On the Spread Sets of Planar Dembowski-Ostrom Monomials*

Christof Beierle ${ }^{1}$ and Patrick Felke ${ }^{2}$
${ }^{1}$ Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
${ }^{2}$ University of Applied Sciences Emden-Leer, Emden, Germany

Abstract

Let $g \in \mathbb{F}_{p^{n}}[x]$ be a planar Dembowski-Ostrom (DO) polynomial, where p is an odd prime and n a positive integer. Let $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ be the set of quotients $X Y^{-1}$ with $Y \neq 0, X$ being elements from the spread set of the commutative presemifield corresponding to g. We analyze the algebraic structure of $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ for all planar DO monomials. More precisely, for g being CCZ-equivalent to a planar DO monomial, we show that every non-zero element $X \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$ generates a field $\mathbb{F}_{p}[X] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$. In particular, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains the field $\mathbb{F}_{p^{n}}$.

1 Introduction and Preliminaries

Let p be an odd prime and n a positive integer. $\operatorname{By} \operatorname{Mat}_{\mathbb{F}_{p}}(n, n)$, we denote the ring of all $n \times n$ matrices with coefficients in the prime field \mathbb{F}_{p} and by $\operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ the subgroup of all invertible matrices in $\operatorname{Mat}_{\mathbb{F}_{p}}(n, n)$. Given $A \in \operatorname{Mat}_{\mathbb{F}_{p}}(n, n)$, we denote by $\mathbb{F}_{p}[A]$ the \mathbb{F}_{p}-algebra generated by A, i.e., $\mathbb{F}_{p}[A]=\left\{\sum_{i} a_{i} A^{i} \mid a_{i} \in \mathbb{F}_{p}\right\}$. A polynomial $g \in \mathbb{F}_{p^{n}}[x]$ is called planar if, for all $\alpha \in \mathbb{F}_{p^{n}}^{*}$,

$$
\Delta_{g, \alpha}(x):=g(x+\alpha)-g(x)-g(\alpha)
$$

is a permutation polynomial in $\mathbb{F}_{p^{n}}[x]$ i.e., its evaluation map $\mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}, y \mapsto \Delta_{g, \alpha}(y)$ is 1-to-1. Planar polynomials were introduced by Dembowski and Ostrom in [5]. Since we only study properties of evaluation maps in $\mathbb{F}_{p^{n}}$, we assume that $g \in \mathbb{F}_{p^{n}}[x] /\left(x^{p^{n}}-x\right)$, i.e., g has degree at most $p^{n}-1$. A special type of polynomials in $\mathbb{F}_{p^{n}}[x]$ are Dembowski-Ostrom (DO) polynomials, which are those of the form

$$
\sum_{0 \leq i \leq j \leq n-1} u_{i, j} \cdot x^{p^{i}+p^{j}}, \quad u_{i, j} \in \mathbb{F}_{p^{n}} .
$$

If g is $\mathrm{DO}, \Delta_{g, \alpha}$ is a linearized polynomial (i.e., its evaluation map is linear) for every $\alpha \in \mathbb{F}_{p^{n}}$. Let us denote by $M_{g, \alpha}$ the matrix (after fixing a choice of basis) associated to the evaluation map of $\Delta_{g, \alpha}$. For a planar DO polynomial g, we define its spread set \mathcal{D}_{g} as

$$
\mathcal{D}_{g}:=\left\{M_{g, \alpha} \mid \alpha \in \mathbb{F}_{p^{n}}\right\} \subseteq \operatorname{GL}\left(n, \mathbb{F}_{p}\right) \cup\{0\} .
$$

[^0]Remark 1. In 3, Coulter and Henderson showed a one-to-one correspondence between commutative presemifields of odd order and planar Dembowski-Ostrom polynomials. \mathcal{D}_{g} is equal to the set of matrices corresponding to the mappings $x \rightarrow a \star x$ of left-multiplications with elements a in the corresponding commutative presemifield \mathcal{R}_{g}, hence \mathcal{D}_{g} is equal to the spread set of \mathcal{R}_{g} (see e.g., [6, Sec. 2.1]).

