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Abstract. We consider a de Bruijn sequence dB over a finite alphabet that is constructed via a preference
function P . We use P to introduce a total order on the set of all sequences and show that it lists the
de Bruijn sequences of a given order so that dB is the minimal sequence. We also show that an appropriate
bijective image of the binary, prefer-opposite de Bruijn sequence is uniquely factored as a concatenation of
Lyndon words. This presents a second example to the well known prefer-one de Bruijn sequence, both in
terms of minimality, and in terms of concatenation of Lyndon words. We also present other examples that
suggest that the concatenation property is universal for all de Bruijn sequences.

1. Introduction

The lexicographically smallest de Bruijn sequence is by far the most studied of all de Bruijn sequences.
One reason may be that it is generated by the well known prefer one greedy algorithm, first discovered
by Martin [10], and rediscovered several times later, see Fredriscksen [7] (note that we consider that 1 is
less than 0). Another method of generating this smallest sequence (say, of order n) is via concatenating
all Lyndon words, of lengths that divide n, in increasing lexicographical order. Donald Knuth [9] calls
this construction “almost magical”. It is due to this construction that many authors claim that one of
the many applications of Lyndon words is to construct de Bruijn sequences. In this paper we show that
the relationship between Lyndon words and de Bruijn sequences extends much further than the prefer
one sequence. The main tool to do this is a transform that encodes a sequence by a sequence with the
same alphabet and that is defined via a preference function. Firstly, we establish a fundamental result
that every de Bruijn sequence is minimal with respect to a lexicographical order defined by the preference
function that creates this de Bruijn sequence. More specifically, given a preference function that produces
a de Bruijn sequence, we encode every de Bruijn sequence by keeping track of the levels of preference
taken all along the sequence. We then compare these trail sequences via lexicographical order. It is then
the de Bruijn sequence generated by this preference function that receives the lexicographically smallest
encoding. The ‘minimality’ of the prefer one sequence is thus revealed as a special case of this general
result.

Furthermore, we study two relatives of the prefer one sequence, the prefer same and the prefer opposite
sequences. These two sequences have, respectively, the lexicographically smallest and largest run length
encoding, see [3] for definition and proof. These optimality results follow easily from our main result. More
importantly, we show that their preference trails essentially consist of a concatenation of Lyndon words,
when they are encoded with respect to their own preference functions. We conclude with a conjecture that
every trail sequence of a de Bruijn sequence is essentially a concatenation of Lyndon words, laid in some
order that depends on the underlying preference function.

The rest of the paper is organized as follows. In Section 2 we give basic definitions and background
about preference functions and Lyndon words with preliminary lemmas that will be essential for the rest
of the paper.
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2. preliminaries

For an integer n ≥ 1, An refers to the set of all strings of n bits, taken from an ordered alphabet A with
q symbols. We will denote these symbols as {0, 1, . . . , q − 1}. These strings will be referred to as n-words,
and denoted as a1 · · · an and often as (a1, . . . , an) for notational clarity. αn denotes the word obtained by
concatenating the word α n times.

For an integer n ≥ 1, a de Bruijn sequence of order n, over the alphabet A, is defined such that every
string of n consecutive bits occurs exactly one time as a substring. For example, 0001011100 is a binary
De Bruijn sequence of order 3, observing that all 3-strings occur in the order 000, 001, 010, 101, 011, 111,
110, 100. It is customary to consider cyclic rotations of a de Bruijn sequence as equivalent. With this
equivalence class interpretation, we usually remove the last n − 1 bits and wrap the remaining bits on
a circle. The above sequence is represented as [00010111]. The only other binary sequence of order 3 is
represented as [00011101]. While there are 16 sequences of order 4. In fact, for a general n, the number of

non-rotationally equivalent de Bruijn sequences is 22
n−1−n. The formula for nonbinary has an even higher

rate of growth, it can be found in [7], together with a historical reference of the early development and
applications of de Bruijn sequences. The first part in the next definition follows Golomb [8]. The span was
defined in Alhakim [2].

Definition 2.1. For an integer n ≥ 1, a preference function is a function P from An to S, where S
is the set of all permutations of the elements of A. We write P (x) = (P0, . . . , Pq−1) for every n-word
x = (x1, . . . , xn); where the right hand side is an arrangement of 0, . . . , q − 1. Furthermore, the span of P
is the smallest integer s, 0 ≤ s ≤ n, such that P (x1, . . . , xn) is fully determined by (xn−s+1, . . . , xn), for
all n-words (x1, . . . , xn).

The following recursive construction produces a unique finite binary sequence {ai}, provided that a
preference function of span s and an arbitrary initial n-word (I1, · · · , In) with n > s are given. We denote
the unique resulting sequence by (P, I).

