Goemaere!, Tobias Kenter??, Heinrich Riebler??3, Michael Lass*3,
and Christian Pless]®?

KU Leuven, Department of Computer Science, KULAK
2Department of Computer Science, Paderborn University
3Paderborn Center for Parallel Computing, Paderborn University
e-mail adresses in footnote*

April 2023

Abstract

This paper reports on the first computation the 9" Dedekind Number.
This was done by building an efficient FPGA Accelerator for the core
operation of the process, and parallelizing it on the Noctua 2 Supercluster
at Paderborn University. The resulting value is

286386577668298411128469151667598498812366

This value can be verified in two steps. We have made the data file
containing the 490M subresults available upon request, each of which can
be verified separately on CPU, and the whole file sums to our proposed
value.

1 Introduction

Let us consider the finite set A = {1,...,n}, which we will call the base set,
and let us denote the set of subsets of A by P(A). Dedekind numbers count the
number of monotone Boolean functions on P(A). The set of monotone Boolean
functions with respect to inclusion on P(A) is denoted by D,,. The number of
such monotone Boolean functions is denoted by D(n) and this is called the n'”
Dedekind number.

*lennart.vanhirtum@gmail.com, patrick.decausmaecker@kuleuven.be,
jens.goemaere@kuleuven.be, kenter@Quni-paderborn.de, heinrich.riebler@Quni-paderborn.de,
michael.lass@uni-paderborn.de, christian.plessl@Quni-paderborn.de

The set of permutations of the elements of base set A generates an equivalence
relation on D,,. The set of equivalence classes of this relation are denoted by
R, and the number of such equivalence classes is denoted by R(n).

Richard Dedekind first defined the numbers D(n) in 1897 [1]. Over the previ-
ous century, Dedekind numbers have been a challenge for computational power
in the evolving domain of computer science. Computing the numbers proved
exceptionally hard, and so far only formula’s with a double exponential time
complexity are known. Until recently, the largest known Dedekind number was
D(8). In this paper, we report on a computation of D(9). Table 1 shows the
known numbers, including the result of our computation. As we explain below,
some uncertainty about the correctness of the number existed at the time of the
first computation and we planned a verification run. In the mean time however,
results of an independent computation were reported [2], confirming our result.
Since computational methods as well as hardware implementation differ signifi-
cantly between the two computations, we can conclude that the result is correct
with a probability very close to 1.

Table 2 shows the known numbers R(n) of equivalence classes of monotone
Boolean functions under permutation of the elements of the base set. Note that
the last result dates from 2023.

D(0) | 2 Dedekind (1897)
D() | 3 Dedekind (1897)
D(2) | 6 Dedekind (1897)
D(3) | 20 Dedekind (1897)
D(4) | 168 Dedekind (1897)
D(5) | 7581 Church (1940)
D(6) | 7828354 Ward (1946)
D(7) | 2414682040998 Church (1965)
D(8) | 56130437228687557907788 Wiedemann (1991)
D(9) | 286386577668298411128469151667598498812366 | Our result (2023)
Table 1: Known Dedekind Numbers [3] and our first result.
R(0) | 2
R(1) | 3
R(2) |5
R(3) | 10
R(4) | 30
R(5) | 210
R(6) | 16353
R(7) | 490013148 Tamon Stephen & Timothy Yusun (2014) [4]
R(8) | 1392195548889993358 Bartlomiej Pawelski (2021) [7]
R(9) | 789204635842035040527740846300252680 Bartlomiej Pawelski (2023) [6]

Table 2: Known Equivalence Class Counts

For clarity of this paragraph, let us assume that we consider monotonically
decreasing Boolean functions. Note that a monotonically decreasing Boolean
function is completely defined by the set of sets which are maximal among the
sets for which the function value is true. For any monotone Boolean function,
no two of its maximal sets include one another. Such a set of sets is called
an anti-chain. A monotone Boolean function is completely determined by its
associated anti-chain, and any anti-chain is completely determined by its asso-
ciated monotone Boolean function. We will use any of the two representations
whichever is more convenient. We will represent monotone Boolean functions or
anti-chains by letters from the Greek alphabet. If we say that X € «, we mean
that X is a maximal set among the sets for which « is True, in other words

VY CX:alY)=TrueandVZ 2 X : a(Z) = False

If we say that a = {X,Y, Z}, we mean that the sets X,Y, Z C A are the maximal
sets among the sets for which « is True. For the set D,, of monotone Boolean
functions on the base set a natural partial order < is defined by

Vo, €Dy :a<feVX CA:aX)=8(X) (1)

This partial ordering defines a complete lattice on D,,. We denote by | and T
the smallest, respectively the largest, element of D,,:

VX CA: L(X)=False, T(X) =True (2)
LX) = {}, T(X) = {4} 3)

Intervals in D,, are denoted by
VYa,B € Dy, : [a,fl={x € Dy :a < x <S5} (4)

For a, 8 € D, the join a V 8 and the meet o A B are the monotone Boolean
functions defined by

VX CA:(aVp)(X)
VX CA:(anp)(X)