An equivalence relation between two polynomials that leaves the planarity property invariant is CCZ-equivalence [2]. CCZ-equivalence of two planar DO polynomials coincides with linear equivalence [1].

We study the set of quotients in \mathcal{D}_{g}, defined as

$$
\operatorname{Quot}\left(\mathcal{D}_{g}\right):=\bigcup_{Y \in \mathcal{D}_{g} \backslash\{0\}} \mathcal{D}_{g} Y^{-1}=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g} \text { and } Y \neq 0\right\}
$$

The following observation is immediate from the fact that $g(x+y)-g(x)-g(y)$ is symmetric in x and y and bilinear.

Lemma 1. Let $g \in \mathbb{F}_{p^{n}}[x]$ be a DO polynomial and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be an \mathbb{F}_{p}-basis of $\mathbb{F}_{p^{n}}$. For each $Y \in \mathrm{GL}\left(n, \mathbb{F}_{p}\right)$, the set $\mathcal{D}_{g} Y^{-1}$ is an n-dimensional \mathbb{F}_{p}-vector space with basis

$$
\left\{M_{g, \alpha_{1}} Y^{-1}, M_{g, \alpha_{2}} Y^{-1}, \ldots, M_{g, \alpha_{n}} Y^{-1}\right\}
$$

The reason we are interested in the set $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ is that it stays invariant up to a different choice of basis under linear-equivalence of g, hence yielding an invariant for the CCZ-equivalence of DO planar functions.
Proposition 1. Let $g, g^{\prime} \in \mathbb{F}_{p^{n}}[x]$ be two planar $D O$ polynomials within the same linearequivalence class. Then, $\operatorname{Quot}\left(\mathcal{D}_{g^{\prime}}\right)=A^{-1} \cdot \operatorname{Quot}\left(\mathcal{D}_{g}\right) \cdot A$ for an element $A \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$.
Proof. This immediately follows from the fact that the spread sets of g and g^{\prime} are related via $\mathcal{D}_{g^{\prime}}=X^{-1} \cdot \mathcal{D}_{g} \cdot Y$ for some $X, Y \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ (see also [6] Sec. 2.1]).

We would like to recall that any finite field $\mathbb{F}_{p^{n}}$ (resp., a proper subfield $\mathbb{F}_{p^{m}}$) is isomorphic to $\mathbb{F}_{p}\left[T_{\beta}\right]$, where T_{β} denotes a matrix corresponding to the linear mapping $x \mapsto \beta x$ over $\mathbb{F}_{p^{n}}$, for $\beta \in$ $\mathbb{F}_{p^{n}}^{*}$ defining a polynomial basis of $\mathbb{F}_{p^{n}}$ (resp., of $\mathbb{F}_{p^{m}}$). For more details on matrix representations of finite fields, we refer to, e.g., [7] or [8]. Applying a change of basis transformation to all elements of a matrix algebra $\mathbb{F}_{p}[T]$ does not affect the property of being a field, hence $\mathbb{F}_{p}[T]$ is a finite field if and only if $A^{-1} \cdot \mathbb{F}_{p}[T] \cdot A$ is for all $A \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$.

2 The Structure of $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ for a planar DO monomial g

In [4], Coulter and Matthews showed that any planar DO monomial in $\mathbb{F}_{p^{n}}[x]$ is CCZ-equivalent to $x^{p^{k}+1} \in \mathbb{F}_{p^{n}}[x]$ with $n / \operatorname{gcd}(k, n)$ being odd. We show that for any DO polynomial $h \in \mathbb{F}_{p^{n}}[x]$ CCZ-equivalent to a planar monomial, the set $\operatorname{Quot}\left(\mathcal{D}_{h}\right)$ always contains the finite field of order p^{n}. More precisely, we show the following.
Theorem 1. Let p be an odd prime and n a positive integer. Let $g(x) \in \mathbb{F}_{p^{n}}[x]$ be a planar DO monomial. For any $\alpha, \beta \in \mathbb{F}_{p^{n}}^{*}$, the element $X:=M_{g, \beta} M_{g, \alpha}^{-1} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$ generates a field isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$ viz. $\mathbb{F}_{p}[X]$, and $\mathbb{F}_{p}[X] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.