1. For i = 1, · · · , n let ai = Ii.
2. Suppose that a1, · · · , ak for some integer k ≥ n have been defined. Let ak+1 = Pi(ak−s+1, . . . , ak)

where i, 0 ≤ i ≤ q−1 is the smallest integer such that (ak−n+2, . . . , ak+1) has not appeared in the sequence
as a substring, if such an i exists.

3. If no such i exists, halt the program (the construction is complete.)
The following lemma is a slight generalization of Lemma 2 of Chapter 3 in Golomb [8]. The proof is

essentially the same.

Lemma 2.2. Consider an arbitrary preference function P of span s ≥ 0 and initial word I = (I1, · · · , In);
n > s. Then every n-word occurs at most once in (P, I). Furthermore, (P, I) ends with the pattern
(I1, · · · , In−1).

It follows that the sequence (P, I) can be identified with a cyclic string, by removing the last pattern
(I1, . . . , In−1) and wrapping the rest around a circle. A preference function P is said to be complete if
there exists an initial word I such that (P, I) is a de Bruijn sequence.

Definition 2.3. For an integer i such that 0 ≤ i < q, the ith column function induced by P is a function
from As to As defined as

gi(x1, . . . , xs) = (x2, . . . , xs, Pi(x1, . . . , xs)).

Clearly, gi defines at least one cycle of length k ≥ 1. That is, a sequence of k s-words v1, . . . , vk in As

such that gi(vj) = vj+1 for j = 1, . . . , k − 1 and gi(vk) = v1.
Theorem 3.1 and Corollary 3.2 in Alhakim [4] provide a characterization of complete preference functions,

along with legitimate initial words I. We will refer to these initial words as de Bruijn seeds. Briefly, in
a complete preference function, the column function gq−1 must have exactly one cycle. Also a de Bruijn
seed (I1, . . . , In) must be such that (I1, . . . , In−1) is a path on gq−1. For example, the corresponding cycles
of the complete preference functions of Table 1 are respectively 2 → 2, 0 → 1 → 0, 0 → 1 → 2 → 0
and 00 → 01 → 10 → 00. The first cycle means that 2 · · · 20 = 2n−10, 2 · · · 21 = 2n−11 and 2n are all
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0 → 0, 1, 2
1 → 0, 1, 2
2 → 0, 1, 2

0 → 2, 0, 1
1 → 1, 2, 0
2 → 0, 2, 1

0 → 0, 2, 1
1 → 0, 1, 2
2 → 2, 1, 0

00 → 0, 2, 1
01 → 1, 2, 0
02 → 2, 1, 0

10 → 1, 2, 0
11 → 0, 1, 2
12 → 1, 2, 0

20 → 1, 2, 0
21 → 0, 2, 1
22 → 0, 2, 1

Table 1. Top: complete preference diagrams of span 0 (left), and span 1 (middle and
right). Bottom: one complete preference diagram of span 2.

de Bruijn seeds of length n > 1. Likewise, 01,010, 0101 and 01010 are de Bruijn seeds of various lengths
for the second preference function, while 01201201 and 001100110 · · · are examples of seeds for the last
two preference functions. Proofs and more details are given in [4].

3. The minimality of a de Bruijn sequence

We begin this section with the following definition.

Definition 3.1. Let P be a preference function of span s and n ≥ s. Then

(a) P defines an operator T
(n)
P that acts on arbitrary sequence S = d1 . . . dl of length l > s as T

(n)
P (S) =

d1 . . . dn|c1 . . . cl−n, where for i = 1, . . . , l − n dn+i = Pci(dn+i−s . . . dn+i−1).
We refer to the the first n digits as the leading digits, and to the digits ci as the preference trail digits,

or simply the trail digits of S.
(b) We define the P -lex order, denoted ≺P , as the total order on the set of sequences: for two sequences

S1 = d1 . . . dl and S2 = d′1 . . . d
′
m, S1 ≺P S2 if and only if c1 . . . cl−s is lexicographically smaller than

c′1 . . . c
′
m−s, where c1 . . . cl−s and c′1 . . . c

′
m−s are resp. the trail sequences of S1 and S2 without the leading

digits.

As an example, using the matrices in Table 1, the base 3 sequence 012210 is encoded using n = s as
|012210, 0|21122, 0|22010 and 01|1120 respectively. Observe that the first preference function has no leading
digits and it outputs the same input sequence. It is also evident that, for all preference functions, the initial
sequence can be recovered uniquely by tracing the corresponding matrix, thanks to the leading digits.
Another obvious but important observation is that the same sequence can have various lexicographical
orders depending on the underlying function P .

In order to compare two de Bruijn sequences using the P -lex order, we will exclude the trail digits within
the initial words and compare the trail of the dn+1 . . . dqn .

Theorem 3.2. Let P be a complete preference function of span s and I = d1 . . . dn, n > s be a de Bruijn

seed such that T
(s)
P (I) = d1 . . . ds|(q−1)n−s. For an arbitrary de Bruijn sequence dB′n that is not rotationally

equivalent to dBn we have dBn ≺P dB′n where dBn = (P, I).

