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Abstract

Let g ∈ Fpn [x] be a planar Dembowski-Ostrom (DO) polynomial, where p is an odd
prime and n a positive integer. Let Quot(Dg) be the set of quotients XY −1 with Y ̸= 0, X
being elements from the spread set of the commutative presemifield corresponding to g. We
analyze the algebraic structure of Quot(Dg) for all planar DO monomials. More precisely,
for g being CCZ-equivalent to a planar DO monomial, we show that every non-zero element
X ∈ Quot(Dg) generates a field Fp[X] ⊆ Quot(Dg). In particular, Quot(Dg) contains the
field Fpn .

1 Introduction and Preliminaries

Let p be an odd prime and n a positive integer. By MatFp(n, n), we denote the ring of all n× n
matrices with coefficients in the prime field Fp and by GL(n,Fp) the subgroup of all invertible
matrices in MatFp

(n, n). Given A ∈ MatFp
(n, n), we denote by Fp[A] the Fp-algebra generated

by A, i.e., Fp[A] = {
∑

i aiA
i | ai ∈ Fp}. A polynomial g ∈ Fpn [x] is called planar if, for all

α ∈ F∗
pn ,

∆g,α(x) := g(x+ α)− g(x)− g(α)

is a permutation polynomial in Fpn [x] i.e., its evaluation map Fpn → Fpn , y 7→ ∆g,α(y) is 1-to-1.
Planar polynomials were introduced by Dembowski and Ostrom in [5]. Since we only study
properties of evaluation maps in Fpn , we assume that g ∈ Fpn [x]/(xp

n − x), i.e., g has degree at
most pn − 1. A special type of polynomials in Fpn [x] are Dembowski-Ostrom (DO) polynomials,
which are those of the form ∑

0≤i≤j≤n−1

ui,j · xp
i+pj

, ui,j ∈ Fpn .

If g is DO, ∆g,α is a linearized polynomial (i.e., its evaluation map is linear) for every α ∈ Fpn .
Let us denote by Mg,α the matrix (after fixing a choice of basis) associated to the evaluation
map of ∆g,α. For a planar DO polynomial g, we define its spread set Dg as

Dg := {Mg,α | α ∈ Fpn} ⊆ GL(n,Fp) ∪ {0}.
∗This extended abstract is extracted from the full article available at https://arxiv.org/abs/2211.17103.
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Remark 1. In [3], Coulter and Henderson showed a one-to-one correspondence between commu-
tative presemifields of odd order and planar Dembowski-Ostrom polynomials. Dg is equal to the
set of matrices corresponding to the mappings x → a ⋆ x of left-multiplications with elements a
in the corresponding commutative presemifield Rg, hence Dg is equal to the spread set of Rg

(see e.g., [6, Sec. 2.1]).

An equivalence relation between two polynomials that leaves the planarity property invariant
is CCZ-equivalence [2]. CCZ-equivalence of two planar DO polynomials coincides with linear
equivalence [1].

We study the set of quotients in Dg, defined as

Quot(Dg) :=
⋃

Y ∈Dg\{0}

DgY
−1 = {XY −1 | X,Y ∈ Dg and Y ̸= 0}.

The following observation is immediate from the fact that g(x+y)−g(x)−g(y) is symmetric
in x and y and bilinear.

Lemma 1. Let g ∈ Fpn [x] be a DO polynomial and {α1, α2, . . . , αn} be an Fp-basis of Fpn . For
each Y ∈ GL(n,Fp), the set DgY

−1 is an n-dimensional Fp-vector space with basis

{Mg,α1
Y −1,Mg,α2

Y −1, . . . ,Mg,αn
Y −1}.

The reason we are interested in the set Quot(Dg) is that it stays invariant up to a different
choice of basis under linear-equivalence of g, hence yielding an invariant for the CCZ-equivalence
of DO planar functions.

Proposition 1. Let g, g′ ∈ Fpn [x] be two planar DO polynomials within the same linear-
equivalence class. Then, Quot(Dg′) = A−1 ·Quot(Dg) ·A for an element A ∈ GL(n,Fp).