Let us denote by $\phi_{\alpha}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}, x \mapsto \alpha x^{p^{k}}+\alpha^{p^{k}} x$ the evaluation map of $\Delta_{x^{p^{k+1}, \alpha}} \in \mathbb{F}_{p^{n}}[x]$. It is well known that ϕ_{α} is invertible if and only if $n / \operatorname{gcd}(k, n)$ is odd (see [4]). We have the following for the inverse, which is a special case of of Thm. 2.1 of 10. It can also be proven by straightforward calculation of $\phi_{\alpha}^{-1}\left(\phi_{\alpha}(x)\right)$.

Lemma 2 (Special case of Thm. 2.1 of [10]. Let k be such that $n / \operatorname{gcd}(k, n)$ is odd. Let $d:=$ $n / \operatorname{gcd}(k, n)$. For $\alpha \in \mathbb{F}_{p^{n}}^{*}$, the inverse of $\phi_{\alpha}: x \mapsto \alpha x^{p^{k}}+\alpha^{p^{k}} x$ is given by

$$
\phi_{\alpha}^{-1}: x \mapsto \frac{\alpha}{2} \cdot \sum_{i=0}^{d-1}(-1)^{i} \alpha^{-\left(p^{k}+1\right) p^{k i}} x^{p^{k i}}
$$

The following lemma is immediate.
Lemma 3. Let k be such that $n / \operatorname{gcd}(k, n)$ is odd and let $\phi_{\alpha}: x \mapsto \alpha x^{p^{k}}+\alpha^{p^{k}} x$. For any $\alpha, \beta \in \mathbb{F}_{p^{n}}^{*}$, we have $\phi_{\beta}\left(\phi_{\alpha}^{-1}(x)\right)=\left(\beta^{p^{k}}-\alpha^{p^{k}-1} \beta\right) \cdot \phi_{\alpha}^{-1}(x)+\alpha^{-1} \beta x$.

The monomial $g(x)=x^{p^{k}+1}$ admits a non-trivial self equivalence via $g(x)=\gamma^{-\left(p^{k}+1\right)} \cdot g(\gamma x)$, where γ is an arbitrary non-zero element of $\mathbb{F}_{p^{n}}$. From this, we obtain the following.
Lemma 4. Let k be such that $n / \operatorname{gcd}(k, n)$ is odd and let $\phi_{\alpha}: x \mapsto \alpha x^{p^{k}}+\alpha^{p^{k}} x$. For any $\alpha, \beta, \gamma \in \mathbb{F}_{p^{n}}, \alpha, \gamma \neq 0$, we have $\phi_{\beta}\left(\phi_{\alpha}^{-1}(x)\right)=\gamma^{-\left(p^{k}+1\right)} \cdot \phi_{\gamma \beta}\left(\phi_{\gamma \alpha}^{-1}\left(\gamma^{p^{k}+1} x\right)\right)$.

To show Theorem 11 we will first deduce that each element in $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ generates (a subfield of) $\mathbb{F}_{p^{n}}$. To do so, we show that each element in $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ corresponds (up to a choice of basis) to a multiplication with an element of $\mathbb{F}_{p^{n}}$.
Lemma 5. Let k be such that $n / \operatorname{gcd}(k, n)$ is odd. Let $\alpha, \beta \in \mathbb{F}_{p^{n}}, \alpha \neq 0$. If $\alpha^{-1} \beta \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$, the mapping $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is equal to $x \mapsto \alpha^{-1} \beta x$. If $\alpha^{-1} \beta$ lies not in $\mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$, the mapping $\psi_{\alpha, \beta} \circ \phi_{\beta} \circ \phi_{\alpha}^{-1} \circ \psi_{\alpha, \beta}^{-1}$ is equal to $x \mapsto\left(\alpha^{-1} \beta\right)^{p^{k}} x$, where

$$
\psi_{\alpha, \beta}: x \mapsto \alpha^{p^{k}} \cdot \phi_{\alpha}\left(\frac{1}{\beta^{p^{k}}-\alpha^{p^{k}-1} \beta} \cdot x\right) .
$$

