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Abstract

Let g € Fyn[z] be a planar Dembowski-Ostrom (DO) polynomial, where p is an odd
prime and n a positive integer. Let Quot(D,) be the set of quotients XY ™' with Y # 0, X
being elements from the spread set of the commutative presemifield corresponding to g. We
analyze the algebraic structure of Quot(Dy) for all planar DO monomials. More precisely,
for g being CCZ-equivalent to a planar DO monomial, we show that every non-zero element
X € Quot(Dy) generates a field F,[X] C Quot(Dy). In particular, Quot(Dy) contains the
field Fpn.

1 Introduction and Preliminaries

Let p be an odd prime and n a positive integer. By Mat, (n,n), we denote the ring of all n x n
matrices with coefficients in the prime field F,, and by GL(n,F,) the subgroup of all invertible
matrices in Matg, (n,n). Given A € Matg,(n,n), we denote by F,[A] the IF)-algebra generated
by A, ie., FylA4] = {3, aiA" | a; € Fp}. A polynomial g € Fyn[z] is called planar if, for all
a€Fon,
Agalr) =gz +a) —g(x) — g(a)

is a permutation polynomial in Fpn [z] i.e., its evaluation map Fpn — Fpn,y — Ay o (y) is 1-to-1.
Planar polynomials were introduced by Dembowski and Ostrom in [5]. Since we only study
properties of evaluation maps in F,n, we assume that g € Fpn[z]/ (:rpn —x), i.e., g has degree at
most p"™ — 1. A special type of polynomials in F» [z] are Dembowski-Ostrom (DO) polynomials,
which are those of the form

i J
+
E Uy, j L U5 € ]Fpn.
0<i<j<n-—1

If gis DO, Ay 4 is a linearized polynomial (i.e., its evaluation map is linear) for every a € Fyn.
Let us denote by M, . the matrix (after fixing a choice of basis) associated to the evaluation
map of Ay ,. For a planar DO polynomial g, we define its spread set D, as

Dy = {Mya | @ € Fn} € GL(n,F,) U {0}.
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Remark 1. In [3], Coulter and Henderson showed a one-to-one correspondence between commu-
tative presemifields of odd order and planar Dembowski-Ostrom polynomials. Dy is equal to the
set of matrices corresponding to the mappings x — a * = of left-multiplications with elements a
in the corresponding commutative presemifield Rg4, hence D, is equal to the spread set of R,
(see e.g., [6 Sec. 2.1]).

An equivalence relation between two polynomials that leaves the planarity property invariant
is CCZ-equivalence [2]. CCZ-equivalence of two planar DO polynomials coincides with linear
equivalence [1].

We study the set of quotients in Dy, defined as

Quot(Dy) = | J DV '={XY'|X,Y €D, andY #0}.
YeDy\{0}

The following observation is immediate from the fact that g(x +y) — g(x) — g(y) is symmetric
in z and y and bilinear.

Lemma 1. Let g € Fyn[x] be a DO polynomial and {aq,aq, ..., an} be an Fy-basis of Fyn. For
each’Y € GL(n,Fp), the set D,Y ~! is an n-dimensional F,-vector space with basis

{My o, Y™ My 0, Y h o My Y

The reason we are interested in the set Quot(D,) is that it stays invariant up to a different
choice of basis under linear-equivalence of g, hence yielding an invariant for the CCZ-equivalence
of DO planar functions.

Proposition 1. Let g,g' € Fynlz] be two planar DO polynomials within the same linear-
equivalence class. Then, Quot(Dy) = A1 - Quot(D,) - A for an element A € GL(n,F,).

Proof. This immediately follows from the fact that the spread sets of g and ¢’ are related via
Dy =X"1-Dy-Y for some X,Y € GL(n,F,) (see also [6 Sec. 2.1]). O

We would like to recall that any finite field Fp» (resp., a proper subfield F,m ) is isomorphic to
[F,[T;], where Tj3 denotes a matrix corresponding to the linear mapping x — Sz over Fpn, for 5 €
[, defining a polynomial basis of F,» (vesp., of Fym ). For more details on matriz representations
of finite fields, we refer to, e.g., [7] or [8]. Applying a change of basis transformation to all elements
of a matrix algebra IF,[T] does not affect the property of being a field, hence F,[T] is a finite
field if and only if A= -F,[T]- A is for all A € GL(n,F,).

