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Abstract. Many modern symmetric cryptographic primitives operate in an iterated
way: they consist of the repeated application of a relatively simple round function
over a state, alternated with the addition of secret round keys or round constants. A
crucial component of the round function is the nonlinear layer, usually defined via an
invertible map. However, many modes of operations do not require invertibility of
the underlying primitive and recently Grassi proposed the usage of non-invertible
nonlinear mappings in MPC-/FHE-/ZK-friendly symmetric cryptographic primitives.
In this work, we consider one of these maps. It is a simple yet efficient nonlinear map,
that we call γ, based on squaring over Fq, with q an odd prime power. We discuss for
the first time the differential and linear propagation properties of such a nonlinear
map and observe that they follow the same rules. This is an intriguing property that,
as far as we know, only occurs with γ and the binary mapping χ3 used in Xoodoo.
Keywords: Nonlinear layer, Squaring, Finite fields

1 Introduction
The round functions in most of the modern symmetric cryptographic primitives usually
consist of a non-linear mapping and a number of linear mappings. These mappings are
chosen and combined so that there is no exploitable differential propagation from input to
output or exploitable correlations between input and output. The relevant properties of
these mappings over binary fields have been studied extensively by an expert community
of mathematicians, leading to solid designs. But, this community does not stop at the
binary case and also studies similar functions over Fp and its extensions, with p an odd
prime. For instance, Kölbl et al. designed a ternary cryptographic hash function called
Troika [KTDB19]. Other examples are the MPC-/FHE-/ZK-friendly symmetric primitives
defined over Fn

p like MiMC [AGR+], Poseidon [GKR+21], and many others.
There are interesting differences between the binary case and the odd-prime case, and

to a certain extent, the fields of odd characteristics are richer in functionality than binary
fields. For example, addition and subtraction are the same in F2. In Fp, this is no longer
the case. In F2d , squaring is a linear operation. In Fpd squaring is, in a certain sense, an
optimally nonlinear operation. In F2, correlations between input and output bits have
values that are rational and range from −1 to +1. In Fp, correlations are complex numbers
in the unit disk.

This work investigates a mapping over Fn
q recently proposed by Grassi [Gra22], that we

call γ. We investigate the differential and linear propagation properties of such mapping,
both in the forward and backward direction. Our results are useful in determining the
maximum probabilities of differentials and trails and correlations of linear approximations
and trails over transformations making use of this mapping in their round function, as in
computer-assisted trail search [DA].
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2 Preliminaries
Let Fq be a finite field with q = pd an odd prime power. Let Fn

q be a vector space of
dimension n over the finite field Fq. We denote the coordinates of a vector x ∈ Fn

q by
xi with i ∈ {0, 1, . . . n − 1} and call them digits. We denote by ei the vector with all
coordinates equal to 0 except coordinate i equal to 1. The Hamming weight HW(x) of a
vector x ∈ Fn

q is the number of non-zero digits in the vector.
Given two vectors x, y ∈ Fn

q , we denote their vector subtraction by x − y, hence
x − y = x + (−1)y. We denote by xTy the value

∑
i xiyi ∈ Fq.

Given a vector x ∈ Fn
q its activity pattern x̃ is a vector in Fn

q with x̃i = 1 if xi ̸= 0 and
0 otherwise.

3 Our non-linear mapping γ

In this work, we consider a mapping defined in [Gra22] that we will denote by γ : Fn
q → Fn

q

as
γ(x) = y with yi = xi + x2

i+1 mod n∀i.

From now on, we will omit the modular reduction in the index and always assume it is
reduced modulo n.

4 Differential properties of γ

We analyzed the differential properties of the map γ. We will first define differential
probability and weight for the non-binary case and then summarize our findings for γ.