Proof. We first observe that $\beta^{p^{k}}-\alpha^{p^{k}-1} \beta$ is equal to zero if and only if $\beta=0$ or $\left(\alpha^{-1} \beta\right)^{p^{k}-1}=1$,
 statement is trivial for the case of $\alpha^{-1} \beta \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)}} \subseteq \mathbb{F}_{p^{n}}$.

In the other case, the mapping $\psi_{\alpha, \beta}$ is well defined and we can decompose $\psi_{\alpha, \beta}$ as $C \circ B \circ A$, where A is a multiplication by $\left(\beta^{p^{k}}-\alpha^{p^{k}-1} \beta\right)^{-1}, B=\phi_{\alpha}$, and C is a multiplication by $\alpha^{p^{k}}$. For all $x \in \mathbb{F}_{p^{n}}$, we then have:

$$
\begin{aligned}
& L_{1}(x):=A\left(\phi_{\beta}\left(\phi_{\alpha}^{-1}\left(A^{-1}(x)\right)\right)\right)=\phi_{\alpha}^{-1}\left(\left(\beta^{p^{k}}-\alpha^{p^{k}-1} \beta\right) x\right)+\alpha^{-1} \beta x . \\
& \begin{aligned}
L_{2}(x) & :=B\left(L_{1}\left(B^{-1}(x)\right)\right)=\left(\beta^{p^{k}}-\alpha^{p^{k}-1} \beta\right) \cdot \phi_{\alpha}^{-1}(x)+\phi_{\alpha}\left(\alpha^{-1} \beta \cdot \phi_{\alpha}^{-1}(x)\right) \\
& =\beta^{p^{k}} \cdot\left(\phi_{\alpha}^{-1}(x)+\alpha^{-p^{k}+1}\left(\phi_{\alpha}^{-1}(x)\right)^{p^{k}}\right) . \\
L_{3}(x) & :=C\left(L_{2}\left(C^{-1}(x)\right)\right)=\beta^{p^{k}} \cdot\left(\alpha^{p^{k}} \phi_{\alpha}^{-1}\left(\alpha^{-p^{k}} x\right)+\alpha\left(\phi_{\alpha}^{-1}\left(\alpha^{-p^{k}} x\right)\right)^{p^{k}}\right) \\
& =\beta^{p^{k}} \cdot \phi_{\alpha}\left(\phi_{\alpha}^{-1}\left(\alpha^{-p^{k}} x\right)\right)=\left(\alpha^{-1} \beta\right)^{p^{k}} x .
\end{aligned}
\end{aligned}
$$

The proof is complete since $L_{3}=\psi_{\alpha, \beta} \circ \phi_{\beta} \circ \phi_{\alpha}^{-1} \circ \psi_{\alpha, \beta}^{-1}$.
The more complicated part is to show that, for any $X \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$, the matrix algebra $\mathbb{F}_{p}[X]$ is indeed a subset of $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$. We do this in the following.