Proof. This immediately follows from the fact that the spread sets of g and g′ are related via
Dg′ = X−1 · Dg · Y for some X,Y ∈ GL(n,Fp) (see also [6, Sec. 2.1]).

We would like to recall that any finite field Fpn (resp., a proper subfield Fpm) is isomorphic to
Fp[Tβ ], where Tβ denotes a matrix corresponding to the linear mapping x 7→ βx over Fpn , for β ∈
F∗
pn defining a polynomial basis of Fpn (resp., of Fpm). For more details on matrix representations

of finite fields, we refer to, e.g., [7] or [8]. Applying a change of basis transformation to all elements
of a matrix algebra Fp[T ] does not affect the property of being a field, hence Fp[T ] is a finite
field if and only if A−1 · Fp[T ] ·A is for all A ∈ GL(n,Fp).

2 The Structure of Quot(Dg) for a planar DO monomial g

In [4], Coulter and Matthews showed that any planar DO monomial in Fpn [x] is CCZ-equivalent

to xp
k+1 ∈ Fpn [x] with n/ gcd(k, n) being odd. We show that for any DO polynomial h ∈ Fpn [x]

CCZ-equivalent to a planar monomial, the set Quot(Dh) always contains the finite field of order
pn. More precisely, we show the following.

Theorem 1. Let p be an odd prime and n a positive integer. Let g(x) ∈ Fpn [x] be a planar
DO monomial. For any α, β ∈ F∗

pn , the element X := Mg,βM
−1
g,α ∈ Quot(Dg) generates a field

isomorphic to Fp(α
−1β) viz. Fp[X], and Fp[X] ⊆ Quot(Dg).

Let us denote by ϕα : Fpn → Fpn , x 7→ αxp
k

+ αpk

x the evaluation map of ∆
xpk+1,α

∈ Fpn [x].

It is well known that ϕα is invertible if and only if n/ gcd(k, n) is odd (see [4]). We have the
following for the inverse, which is a special case of of Thm. 2.1 of [10]. It can also be proven by
straightforward calculation of ϕ−1

α (ϕα(x)).
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Lemma 2 (Special case of Thm. 2.1 of [10]). Let k be such that n/ gcd(k, n) is odd. Let d :=

n/ gcd(k, n). For α ∈ F∗
pn , the inverse of ϕα : x 7→ αxp

k

+ αpk

x is given by

ϕ−1
α : x 7→ α

2
·
d−1∑
i=0

(−1)iα−(pk+1)pki

xp
ki

.

The following lemma is immediate.

Lemma 3. Let k be such that n/ gcd(k, n) is odd and let ϕα : x 7→ αxp
k

+ αpk

x. For any

α, β ∈ F∗
pn , we have ϕβ(ϕ

−1
α (x)) = (βpk − αpk−1β) · ϕ−1

α (x) + α−1βx.

The monomial g(x) = xp
k+1 admits a non-trivial self equivalence via g(x) = γ−(pk+1) · g(γx),

where γ is an arbitrary non-zero element of Fpn . From this, we obtain the following.

Lemma 4. Let k be such that n/ gcd(k, n) is odd and let ϕα : x 7→ αxp
k

+ αpk

x. For any

α, β, γ ∈ Fpn , α, γ ̸= 0, we have ϕβ(ϕ
−1
α (x)) = γ−(pk+1) · ϕγβ(ϕ−1

γα(γ
pk+1x)).

To show Theorem 1, we will first deduce that each element in Quot(Dg) generates (a subfield
of) Fpn . To do so, we show that each element in Quot(Dg) corresponds (up to a choice of basis)
to a multiplication with an element of Fpn .

Lemma 5. Let k be such that n/ gcd(k, n) is odd. Let α, β ∈ Fpn , α ̸= 0. If α−1β ∈ Fpgcd(k,n) ,
the mapping ϕβ ◦ ϕ−1

α is equal to x 7→ α−1βx. If α−1β lies not in Fpgcd(k,n) , the mapping

ψα,β ◦ ϕβ ◦ ϕ−1
α ◦ ψ−1

α,β is equal to x 7→ (α−1β)p
k

x, where

ψα,β : x 7→ αpk

· ϕα
(

1

βpk − αpk−1β
· x

)
.

