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Abstract

We first characterize how two (n−1,m) functions f and g can be com-
bined into an APN (n,m)-function F of the form F (x) = f(x) and
F (x + e0) = g(x) for x ∈ Fn−1

2 with e0 ∈ Fn
2 \Fn−1

2 . Next we spe-
cialize this cahracterization to the case when f is quadratic and g(x) =
f(x)+L(x) for some linearized polynomial L. Lastly for a qudratic APN
(n, n)-function F and a linearized polynomial L, we give a characteri-
zation of APN-ness for (n, n)-function F (x) +Tr(x)L(x). With some
computational experiments, we see that CCZ-inequivalent APN func-
tions F (x)+Tr(x)L(x) can be obtained from F using this construction.

1 Preliminaries

Let F2 be the binary field, and n, m positive integers. A function F : Fn
2 → Fm

2

is called an almost perfect nonlinear (APN) function if the cardinality |{x |
F (x+a)+F (x) = b}| is less than or equal to 2 for any nonzero a ∈ Fn

2 and for
any b ∈ Fm

2 . APN functions have been studied for many years because of their
applications in cryptography. See [1], [2] or [5] for known APN functions. We
call a function F quadratic if F (x + y) + F (x) + F (y) + F (0) is F2-bilinear.
Two functions F1 and F2 from Fn

2 to Fm
2 are called CCZ-equivalent if the

graphs GF1
:= {(x, F1(x)) | x ∈ Fn

2} and GF2
:= {(x, F2(x)) | x ∈ Fn

2} in
Fn
2 ⊕Fm

2 are affine equivalent, that is, if there exists an F2-linear isomorphism
l ∈ GL2(Fn

2 ⊕ Fm
2 ) and an element v ∈ Fn

2 ⊕ Fm
2 such that l(GF1

) + v = GF2
.

The Γ-rank of a function F : Fn
2 → Fm

2 is the rank of the incidence matrix over

1
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F2 of the incidence structure {P,B, I}, where P = Fn
2 ⊕Fm

2 , B = Fn
2 ⊕Fm

2 and
(a, b)I(u, v) for (a, b) ∈ P and (u, v) ∈ B if and only if F (a + u) = b + v. We
know that if two functions F1 and F2 from Fn

2 to Fm
2 are CCZ-equivalent, then

they have the same Γ-rank (see [3]). Let F2n be the finite field of 2n elements.
We sometimes identify F2n with Fn

2 as an F2-vector space. We denote the set
F2n\{0} by F×

2n and Fn
2\{0} by (Fn

2 )
×. For finite fields K ⊃ F of characteristic

2, we denote the trace function from K to F by TrKF . We denote TrKF2
by Tr

and call it the absolute trace of K.
For a function F on F2n , the value at a ∈ F2n of the Walsh transformation

of the Boolean function F2n 3 x 7→ Tr(bF (x)) ∈ F2 for b ∈ F×
2n is defined by

WF (a, b) =
∑

x∈F2n

(−1)Tr(bF (x)+ax).

The Walsh spectrum of F is defined by WF = {WF (a, b) | a ∈ F2n , b ∈ F×
2n}.

For a quadratic APN function F on F2n , it is known that WF ∈ {0,±2(n+1)/2}
if n is odd. For the case n is even, it is said that a quadratic APN function
F has the classical Walsh spectrum if WF = {0,±2n/2,±2(n+2)/2}, and F has
the non-classical Walsh spectrum if otherwise (see [4]).

2 A condition to have an APN function F from
Fn
2 to Fm

2 using APN functions f, g from Fn−1
2

to Fm
2

Let f, g be functions from Fn−1
2 to Fm

2 . We regard Fn−1
2 ⊂ Fn

2 as an F2-linear
subspace. Let e0 ∈ Fn

2 with e0 6∈ Fn−1
2 and Fn−1

2 + e0 := {x+ e0 | x ∈ Fn−1
2 }.

Then Fn
2 = Fn−1

2 ∪ (Fn−1
2 + e0). , We want to have an APN function F from

Fn
2 = Fn−1

2 ∪ (Fn−1
2 + e0) to Fm

2 defined by F (x) = f(x) and F (x+ e0) = g(x)
for x ∈ Fn−1

2 .