Proof of Theorem 1. Let $\alpha, \beta \in \mathbb{F}_{p^{n}}^{*}$ and let $X:=M_{g, \beta} M_{g, \alpha}^{-1}$. By Lemma 5, the linear mapping $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is similar to $x \mapsto \alpha^{-1} \beta x$. Hence, the \mathbb{F}_{p}-algebra $\mathbb{F}_{p}[X]$ is isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$ and thus a field. It is left to show that $\mathbb{F}_{p}[X] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$. The case of $\alpha^{-1} \beta \in \mathbb{F}_{p^{\operatorname{ged}(k, n)}}$ is trivial and we therefore assume in the following that $\alpha^{-1} \beta \notin \mathbb{F}_{p_{\operatorname{gcd}(k, n)} \text {. We will first handle the case of }}$ $\alpha=1$ and show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$ for any integer $r \geq 2$. By Lemma 5, we have

$$
\psi_{1, \beta} \circ\left(\phi_{\beta} \circ \phi_{1}^{-1}\right)^{r} \circ \psi_{1, \beta}^{-1}(x)=\left(\psi_{1, \beta} \circ \phi_{\beta} \circ \phi_{1}^{-1} \circ \psi_{1, \beta}^{-1}\right)^{r}(x)=\beta^{r p^{k}} x .
$$

Further,

$$
\beta^{r p^{k}} x= \begin{cases}\psi_{1, \beta^{r}} \circ \phi_{\beta^{r}} \circ \phi_{1}^{-1} \circ \psi_{1, \beta^{r}}^{-1}(x) & \text { if } \beta^{r} \notin \mathbb{F}_{p \operatorname{gcd}(k, n)} \\ \beta^{r} x=\phi_{\beta^{r}} \circ \phi_{1}^{-1}(x) & \text { otherwise }\end{cases}
$$

and thus

$$
\left(\phi_{\beta} \circ \phi_{1}^{-1}\right)^{r}= \begin{cases}\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}} \circ \phi_{\beta^{r}} \circ \phi_{1}^{-1} \circ \psi_{1, \beta^{r}}^{-1} \circ \psi_{1, \beta} & \text { if } \beta^{r} \notin \mathbb{F}_{p^{\operatorname{gcd}(k, n)}} \tag{1}\\ \psi_{1, \beta}^{-1} \circ \phi_{\beta^{r}} \circ \phi_{1}^{-1} \circ \psi_{1, \beta} & \text { otherwise }\end{cases}
$$

We will now prove that the latter composition is equal to $\phi_{\delta} \circ \phi_{\gamma}^{-1}$ for properly chosen field elements δ, γ.

Case $\beta^{r} \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$. In this case, $\left(\phi_{\beta} \circ \phi_{1}^{-1}\right)^{r}(x)=\psi_{1, \beta}^{-1} \circ \phi_{\beta^{r}} \circ \phi_{1}^{-1} \circ \psi_{1, \beta}(x)=\psi_{1, \beta}^{-1}\left(\beta^{r}\right.$. $\left.\psi_{1, \beta}(x)\right)=\beta^{r} \cdot \psi_{1, \beta}^{-1}\left(\psi_{1, \beta}(x)\right)=\beta^{r} x=\phi_{\beta^{r}} \circ \phi_{1}^{-1}(x)$, since $\psi_{1, \beta}$ is $\mathbb{F}_{p^{g c d}(k, n) \text {-linear. }}$.

Case $\beta^{r} \notin \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$. We first observe that $\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}}(x)=\frac{\beta^{p^{k}}-\beta}{\beta^{r p^{k}}-\beta^{r}} x$. Let us define $\lambda:=$ $\frac{\beta^{p^{k}}-\beta}{\beta^{r p^{k}}-\beta^{r}} \in \mathbb{F}_{p^{n}}^{*}$. The image of the mapping $x \mapsto x^{p^{k}+1}$ over $\mathbb{F}_{p^{n}}$ is equal to the set of squares in $\mathbb{F}_{p^{n}}$. Indeed, every element in the image is a square as $p^{k}+1$ is even, and $x \mapsto x^{p^{k}+1}$ is 2 -to- 1 as a DO planar function [9]. Hence, if λ is a square, we have $\lambda=\gamma^{p^{k}+1}$ for an element $\gamma \in \mathbb{F}_{p^{n}}^{*}$ and, otherwise, we have $\lambda=u \gamma^{p^{k}+1}$ with $u \in \mathbb{F}_{p^{n}}^{*}$ being an arbitrary non-square. Note that
 we necessarily have $m^{\prime} \geq m$, as otherwise $n / \operatorname{gcd}(k, n)$ would be even. So, $\mathbb{F}_{p \operatorname{cd}(k, n)}$ contains $\mathbb{F}_{p^{2^{m}}}$ as a subfield and the extension degree $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}\right]$ is odd. The claim then follows as a non-square in a finite field stays a non-square in any extension field of odd extension degree.