= a(X) or B(X) (5)
— a(X) and B(X) (6)
Finally, in the formulas below, a number defined for each pair o < 8 € D,, plays
an important role. We refer to this number as the connector number Cy g of o
and B. It counts the number of connected components of the anti-chain § with
respect to a. Two such sets X, Y € § are connected if a(X NY) = False or if
there is a path X, Z1, ..., Z,,Y of such subsets X, 71, ..., Z,,Y C A in which for

every two subsequent sets a(X N Z1) = a(Z1 N Z3) = ... = a(Z, NY) = False.
It turns out that the number of solutions of
xVv=_, (7)
XNV =« (8)

for x,v € D,, is given by 2¢=#. This is called the P-Coefficient [7, 8].

2 Method, Theory

We start from the original P-Coefficient Formula as taken from [7].

Din+2)= Y [[L.a]j2%|[8,T]] (9

a,B€Dy,

In the master thesis of the first author of the current paper, Lennart Van Hirtum
[9], the author reworked this formula to a form making use of equivalence classes
to reduce the total number of terms.

Dn+2)= Y lLallDa D IBTIZE Y 2% (o)

acR, BER, ~vEPermutg
Fo~B:a<d a<ly

The Permutg term is the collection of all n! equivalents of 8 under permutation
of the base set. Dg is the number of different equivalents, and hence, Permutg
contains duplicates iff Dg < nl. These duplicates are divided out by the %
factor.

For D(9), this means iterating through D;. That would require iterating over
an estimated 4.59 * 10'6 «, 8 pairs. The total number of P-Coefficients (Cy ~)
that needed to be computed was 1.148 * 10'°. However we were able to improve
on this further using the process of ‘deduplication’, where we can halve the
total amount of work again, by noticing that pairs of «, 8 give identical results
to their dual pair 5,@. As per Equation 11. This allowed us to halve the total
amount of work to 5.574 % 10'® P-Coefficients. '

I[L, |29 (8, T]| = |[a, T]|2%=|[L, B]| (11)

3 Computing P-Coefficients on FPGA

Computing P-Coefficients is uniquely well-suited for hardware implementation.
Computing these terms requires solving the problem of counting the number of
distinct connected components within a standard graph structure. An exam-
ple of such a graph with its distinct connected components colored is shown in
Figure 1. The standard depth first search algorithm for this problem is linear
in the sum of the number of vertices (sets) and the number of edges between
these vertices. Given the number of P-coefficients to be evaluated, it is clear
that traditional instruction-based computing methods, particularly Single In-
struction Multiple Data (SIMD), fare poorly on it. Since counting connected
components in such fixed-sizes graphs (in this case 128-node 7-d hypercubes)
consists almost purely of plain Boolean operations, it translates very well to a
hardware implementation and provides a highly efficient implementation of the

'We made sure not to deduplicate pairs that were their own dual, ie when § = @

algorithm. A simple schematic implementation is shown in Figure 2. A detailed
explanation of how it works is provided in the first author’s master thesis [9].
In this thesis, some optimizations are derived that bring the average number
of iterations down to 4.061. This corresponds to the number of cycles in the
hardware design.

Figure 1: Connected components of an example graph. In this case there are 3
connected components.

Count Connected Core

inc = connection
done > ! count

Figure 2: Register Transfer Level Design of the CountConnected Core

4 Computation on Noctua 2

We implemented this hardware accelerator on the Intel Stratix 10 GX 2800
cards found in Paderborn University’s Noctua 2 supercomputer. We were able
to fit 300 of these CountConnected Cores on a single field-programmable gate
array (FPGA) die. These CountConnected Cores run at 450MHz. This gives
us a throughput of about 33 Billion CountConnected operations per second. At
this rate, a single FPGA processes about 5.2 « values per second, taking 47°000
FPGA hours to compute D(9) on Noctua 2, or about 3 months real-time.

The computation is split across the system along the lines of Equation 10. «
values (also named tops) are divided on the job level. There are 490M tops to
be processed for D(9). We split these into 15000 jobs of 30000 tops each. The
B values per top (also named bottoms) are placed in large buffers of 46M bots
on average, and sent over PCle (Peripheral Component Interconnect Express)
to the FPGA. The FPGA then computes all 5040 permutations () of each
bottom, computes and adds up their P-Coefficients. This result is stored in an
output buffer of the same size.

The artifact of this computation is a dataset with an intermediary result for
each of the 490M « values. Each of these can be checked separately?, and the
whole file sums to 286386577668298411128469151667598498812366.

Figure 3: The FPGA Accelerator Die

2Tt takes about 10-200s to compute a single a result on 128 AMD Epyc CPU cores

5 Correctness

As much of the code as possible is written generically. This means the same
system is used for computing D(3) - D(8). All of these yield the correct results.
Of course, the FPGA kernel is written specifically for D(9) computation, so its
correctness was verified by comparing its results with the CPU results for a
small sample. In effect, both methods verified each other’s correctness.