Proposition 1 F defined above is an APN function if and only if

(1) f and g are APN functions from Fn−1
2 to Fm

2 ,
(2) f(x+ a) + f(x) 6= g(y + a) + g(y) for any x, y ∈ Fn−1

2 and for any nonzero
a ∈ Fn−1

2 , and
(3) Ga : Fn−1

2 3 x 7→ f(x + a) + g(x) ∈ Fm
2 are one-to-one mappings for any

a ∈ Fn−1
2 .

Proof Recall that F is an APN function if and only if, for any nonzero A ∈ Fn2 and
for X,Y ∈ Fn

2 , F (X+A)+F (X) = F (Y +A)+F (Y ) implies X = Y or X = Y +A.
Firstly assume that F is an APN function, and we will see that f and g must

satisfy the conditions (1), (2) and (3).
Let A = a ∈ (Fn−1

2 )×. For any Y = y ∈ Fn−1
2 , we must have X = y ∈ Fn−1

2 or

X = y + a ∈ Fn−1
2 from F (X + a) + F (X) = F (y + a) + F (y). Since X ∈ Fn−1

2 , we
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have f(X + a) + f(X) = f(y+ a) + f(y) from F (X + a) +F (X) = F (y+ a) +F (y).
Thus f must be an APN function. Next, for any Y = y+ e0 with y ∈ Fn−1

2 we must
have X = y+e0 or X = y+a+e0 from F (X+a)+F (X) = F (y+e0+a)+F (y+e0).
Since X = x+ e0 for some x ∈ Fn−1

2 , we have g(x+ a)+ g(x) = g(y+ a)+ g(y) from
F (X + a) + F (X) = F (y + e0 + a) + F (y + e0). Hence g must be an APN function.
Thus the condition (1) must be satisfied.

Let A = a ∈ (Fn−1
2 )×. For any Y = y ∈ Fn−1

2 , since X = y or X = y + a,
F (X + a) + F (X) = F (y + a) + F (y) does not have a solution X = x + e0 for
x ∈ Fn−1

2 . Thus F (x+ e0 + a) + F (x+ e0) 6= F (y + a) + F (y) for any x, y ∈ Fn−1
2 ,

therefore we must have g(x+ a) + g(x) 6= f(y + a) + f(y) for any x, y ∈ Fn−1
2 . Thus

the condition (2) must be satisfied.
Let A = a+e0 with a ∈ Fn−1

2 and Y = y ∈ Fn−1
2 . We have X = y ∈ Fn−1

2 or X =

y+a+e0 with y+a ∈ Fn−1
2 . For X ∈ Fn−1

2 , we have g(X+a)+f(X) = g(y+a)+f(y)
from F (X+a+e0)+F (X) = F (y+a+e0)+F (y), hence g(X+a)+f(X) = g(y+a)+
f(y) must have only one solution X = y for any y, a ∈ Fn−1

2 . For X 6∈ Fn−1
2 , we have

f(X+a)+g(X) = g(y+a)+f(y) from F (X+a)+F (X+e0) = F (y+a+e0)+F (y),
hence f(X + a) + g(X) = g(y + a) + f(y) must have only one solution X = y + a.
Thus we see that the condition (3) must be satisfied.

Conversely, let us assume the conditions (1), (2) and (3). Assume F (X + A) +
F (X) = F (Y +A)+F (Y ) with A 6= 0. We will prove that X = Y or X = Y +A. We
divide the case into the following four cases (i) A = a ∈ (Fn−1

2 )× and Y = y ∈ Fn−1
2 ,

(ii) A = a ∈ (Fn−1
2 )× and Y = y+ e0 with y ∈ Fn−1

2 , (iii) A = a+ e0 with a ∈ Fn−1
2

and Y = y with y ∈ Fn−1
2 , and (iv) A = a+ e0 with a ∈ Fn−1

2 and Y = y + e0 with

y ∈ Fn−1
2 .

Firstly let us consider the case (i). If X = x ∈ Fn−1
2 , then we have f(x + a) +

f(x) = f(y + a) + f(y) hence x = y or x = y + a by (1). Let X = x + e0 with
x ∈ Fn−1

2 , then we have g(x+ a) + g(x) = f(y + a) + f(y) which has no solution by
(2). Therefore, X = Y or X = Y +A in case (i).