Let us therefore assume that $\lambda=u \gamma^{p^{k}+1}$ with $\gamma \in \mathbb{F}_{p^{n}}^{*}$ and $u \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}^{*}$. We have

$$
\begin{align*}
\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}} \circ \phi_{\beta^{r}} \circ \phi_{1}^{-1} \circ \psi_{1, \beta^{r}}^{-1} \circ \psi_{1, \beta}(x) & =\lambda \cdot\left(\phi_{\beta^{r}} \circ \phi_{1}^{-1}\right)\left(\lambda^{-1} x\right) \\
& =\gamma^{p^{k}+1} \cdot\left(\phi_{\beta^{r}} \circ \phi_{1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right), \tag{2}
\end{align*}
$$

where the last equality follows from the fact that $u \in \mathbb{F}_{p \operatorname{scd}(k, n)}^{*}$. By Lemma 4 , we have $\gamma^{p^{k}+1}$. $\left(\phi_{\beta^{r}} \circ \phi_{1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)=\phi_{\gamma \beta^{r}} \circ \phi_{\gamma}^{-1}(x)$.

To handle the case of $\alpha \neq 1$, we apply Lemma 4 with $\gamma=\alpha^{-1}$ and obtain $\phi_{\beta}\left(\phi_{\alpha}^{-1}(x)\right)=$ $\alpha^{p^{k}+1} \cdot \phi_{\alpha^{-1} \beta}\left(\phi_{1}^{-1}\left(\alpha^{-\left(p^{k}+1\right)} x\right)\right)$, hence,

$$
\begin{aligned}
\left(\phi_{\beta} \circ \phi_{\alpha}^{-1}\right)^{r}(x) & =\alpha^{p^{k}+1} \cdot\left(\phi_{\alpha^{-1} \beta} \circ \phi_{1}^{-1}\right)^{r}\left(\alpha^{-\left(p^{k}+1\right)} x\right) \\
& =\alpha^{p^{k}+1} \cdot\left(\phi_{\delta^{\prime}} \circ \phi_{\gamma^{\prime}}^{-1}\left(\alpha^{-\left(p^{k}+1\right)} x\right)\right)=\phi_{\alpha \delta^{\prime}} \circ \phi_{\alpha \gamma^{\prime}}^{-1}(x)
\end{aligned}
$$

for appropriate elements $\gamma^{\prime}, \delta^{\prime}$. We have now established that, for $\alpha^{-1} \beta$ being a generator of $\mathbb{F}_{p^{n}}^{*}$, the algebra $\mathbb{F}_{p}[X]$ is a field of order p^{n} contained in $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$.

To handle the general case where $\alpha^{-1} \beta$ is not a generator of $\mathbb{F}_{p^{n}}^{*}$, we will show that X is equal to $\left(M_{g, \beta^{\prime}} M_{g, \alpha^{\prime}}^{-1}\right)^{r}$ for some generator $\alpha^{\prime-1} \beta^{\prime}$ of $\mathbb{F}_{p^{n}}^{*}$ and some non-negative integer r. Then, it would immediately follow that $\mathbb{F}_{p}[X] \subseteq \mathbb{F}_{p}\left[M_{g, \beta^{\prime}} M_{g, \alpha^{\prime}}^{-1}\right] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$. Indeed, let $\bar{\beta}$ be a generator of $\mathbb{F}_{p^{n}}^{*}$ such that $\bar{\beta}^{r}=\alpha^{-1} \beta$ and let