4.1 Differentials, differential probability and weight
Let x ∈ Fn

q and x∗ ∈ Fn
q be inputs of a transformation α : Fn

q → Fn
q and let their difference

be a = x∗ − x. Likewise, let y ∈ Fn
q and y∗ ∈ Fn

q be outputs of α and let their difference be
b = y∗ − y. The (ordered) pair (a, b) ∈ Fn

q × Fn
q containing the input and output difference

is called a differential over α.
The differential probability (DP) of a differential (a, b) over the transformation α is

defined as
DPα(a, b) =

∣∣x ∈ Fn
q : α(x + a) − α(x) = b

∣∣
qn

.

If DPα(a, b) > 0, we say that a and b are compatible differences over α. We define the
weight of a differential (a, b) over α with a and b compatible as:

wα(a, b) = − logq(DPα(a, b)) .

4.2 Forward propagation from a given input difference
Consider the function β : Fq → Fq : x 7→ x2. Given an input pair (x + a, x), the
corresponding output difference b is given by

b = (x + a)2 − x2 = x2 + 2ax + a2 − x2 = 2ax + a2 . (1)

This is a linear equation and for any output difference b ∈ Fq there is exactly one input
pair (x + a, x). Solving (2) gives x = (2a)−1(b − a2) yielding the pair(

b

2a
+ a

2 ,
b

2a
− a

2

)
.
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It follows that the set of output differences b compatible over β with a non-zero input
difference a coincides with Fq and they all have DPβ(a, b) = q−1.

For the map γ, we have

bi = xi + ai + (xi+1 + ai+1)2 − xi − x2
i+1 = ai + a2

i+1 + 2ai+1xi+1 , (2)

From (2) we can characterize the full difference distribution table (DDT) of γ.

Lemma 1. An output difference b is compatible to an input difference a over γ if for
every i, bi = ai or ai+1 ̸= 0, and, if so, DP(a, b) = q−HW(a).

Therefore, for an input difference a ∈ Fn
q , the compatible output differences over γ form

an affine space with dimension HW(a). The offset and a basis with minimal Hamming
weight for such affine space is given by:

• the i-th digit of the offset is equal to ai if ai+1 ̸= 0 and 0 otherwise;
• for each non-zero digit in the input difference a, the basis contains the vector ei−1.

It follows that for all b compatible with an input difference a we have DPγ(a, b) = q−HW(a)

and likewise wγ(a, b) = HW(a) and therefore only depends on the input difference.

4.3 Backward propagation from a given output difference
For a given output difference b, the compatible input differences do not form an affine
space. However, we will show in this section how to efficiently generate all compatible
input differences a with DPγ(a, b) ≤ W with W some limit weight.

To this end, we introduce the concept of compatible activity pattern. We say that an
activity pattern ã is compatible with b if there exists an input difference a compatible with
b that has activity pattern ã.

The generation of all compatible input differences is done in two phases: in the first
phase, we generate the set of activity patterns compatible with b, and in the second phase,
we determine for each compatible activity pattern the set of compatible input differences
with that pattern.

We generate the compatible activity patterns in a recursive way making use of the
following facts:

• if ai = 0 and bi−1 = 0 then ai−1 = 0;
• if ai = 0 and bi−1 ̸= 0 then ai−1 ̸= 0.

We specify our algorithm in Algorithm 1. We start with a fully unspecified activity pattern
k. Then we specify whether an−1 is active or not (and thus whether kn−1 = 1 or 0) and
based on this we incrementally determine the activity of all other digits from an−2 to a0
using the rules given above.

Given an output difference b and a compatible input activity pattern k, all compatible
input differences a with activity pattern k can be determined as follows:

• if ki = 0, then ai = 0;
• if ki = 1 and ki+1 = 0, then ai = bi;
• if ki = 1 and ki+1 = 1, then ai can have all values.
The differentials (a, b) with given output difference b and input differences a compatible

with b do not all have the same weight. We define the minimum reverse weight of an
output difference b as:

wrev
γ (b) = min

a : DPγ (a,b)>0
wγ(a, b) .