Next, we consider the case (ii). Assume X = x ∈ Fn−1
2 , then we have f(x+ a) +

f(x) = g(y+a)+g(y) which has no solution by (2). If X = x+e0 with x ∈ Fn−1
2 , then

we have g(x+a)+g(x) = g(y+a)+g(y), hence x+e0 = y+e0 or x+e0 = y+e0+a
by (1). Thus we have X = Y or X = Y +A in case (ii).

Let us consider the case (iii). If X = x ∈ Fn−1
2 , then we have g(x+ a) + f(x) =

g(y+a)+f(y). Since Ga : x+a 7→ f(x)+g(x+a) is a one-to-one mapping by (3), we
have x = y. IfX = x+e0 with x ∈ Fn−1

2 , then we have f(x+a)+g(x) = g(y+a)+f(y).
By the same reason as above, we have x+ e0 = y + (a+ e0). Thus we have X = Y
or X = Y +A in case (iii).

Lastly we consider the case (iv). If X = x ∈ Fn−1
2 , then we have g(x+a)+f(x) =

f(y + a) + g(y). Since Ga : x 7→ f(x + a) + g(x) is a one-to-one mapping by (3),
we have x = (y + e0) + (a + e0). If X = x + e0 with x ∈ Fn−1

2 , then we have
f(x+a)+g(x) = f(y+a)+g(y). By the same reason as above, we have x+e0 = y+e0.
Thus we also have X = Y or X = Y +A in case (iv).

Hence F must be an APN function under the conditions (1), (2) and (3). □
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3 The case f is a quadratic APN function and
g(x) = f(x) + L′(x) with L′ a linear mapping

Let f be a function from Fn−1
2 to Fm

2 and Bf (x, a) := f(x+a)+f(x)+f(a)+
f(0). Recall that f is quadratic if Bf (x, a) is an F2-bilinear mapping. In this
section, we consider the case that f is a quadratic APN function from Fn−1

2 to
Fm
2 , and g(x) = f(x)+L′(x) for x ∈ Fn−1

2 with L′ an F2-linear mappings from
Fn−1
2 to Fm

2 . We note that, if f is quadratic, Fn−1
2 3 x 7→ L′(x)+Bf (x, a) ∈ Fm

2

are linear mappings for any a ∈ Fn−1
2 . We check the conditions (1), (2) and (3)

in Proposition 1. We regard Fn−1
2 as an (n− 1)-dimensional subspace of Fn

2 .

Proposition 2 Let f be a quadratic APN function from Fn−1
2 to Fm

2 , and g(x) =

f(x)+L′(x) with L′ an F2-linear mapping from Fn−1
2 to Fm

2 . Let F be a function from
Fn2 to Fm2 defined in Section 2, that is, F (x) := f(x) and F (x+ e0) := f(x) + L′(x)
for some fixed e0 ∈ Fn

2 \Fn−1
2 for x ∈ Fn−1

2 . Then F is an APN function if and only

if Fn−1
2 3 x 7→ L′(x) +Bf (x, a) ∈ Fm2 are one-to-one mappings for any a ∈ Fn−1

2 .

Proof Since f and g = f + L′ are APN functions, the condition (1) is satisfied. The
condition (2) implies f(x+a)+ f(x) 6= f(y+a)+ f(y)+L′(a) for any x, y ∈ Fn−1

2 if

a 6= 0, that is, L′(a) + (f(x+ a) + f(x)) + (f(y+ a) + f(y)) 6= 0 for any x, y ∈ Fn−1
2

if a 6= 0, which means L′(a)+Bf (a, x+ y) 6= 0 if a 6= 0, a ∈ Fn−1
2 . The condition (3)

implies Ga : Fn−1
2 3 x 7→ f(x+a)+g(x) = L′(x)+(f(x+a)+f(x)) ∈ Fm2 are one-to-

one mappings for any a ∈ Fn−1
2 , that is, Fn−1

2 3 x 7→ L′(x) + Bf (x, a) + f(a) ∈ Fm
2

are one-to-one mappings for any a ∈ Fn−1
2 . Thus we see that the conditions (1), (2)

and (3) in Proposition 1 are satisfied if and only if Fn−1
2 3 x 7→ L′(x)+Bf (x, a) ∈ Fm