Proof. We first observe that βpk −αpk−1β is equal to zero if and only if β = 0 or (α−1β)p
k−1 = 1,

i.e., if and only if α−1β is contained in the subfield Fpgcd(k,n) ⊆ Fpn . Hence, by Lemma 3, the
statement is trivial for the case of α−1β ∈ Fpgcd(k,n) ⊆ Fpn .

In the other case, the mapping ψα,β is well defined and we can decompose ψα,β as C ◦B ◦A,
where A is a multiplication by (βpk −αpk−1β)−1, B = ϕα, and C is a multiplication by αpk

. For
all x ∈ Fpn , we then have:

L1(x) := A(ϕβ(ϕ
−1
α (A−1(x)))) = ϕ−1

α

(
(βpk

− αpk−1β)x
)
+ α−1βx.

L2(x) := B(L1(B
−1(x))) = (βpk

− αpk−1β) · ϕ−1
α (x) + ϕα(α

−1β · ϕ−1
α (x))

= βpk

·
(
ϕ−1
α (x) + α−pk+1(ϕ−1

α (x))p
k
)
.

L3(x) := C(L2(C
−1(x))) = βpk

·
(
αpk

ϕ−1
α (α−pk

x) + α(ϕ−1
α (α−pk

x))p
k
)

= βpk

· ϕα(ϕ−1
α (α−pk

x)) = (α−1β)p
k

x.

The proof is complete since L3 = ψα,β ◦ ϕβ ◦ ϕ−1
α ◦ ψ−1

α,β .

The more complicated part is to show that, for any X ∈ Quot(Dg), the matrix algebra Fp[X]
is indeed a subset of Quot(Dg). We do this in the following.
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Proof of Theorem 1. Let α, β ∈ F∗
pn and let X := Mg,βM

−1
g,α. By Lemma 5, the linear mapping

ϕβ ◦ ϕ−1
α is similar to x 7→ α−1βx. Hence, the Fp-algebra Fp[X] is isomorphic to Fp(α

−1β) and
thus a field. It is left to show that Fp[X] ⊆ Quot(Dg). The case of α−1β ∈ Fpgcd(k,n) is trivial
and we therefore assume in the following that α−1β /∈ Fpgcd(k,n) . We will first handle the case of

α = 1 and show that
(
Mg,βM

−1
g,1

)r ∈ Quot(Dg) for any integer r ≥ 2. By Lemma 5, we have

ψ1,β ◦
(
ϕβ ◦ ϕ−1

1

)r ◦ ψ−1
1,β(x) =

(
ψ1,β ◦ ϕβ ◦ ϕ−1

1 ◦ ψ−1
1,β

)r

(x) = βrpk

x.

Further,

βrpk

x =

{
ψ1,βr ◦ ϕβr ◦ ϕ−1

1 ◦ ψ−1
1,βr (x) if βr /∈ Fpgcd(k,n)

βrx = ϕβr ◦ ϕ−1
1 (x) otherwise

,

and thus

(
ϕβ ◦ ϕ−1

1

)r
=

{
ψ−1
1,β ◦ ψ1,βr ◦ ϕβr ◦ ϕ−1

1 ◦ ψ−1
1,βr ◦ ψ1,β if βr /∈ Fpgcd(k,n)

ψ−1
1,β ◦ ϕβr ◦ ϕ−1

1 ◦ ψ1,β otherwise
. (1)

We will now prove that the latter composition is equal to ϕδ ◦ ϕ−1
γ for properly chosen field

elements δ, γ.

Case βr ∈ Fpgcd(k,n) . In this case,
(
ϕβ ◦ ϕ−1

1

)r
(x) = ψ−1

1,β ◦ ϕβr ◦ ϕ−1
1 ◦ ψ1,β(x) = ψ−1

1,β(β
r ·

ψ1,β(x)) = βr · ψ−1
1,β(ψ1,β(x)) = βrx = ϕβr ◦ ϕ−1

1 (x), since ψ1,β is Fpgcd(k,n) -linear.