$$
\frac{\bar{\beta}^{p^{k}}-\bar{\beta}}{\bar{\beta}^{r p^{k}}-\bar{\beta}^{r}}=u \gamma^{p^{k}+1}
$$

with $\gamma \in \mathbb{F}_{p^{n}}^{*}$ and $u \in \mathbb{F}_{p \operatorname{gcd}(k, n)}^{*}$. By extensively applying Lemma 4 and the result we established above, we obtain

$$
\begin{aligned}
\left(\phi_{\alpha \gamma^{-1} \bar{\beta}} \circ \phi_{\alpha \gamma^{-1}}^{-1}\right)^{r}(x) & =\left(\left(\alpha^{-1} \gamma\right)^{-\left(p^{k}+1\right)} \cdot \phi_{\bar{\beta}} \circ \phi_{1}^{-1}\left(\left(\alpha^{-1} \gamma\right)^{p^{k}+1} x\right)\right)^{r} \\
& =\left(\alpha^{-1} \gamma\right)^{-\left(p^{k}+1\right)} \cdot\left(\phi_{\bar{\beta}} \circ \phi_{1}^{-1}\right)^{r}\left(\left(\alpha^{-1} \gamma\right)^{p^{k}+1} x\right) \\
& =\left(\alpha^{-1} \gamma\right)^{-\left(p^{k}+1\right)} \cdot \phi_{\gamma \bar{\beta}^{r}} \circ \phi_{\gamma}^{-1}\left(\left(\alpha^{-1} \gamma\right)^{p^{k}+1} x\right) \\
& =\left(\alpha^{-1} \gamma\right)^{-\left(p^{k}+1\right)} \cdot \phi_{\alpha^{-1} \gamma \beta} \circ \phi_{\gamma}^{-1}\left(\left(\alpha^{-1} \gamma\right)^{p^{k}+1} x\right)=\phi_{\beta} \circ \phi_{\alpha}^{-1}(x) .
\end{aligned}
$$

Remark 2. For $g(x)=x^{p^{k}+1} \in \mathbb{F}_{p^{n}}[x]$ planar, we have $\left|\operatorname{Quot}\left(\mathcal{D}_{g}\right)\right|=\frac{\left(p^{n}-p^{\operatorname{gcd}(k, n)}\right) \cdot\left(p^{n}-1\right)}{p^{\operatorname{gcd}(k, n)}-1}+$ $p^{\operatorname{gcd}(k, n)}$.

References

[1] L. Budaghyan and T. Helleseth. New commutative semifields defined by new PN multinomials. Cryptogr. Commun., 3(1):1-16, 2011.
[2] C. Carlet, P. Charpin, and V. A. Zinoviev. Codes, bent functions and permutations suitable for des-like cryptosystems. Des. Codes Cryptogr., 15(2):125-156, 1998.
[3] R. S. Coulter and M. Henderson. Commutative presemifields and semifields. Adv. Math., 217(1):282-304, 2008.
[4] R. S. Coulter and R. W. Matthews. Planar functions and planes of lenz-barlotti class II. Des. Codes Cryptogr., 10(2):167-184, 1997.
[5] P. Dembowski and T. G. Ostrom. Planes of order n with collineation groups of order n^{2}. Math. Z., 103(3):239-258, 1968.
[6] U. Dempwolff. Semifield planes of order 81. J. Geom., 89:1-16, 2008.
[7] D. Hachenberger and D. Jungnickel. Topics in Galois fields. Springer, 2020.
[8] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge university press, 1994.
[9] G. Weng and X. Zeng. Further results on planar DO functions and commutative semifields. Des. Codes Cryptogr., 63(3):413-423, 2012.
[10] B. Wu. The compositional inverses of linearized permutation binomials over finite fields. arXiv preprint arXiv:1311.2154, 2013.

[^0]: *This extended abstract is extracted from the full article available at https://arxiv.org/abs/2211.17103