2 The Structure of Quot(D,) for a planar DO monomial g

In [4], Coulter and Matthews showed that any planar DO monomial in Fp» [z] is CCZ-equivalent
to z? 1 € Fpn [x] with n/ ged(k, n) being odd. We show that for any DO polynomial h € Fpn [z]
CCZ-equivalent to a planar monomial, the set Quot(D},) always contains the finite field of order
p™. More precisely, we show the following.

Theorem 1. Let p be an odd prime and n a positive integer. Let g(x) € Fpn[z] be a planar
DO monomial. For any o, 8 € Ty, the element X == M, M, ) € Quot(Dy) generates a field
isomorphic to Fp(a™'B) viz. F,[X], and Fy[X] C Quot(D,).

Let us denote by ¢q: Fpn — Fpn, 2 — az?" + aP"z the evaluation map of Ampk+17a € Fpn[z].
It is well known that ¢, is invertible if and only if n/ged(k,n) is odd (see [4]). We have the
following for the inverse, which is a special case of of Thm. 2.1 of [I0]. It can also be proven by
straightforward calculation of ¢! (dq(2)).



Lemma 2 (Special case of Thm. 2.1 of [10]). Let k be such that n/ged(k,n) is odd. Let d =
n/ ged(k,n). For o € Fy., the inverse of ¢o: x — az?’ + o'z is given by

d—1

. Z(_l)iai(pk+1)pkixpki .

=0

1 a
PX e —
QS(X X 2

The following lemma is immediate.

Lemma 3. Let k be such that n/gcd(k,n) is odd and let ¢po: x az? + o' z. For any
a, B € Fr., we have dp(dzt(z)) = (,Bpk — apkflﬁ) ot (z) + a1 B,

The monomial g(z) = 2P +1 admits a non-trivial self equivalence via g(x) = A= (P*+1) -g(vyz),
where v is an arbitrary non-zero element of F,». From this, we obtain the following.

Lemma 4. Let k be such that n/gcd(k,n) is odd and let ¢po: x +— az? + o z. For any
k k
o, B,y € Fpr, o,y # 0, we have pg(¢g' (x)) =7~ FV - dy5(g50 (1" +1a)).

To show Theorem |1} we will first deduce that each element in Quot(D,) generates (a subfield
of) Fpn. To do so, we show that each element in Quot(D,) corresponds (up to a choice of basis)
to a multiplication with an element of Fpn.

Lemma 5. Let k be such that n/ged(k,n) is odd. Let o, € Fyn,a #0. If a1 € Fpecd(k.n) 5
the mapping ¢g o ¢ is equal to x — a~'Bx. If a='B lies not in Fpecack,n), the mapping
Yapodgopyto 1[);16 s equal to T — (oflﬁ)pk:c, where

wa7ﬂ:xeapk~¢a (1 )

B —ar 15"

Proof. We first observe that Bpk —apk*ﬂ is equal to zero if and only if 5 = 0 or (oflﬂ)pk*1 =1,
i.e., if and only if @~'3 is contained in the subfield ]Fpgcd(k,n) C F,». Hence, by Lemma |3, the
statement is trivial for the case of o~ 18 € Fpecack,ny C Fpn.

In the other case, the mapping 1, g is well defined and we can decompose 1, g as C o Bo A,

where A is a multiplication by (ﬁpk - ozpk_lﬁ)_l, B = ¢, and C is a multiplication by a?" . For
all x € Fp», we then have:

Li(@) = A(9p(0 (A7 (@) = 65" (3" = a1 B)a) + 0™ B

Ly(z) = B(Li (B~ (2))) = (8" — o' 715) - ¢ (x) + dala ™ B 67 (x))
= 6" (¢a' @) + a7 o @)

La(x) = C(L(C™ ' (@))) = 8 - (" 67" (a7 ) + a9, (a7 2))")
=" a(¢5 (a7 x) = (a1 B)" a
The proof is complete since Lz = 14 50 ¢go ¢ lo w;’lﬁ. O

The more complicated part is to show that, for any X € Quot(Dy), the matrix algebra [F,,[X]
is indeed a subset of Quot(Dy). We do this in the following.