Case βr /∈ Fpgcd(k,n) . We first observe that ψ−1
1,β ◦ ψ1,βr (x) = βpk−β

βrpk−βr
x. Let us define λ :=

βpk−β

βrpk−βr
∈ F∗

pn . The image of the mapping x 7→ xp
k+1 over Fpn is equal to the set of squares in

Fpn . Indeed, every element in the image is a square as pk + 1 is even, and x 7→ xp
k+1 is 2-to-1

as a DO planar function [9]. Hence, if λ is a square, we have λ = γp
k+1 for an element γ ∈ F∗

pn

and, otherwise, we have λ = uγp
k+1 with u ∈ F∗

pn being an arbitrary non-square. Note that

we can always choose u ∈ F∗
pgcd(k,n) . Indeed, let n = 2mℓ and k = 2m

′
ℓ′ with ℓ, ℓ′ being odd,

we necessarily have m′ ≥ m, as otherwise n/ gcd(k, n) would be even. So, Fpgcd(k,n) contains
Fp2m as a subfield and the extension degree [Fpn : Fpgcd(k,n) ] is odd. The claim then follows as a
non-square in a finite field stays a non-square in any extension field of odd extension degree.

Let us therefore assume that λ = uγp
k+1 with γ ∈ F∗

pn and u ∈ F∗
pgcd(k,n) . We have

ψ−1
1,β ◦ ψ1,βr ◦ ϕβr ◦ ϕ−1

1 ◦ ψ−1
1,βr ◦ ψ1,β(x) = λ ·

(
ϕβr ◦ ϕ−1

1

) (
λ−1x

)
= γp

k+1 ·
(
ϕβr ◦ ϕ−1

1

) (
γ−(pk+1)x

)
,

(2)

where the last equality follows from the fact that u ∈ F∗
pgcd(k,n) . By Lemma 4, we have γp

k+1 ·(
ϕβr ◦ ϕ−1

1

) (
γ−(pk+1)x

)
= ϕγβr ◦ ϕ−1

γ (x).

To handle the case of α ̸= 1, we apply Lemma 4 with γ = α−1 and obtain ϕβ(ϕ
−1
α (x)) =

αpk+1 · ϕα−1β(ϕ
−1
1 (α−(pk+1)x)), hence,

(ϕβ ◦ ϕ−1
α )r(x) = αpk+1 · (ϕα−1β ◦ ϕ−1

1 )r(α−(pk+1)x)

= αpk+1 ·
(
ϕδ′ ◦ ϕ−1

γ′ (α
−(pk+1)x)

)
= ϕαδ′ ◦ ϕ−1

αγ′(x)
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for appropriate elements γ′, δ′. We have now established that, for α−1β being a generator of F∗
pn ,

the algebra Fp[X] is a field of order pn contained in Quot(Dg).
To handle the general case where α−1β is not a generator of F∗

pn , we will show that X is equal

to (Mg,β′M−1
g,α′)r for some generator α′−1

β′ of F∗
pn and some non-negative integer r. Then, it

would immediately follow that Fp[X] ⊆ Fp[Mg,β′M−1
g,α′ ] ⊆ Quot(Dg). Indeed, let β̄ be a generator

of F∗
pn such that β̄r = α−1β and let

β̄pk − β̄

β̄rpk − β̄r
= uγp

k+1

with γ ∈ F∗
pn and u ∈ F∗

pgcd(k,n) . By extensively applying Lemma 4 and the result we established

above, we obtain

(ϕαγ−1β̄ ◦ ϕ−1
αγ−1)

r(x) =
(
(α−1γ)−(pk+1) · ϕβ̄ ◦ ϕ−1

1 ((α−1γ)p
k+1x)

)r

= (α−1γ)−(pk+1) ·
(
ϕβ̄ ◦ ϕ−1

1

)r
((α−1γ)p

k+1x)

= (α−1γ)−(pk+1) · ϕγβ̄r ◦ ϕ−1
γ ((α−1γ)p

k+1x)

= (α−1γ)−(pk+1) · ϕα−1γβ ◦ ϕ−1
γ ((α−1γ)p

k+1x) = ϕβ ◦ ϕ−1
α (x).

Remark 2. For g(x) = xp
k+1 ∈ Fpn [x] planar, we have |Quot(Dg)| = (pn−pgcd(k,n))·(pn−1)

pgcd(k,n)−1
+

pgcd(k,n).
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