4.4 Computing the minimum reverse weight of an output difference
The minimum reverse weight of an output difference b is fully determined by its activity
vector b̃ and is given by the compatible activity patterns with minimum Hamming weight.
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Algorithm 1 Generation of input activity patterns compatible with output difference b

Input: difference b ∈ Fn
q at output of γ and limit weight W

Output: list L of activity patterns k compatible with b at input of γ
Coordinates in k: ∗ denotes unspecified, 0 denotes passive, 1 denotes active

L← empty
k ← ∗n

kn−1 ← 0; buildA(n− 1, k, b, W )
kn−1 ← 1; buildA(n− 1, k, b, W )

procedure buildA(i, k, b, W )
if HW(k) > W then return
if (i = 0) then

if (kn−1 = 1) OR (̃b0 = k0) then add k to L
return

k′ ← k
if (ki = 1) OR (̃bi−1 = 1) then k′

i−1 ← 1; buildA(i− 1, k′, b, W )
if (ki = 1) OR (̃bi−1 = 0) then k′

i−1 ← 0; buildA(i− 1, k′, b, W )
return

Let a 1-run of length ℓ in b̃ be a sequence of ℓ coordinates bi, bi+1, · · · , bi+ℓ−1 with
activity 1 and such that bi−1 = 0 = bi+ℓ (where indexes are considered modulo n). Namely,
the sequence is preceded by at least one coordinate 0 and followed by at least one coordinate
0.

We see that for each 1-run of length ℓ in b̃, the digit ãi+ℓ−1 must be 1 and in the
sequence ãi, ãi+1, · · · , ãi+ℓ−1 there can be at most a single zero digit in between two active
digits. It follows that for each 1-run in b̃ of length ℓ, a has at least ℓ/2 active digits if ℓ is
even and (ℓ + 1)/2 if ℓ is odd. So to determine the minimum reverse weight, we decompose
its output activity pattern in a sequence of 1-runs of lengths ℓj yielding minimum reverse
weight

∑
j⌈ℓj/2⌉.

5 Input-output correlation properties of γ

We analyzed the correlation properties of the map γ. We will first define linear approxima-
tions and their correlations and then summarize our findings for γ.

5.1 Linear approximations, correlation and weight
Given a complex number x, we write its complex conjugate as x. In the following section we
will write ω as shorthand for e

2πi
p . We will also make use of the trace function Tr: Fpd → Fp

as Tr(x) =
∑d−1

i=0 xpi .
The correlation between two functions f, g : Fn

pd → Fp is defined as:

C(f, g) = q−n
∑

x∈Fn
q

ωg(x)−f(x) .

For correlations of functions f, g : Fn
q → Fq we first must project the output from Fq to Fp.

A way to do that in a basis-agnostic way is by using the trace function:

C(Tr(uf), Tr(vg)) = q−n
∑

x∈Fn
q

ωTr(vg(x)−uf(x)) .
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Let α be a transformation : Fn
q → Fn

q with q = pd. We call a pair of masks (u, v), with
u ∈ Fn

q and v ∈ Fn
q a linear approximation over α, with u the input mask and v the output

mask. The correlation of this linear approximation is the correlation between the functions
Tr(uTx) and Tr(vTα(x)):

Cα(u, v) = q−n
∑

x∈Fn
q

ωTr(vTα(x)−uTx) .

If Cα(u, v) ̸= 0, we say that masks u and v are compatible over α.
Correlations are, in general, complex numbers. The linear potential (LP) is real and

related to a correlation by LP(u, v) = C(u, v)C(u, v).
We define the weight of a linear approximation (u, v) over α with u and v compatible

as

wα(u, v) = − logq(LPα(u, v)) .