Proof of Theorem[1. Let a, B € FJ. and let X = MgﬁgMg_’é. By Lemma [5] the linear mapping
dp o ¢5 ! is similar to x — a~!Bz. Hence, the F,-algebra F,[X] is isomorphic to F,(a~!3) and
thus a field. It is left to show that F,[X] C Quot(D,). The case of a™'3 € Fpecack.n) is trivial
and we therefore assume in the following that a ! B¢ Fpgcd<k,n>. We will first handle the case of

a =1 and show that (M, sM,1)" € Quot(D,) for any integer r > 2. By Lemma we have

b0 (65007") ovih(e) = (vsodsodrt ourh) () = 7w

Further,
gty = 1,87 © Pgr 0 q/)fl o ’(/}iér () if "¢ Fpecack,n)
BTz = psr 0 ¢7 (2) otherwise ’
and thus

" —1 o =1 .
(bpodrt) = {wm orgrodgrogr o grothrg if B¢ Fpecavem . M

wl—é ° pgr o ¢1_1 o1 otherwise

We will now prove that the latter composition is equal to ¢s o ¢ ! for properly chosen field
elements 4, 7.

Case " € Fscak.n). In this case, ((ﬁg o (i)fl)r (x) = g[}fé o dpgr 0 ¢yt 0y g(x) = wié(ﬁr .
1,8(x)) = 6" - Q/Jié(?/h,ﬁ(iﬁ)) = Bz = ppr 0 g7 (2), since 9 5 is Fpecace.n -linear.

k
Case (" ¢ Fpgcd(k,n)o We first observe that @b;é oy gr(x) = %x Let us define \ =

k
ﬁﬁ :k :g € Fyn. The image of the mapping z — 2P +1 over Fp» is equal to the set of squares in

Fpn. Indeed, every element in the image is a square as p* 4+ 1 is even, and = +— 2P +1 s 2-to-1

as a DO planar function [9]. Hence, if A is a square, we have A = fypk“ for an element v € F.
and, otherwise, we have \ = u'ypk“ with u € Fj. being an arbitrary non-square. Note that
we can always choose u € F;gcd(k,n). Indeed, let n = 2™¢ and k = 2™ ¢ with £, ¢ being odd,
we necessarily have m’ > m, as otherwise n/ged(k,n) would be even. So, [Fpecack.n) contains

[F,2m as a subfield and the extension degree [Fyn : IFpzcack.m] is odd. The claim then follows as a

non-square in a finite field stays a non-square in any extension field of odd extension degree.
k
Let us therefore assume that A = uy? +! with v € Frn and u € F;gcd(k,n)' We have

Py ot grodprodr oy hoothy glx) = A (gprogrt) (AN )

k k 2
oo or) (),

where the last equality follows from the fact that u € ]F;gcd(k,n)' By Lemma we have ,ka+1 .
(6 0 67Y) (¢<p’v+1>x) — dor 0 07 ().
To handle the case of o # 1, we apply Lemma [4] with v = a~! and obtain ¢5(¢;(z)) =
a1 6m15(¢r H(a” ' a)), hence,
(¢B ° d)gl)r(x) — apk—i-l . (¢oﬁ1f3 ° ¢1_1)T(Oé_(pk+1)$)
k 1,k _
P (%, 067 (» +1)x)) = a5 0 D3 ()



for appropriate elements v/, ’. We have now established that, for «~!3 being a generator of o,
the algebra F,[X] is a field of order p” contained in Quot(Dy).
To handle the general case where a1 3 is not a generator of Fn, we will show that X is equal

to (Mgﬁ/M;;,)’" for some generator o 71ﬂ’ of F. and some non-negative integer r. Then, it
would immediately follow that F,[X] C F,[M,, B’Mq_,;'] C Quot(D,). Indeed, let 3 be a generator
of Fp» such that f"=a" '3 and let

B — B
Brp’“ _ Br
with v € F}. and u € F;gcd(,m). By extensively applying Lemma E| and the result we established
above, we obtain

(Gar-150 0701 (@) = ((a719) PV g0 67 (a1 1) )
=
=
=

k
= u")/p +1

Oz_lfy)_(luk-"_l) . (¢5 o ¢;1)7- ((a_l’y)pk"—lx)
aly) "D g 5067 (a7 ) Ha)
-1

a7ly) "D 150 67 (a7 )P H ) = g 0 67 (a).

O]
n__ged(k,n)y (o n _
Remark 2. For g(z) = 2P+ € F,n[z] planar, we have |Quot(Dy)| = (p ’;;(Z,n))_(f b4
pgcd(k,n).
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