2

are one-to-one mappings for any a ∈ Fn−1
2 . □

4 F (x) + Tr(x)L(x) for a quadratic APN
function F on F2n

Let T0 := {x ∈ F2n | Tr(x) = 0} and e0 ∈ F2n with Tr(e0) = 1. Let F be a
quadratic APN function on F2n and BF (x, a) := F (x+a)+F (x)+F (a)+F (0)
for x, a ∈ F2n . Let L be an F2-linear mapping on F2n .

Theorem 3 Let F be a quadratic APN function on F2n and L an F2-linear mapping
on F2n . Let e0 ∈ F2n with Tr(e0) = 1. Then, F (x) + Tr(x)L(x) is a quadratic APN
function on F2n if and only if La : T0 3 x 7→ L(x)+BF (x, a+ e0) ∈ F2n are one-to-
one mappings from T0 to F2n for any a ∈ T0. (Hence, F (x)+Tr(x)L(x) is a quadratic
APN function on F2n if, and only if, La(x) = 0 implies x = 0 for any a ∈ T0).

Proof Let f := F |T0
be the restriction of F to T0; f is a quadratic APN function

from T0 to F2n . For x ∈ T0, we have F (x) + Tr(x)L(x) = f(x) and F (x + e0) +
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Tr(x+ e0)L(x+ e0) = f(x)+L(x)+BF (x, e0)+L(e0)+F (e0). Let G be a function
on F2n defined by G(x) := f(x) and G(x + e0) := f(x) + L(x) + BF (e0, x) for
x ∈ T0, then G(x) = F (x) +Tr(x)(L(x) +L(e0) + F (e0)) for x ∈ F2n , which is CCZ
equivalent to F (x)+Tr(x)L(x). By Proposition 2, G is an APN function if and only
if T0 3 x 7→ L(x) + BF (x, e0) + BF (x, a) ∈ F2n are one-to-one mappings for any
a ∈ T0. Thus F (x) + Tr(x)L(x) is a quadratic APN function on F2n if and only if
La : T0 3 x 7→ L(x) +BF (x, a+ e0) ∈ F2n are one-to-one mappings from T0 to F2n

for any a ∈ T0. □

Let e0 be some fixed element of F2n with Tr(e0) = 1. Using a computer, for
linear mappings L on F2n such that La : T0 3 x 7→ L(x) + B(x, a+ e0) ∈ F2n

are one-to-one mappings from T0 to F2n for any a ∈ T0, we have 448 L’s with
L(e0) = 0 for F (x) = x3 on F24 , 4608 L’s with L(e0) = 0 for F (x) = x3 on
F25 , and many (about 40, 000) L’s with L(e0) = 0 for F (x) = x3 on F26 .

Example 1 Let F (x) = x3 on F26 . The Γ-rank of F is 1102. Using a computer, we see
that there are linear mappings L satisfying the conditions in Theorem 3 such that the
Γ-ranks of F (x) + Tr(x)L(x) are 1144, 1146, 1158, 1166, 1168, 1170, 1172 and 1174.

We also see that F (x) + Tr(x)L(x) with L(x) = α42x+ α19x2 + α51x2
2

+ α59x2
3

+

α26x2
4

+ α38x2
5

, where α is a primitive element of F26 , has non-classical Walsh
spectrum WF = {0,±8,±16,±32} with the Γ-rank 1170. Since F (x) + Tr(x)L(x)

with L(x) = α42x+α47x2 +α35x2
2

+α54x2
3

+α23x2
4

+α27x2
5

has classical Walsh
spectrumWF = {0,±8,±16} with the Γ-rank 1170, we see that there are inequivalent
APN functions F (x) + Tr(x)L(x) with the same Γ-rank.

Let F (x) = x3 on F27 . The Γ-rank of F is 3610. Using a computer, we find that

the linear mapping L(x) := x+x2
3

+x2
5

+x2
6

satisfies the conditions in Theorem 3
and the Γ-rank of F (x) + Tr(x)L(x) is 4048.
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