5.2 Correlation properties of γ

Consider again the function β : Fpd → Fpd : x 7→ x2. By applying Theorem 5.33 from
[LN97], we obtain that the correlation between x 7→ vx2 and x 7→ ux (where u, v ∈ Fq) is
equal to:

Cβ(u, v) = 1
q

∑
x∈Fq

ωTr(vx2−ux) =


(−1)d−1

√
q ωTr(−u2(4v)−1)η(v) if p ≡ 1 (mod 4)

(−1)d−1
√

q idωTr(−u2(4v)−1)η(v) if p ≡ 3 (mod 4)

with η(v) = 1 if v is a square in Fq and −1 otherwise. It follows that for all u, v ∈ Fpd and
v ̸= 0 we have LPβ(u, v) = q−1.

We can compute the correlation of linear approximations over γ from those over β:

Cγ(u, v) = q−n
∑

x∈Fn
q

ωTr(vTγ(x)−uTx) (3)

= q−n
∑

x∈Fn
q

ωTr(
∑

i
vi(xi+x2

i+1)−uixi) (4)

= q−n
∑

x∈Fn
q

∏
i

ωTr((vi−ui)xi+vi−1x2
i ) (5)

=
∏

i

q−1
∑

xi∈Fq

ωTr((vi−ui)xi+vi−1x2
i ) (6)

=
∏

i

Cβ(vi − ui, vi−1) . (7)

From (3) we can characterize the full table of LPs of γ.

Lemma 2. An input mask u is compatible to an output mask v over γ if for every i,
ui = vi or vi−1 ̸= 0, and, if so, LP(u, v) = q−HW(v).

Clearly, Lemma 1 and Lemma 2 are very alike and therefore propagation of differences
and masks over γ follow similar laws. Concretely, let π : Fn

q → Fn
q : x 7→ y with ∀i : y−i =

xi. Then we have

for v = π(a), u = π(b) : LPγ(u, v) = DPγ(a, b) .

So masks propagate as differences, taking into account following correspondence:
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• output masks play the role of input differences and vice versa;
• indexes shall be reversed: index i in a mask corresponds to index −i in a difference.

For a nonlinear mapping this is an intriguing property that, as far as we know, occurs only
in γ and the mapping χ3 [DHVK18].

It follows that we can extend the results obtained in Section 4 to masks. In particular,
for a given output mask, we can build the affine space of compatible input masks as in
Section 4.2. Moreover, for a given input mask, the compatible output masks can be found
by applying Algorithm 1. For a given input masks u, there can be several compatible
output masks v. Among them, there will be one realizing the minimum value of w(u, v).
The minimum reverse weight of u is defined as

wrev
γ (u) = min

v : LPγ (u,v)>0
wγ(u, v) .

and is determined by the number of 1-runs in u and their weight, as in Section 4.4.

6 Non-invertibility and imbalance
A non-zero input difference a can lead to a zero output difference if 0 is in the affine space
of compatible output differences, or equivalently, if its offset is 0. This can only happen if,
for all positions, both ai and ai+1 are active. Therefore, the input differences a that can
lead to a collision are those with all coordinates active. There are (q − 1)n such differences
and for all of them DP(a, 0) = q−n.

Similarly, a non-zero output mask v can only be imbalanced if 0 is in the affine space
of compatible input masks, or equivalently, if its offset is 0. This can only happen if, for
all positions, both vi and vi+1 are active. Therefore the output masks v that can lead to a
collision are those with all coordinates active. There are (q − 1)n such masks and for all of
them LP(a, 0) = q−n.

The collision probability of a mapping is the probability that when randomly choosing
two different inputs, the outputs collide. A permutation naturally has collision probability
0. A random transformation over Fn

q has collision probability q−n: the probability that
the two chosen inputs have the same image. For γ, the collision probability is the number
of colliding pairs divided by the total number of pairs:

(q − 1)n(
qn

2
) = 2(q − 1)n

qn(qn − 1) ≈ 2(q − 1)n

q2n

So the collision probability of γ is that of a random transformation times a factor
2

(
1 − 1

q

)n

.
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