We did apply a number of additional checks to increase our confidence in the
result:

e The most direct is the D(9) = 6 mod 210 check provided by Pawelski &
Szepietowski [10]. Our result passes this check. Sadly, due to the structure
of our computation, nearly all terms are divisible by 210, which strongly
hampers the usefulness of this check. One thing that this check does
give us is that no integer overflow has occurred, which was an important
concern given we were working with integers of 128 and 192 bits wide.

e Our computation was plagued by one issue in particular. Namely that
there is a bug in the vendor library for communication over PCle, wherein,
occasionally and at a low incidence rate, full 4K pages of FPGA data are
not copied properly from FPGA memory to host memory. This results
in large blocks of incorrect bottoms for some tops. We encountered this
issue in about 2300 tops. We were able to mitigate this issue by including
extra data from the FPGA to host memory, namely the ‘valid permutation
count’. By checking these values, we could determine if a bottom buffer
had been corrupted. Additionally, adding all of these counts yields the
value for D(8), which shows that the correct number of terms have been
added.

e Finally, there is an estimation formula, which gives us an estimation which
is relatively close to our result. The Korshunov estimation formula esti-
mates D(9) = 1.15 x 10*! which is off by about a factor 2. *

6 The danger of SEU events

The one way our result could have still been wrong was due to a Single Event
Upset (SEU), such as a bitflip in the FPGA fabric during processing, or a bitflip
during data transfer from FPGA DDR memory to Main Memory.

It is difficult to characterise the odds of these SEU events. The expected number
of occurrences for the FPGAs we used are not available to the best of our
knowledge. But example values shown on Intel’s website pin the error rate at
around 5000 SEU events per billion FPGA hours. In that case, given our 47000
FPGA hours, we expected to see 0.235 errors Poisson distributed, giving us a

3This isn’t too unusual though, as the results for odd values are off by quite a lot. Esti-
mation for D(3) overestimates by a factor 2, D(5) also overestimates by a factor 2, and D(7)
overestimates roughly 10%

chance of 20% of a hit. Of course, this is just an example and the real odds
might be have been higher than that.

But, given that we have Jékel reaching an identical result [2], the odds of a
stochastic error affecting both implementations in exactly the same way are so
astronomically small, that we can rule them out.

7 Conclusion

In conclusion, our method for computing D(9) works, our implementation should
theoretically give the correct result. All that remains is: Have any bit errors
occurred during this first computation? Our plan was to start up a second run.
Each subresult would have been computed a second time, and any values that
differ could be recomputed a third time as a tiebreaker. On April 4" however,
a preprint claiming D(9) was published, right before the present publication by
Christian Jékel [2]. This paper confirmed our result as we obtained it on the
8th of March. So, the 9" Dedekind Number was found on the 8" of March,
2023 using the Noctua 2 supercluster at Paderborn University. This value was
registered in the corresponding github commit: https://github.com/VonTum/
Dedekind/commit/1cf7b019afca655586e8210f97fbb5399d61e842 All code is
available at https://github.com/VonTum/Dedekind.

References

[1] R. Dedekind. Uber Zerlegungen von Zahlen Durch Thre Grossten
Gemeinsamen Theiler, pages 1-40. Vieweg+Teubner Verlag, Wiesbaden,
1897.

[2] Christian Jdkel. A computation of the ninth dedekind number, 2023.

[3] Doug Wiedemann. A computation of the eighth dedekind number. https:
//link.springer.com/article/10.1007%2FBF00385808, 1991.

[4] Tamon Stephen and Timothy Yusun. Counting inequivalent monotone
boolean functions. Discrete Applied Mathematics, 167:15-24, 2014.

[5] Bartlomiej Pawelski. On the number of inequivalent monotone boolean
functions of 8 variables, 2021.

[6] Bartlomiej Pawelski. On the number of inequivalent monotone boolean
functions of 9 variables, 2023.

[7] Patrick De Causmaecker and Stefan De Wannemacker. On the number of
antichains of sets in a finite universe, 2014.

[8] Patrick De Causmaecker, Stefan De Wannemacker, and Jay Yellen. Inter-
vals of antichains and their decompositions, 2016.

https://github.com/VonTum/Dedekind/commit/1cf7b019afca655586e8210f97fbb5399d61e842
https://github.com/VonTum/Dedekind/commit/1cf7b019afca655586e8210f97fbb5399d61e842
https://github.com/VonTum/Dedekind
https://link.springer.com/article/10.1007%2FBF00385808
https://link.springer.com/article/10.1007%2FBF00385808

[9] Lennart Van Hirtum. A path to compute the 9th dedekind number us-
ing fpga supercomputing. https://hirtum.com/thesis.pdf, 2021. KU
Leuven, Masters Thesis.

[10] Bartlomiej Pawelski and Andrzej Szepietowski. Divisibility properties of
dedekind numbers, 2023.

https://hirtum.com/thesis.pdf

	Introduction
	Method, Theory
	Computing P-Coefficients on FPGA
	Computation on Noctua 2
	Correctness
	The danger of SEU events
	Conclusion