For convenience of notation, we will denote T
(n)
P (dB′n) = d′1 . . . d

′
n|c′1 . . . c′qn for any de Bruijn sequence.

That is, we apply T
(n)
P to a version of dB′n that begins and ends with d′1 . . . d

′
n. In the case of dBn, this

amounts to appending the trail digits (q− 1)s at the end of the sequence, which obviously has no effect on
the P -lex order of dBn.

Proof. Denote dBn and dB′n respectively by d1 . . . dqn and d′1 . . . d
′
qn and let

T
(n)
P (dBn) = d1 . . . dn|c1 . . . cqn and T

(n)
P (dB′n) = d′1 . . . d

′
n|c′1 . . . c′qn .

We begin by establishing the inequality when d′1 . . . d
′
n = d1 . . . dn. Suppose, for a contradiction, that

dB′n ≺P dBn. Then there exists a minimal i ≥ 1 such that c′i < ci. Since dBn follows the preference
strategy of P , the pattern ci−n+s+1 . . . ci−1c

′
i must have appeared earlier, preceded by the same s leading

digits di−n+1 . . . di−n+s. By the minimality of i, all trail digits of dBn and dB′n are identical up to i − 1.
Thus by the assumption that d′1 . . . d

′
n = d1 . . . dn = I, dB′n includes a repeated n-word, contradicting the

fact that it is a de Bruijn sequence.
We will now tackle the case when d′1 . . . d

′
n 6= I, that is, when dB′ is rotated to start at any word other

than I. We do this in two steps. First, consider the sequence S = (P, d′1 . . . d
′
n) whose trail sequence is
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d′1 . . . d
′
n|b1 . . . bl, and which may or may not be a de Bruijn sequence. Since both S and dB′n begin with the

same initial word, the same argument as above establishes that S ≺P dB′n. Furthermore, since S follows
the preference strategy of P , any digit placed after the terminal trail digit bl leads to a repetition. So the
first disagreement (bi < c′i) occurs at some i < l or else dB′n cannot be continued into a de Bruijn sequence.

Next we compare S and dBn. Since d′1 . . . d
′
n 6= I, it is not of the form d1 . . . ds|(q − 1)n−s. Thus, one

or more of the wrap-around words d′1 . . . d
′
n, d′2 . . . d

′
n+1, . . . , d

′
n . . . d

′
2n−1 is not a wrap-around word of dBn,

and therefore an internal word of the latter. Let j be the smallest index where a wrap-around word w of
S is encountered for a second time upon proposing a trail digit bj = c, it is avoided in S by either using
higher preference bj > c if possible, or else S is stopped at bj−1 (i.e., l = j − 1). In dBn however, w is not
a wrap-around word so that cj = c.

Clearly, if j < l then dBn ≺P S, and by the earlier proof above S ≺P dB′n, which shows that dBn ≺P
dB′n. If j−1 = l then S ≺P dBn, as b1 . . . bl = c1 . . . cl and l < qn. However, we proved above that the first
disagreement between S and dB′n occurs at i < l, implying that ci = bi < c′i. This completes the proof. �

All complete binary preference functions of span 1 are represented by the matrices

F =

[
1 0
1 0

]
;O =

[
1 0
0 1

]
;S =

[
0 1
1 0

]
; and Z =

[
0 1
0 1

]
.

Observe that The Ford sequence, or prefer-one sequence is (F, 0n), first attributed to Martin [10], and
(Z, 1n) is clearly its bitwise complement. (O, 0n) is the prefer-opposite sequence, see Alhakim [1], while
(S, 010 · · · ) is the prefer-same sequence, where 010 · · · is the alternating string of length n. Alhakim
et. al. [3] shows that the last two sequences respectively have the lexicographically smallest and largest
representation in run length encoding. These results follow almost immediately from Theorem 3.2, the
proofs are omitted for brevity.

4. Factoring Into Lyndon words

Recall that a Lyndon word is a finite word that is smaller than all of its rotations. For example, 0012
and 0021 are Lyndon words of size 4 but 0101 is not because it is equal to one of its rotations. Note that
single symbols are Lyndon words. It is well known that the lexicographically least de Bruijn sequence
is a concatenation of Lyndon words of lengths diving n and arranged in increasing lexicographical order.
In this section we present a Lyndon decomposition of the trail sequence of the prefer-opposite sequence
on = (O, I = 0n), where the preference function O is given at the end of the previous section.

For a Lyndon word η, we define the weight w(η) to be the number of zeros in η. The following
theorem states that the preference trail of the prefer-opposite sequence is a concatenation of words that
are essentially Lyndon words except for few exceptions, depending on the size n, that are well-defined
rotations of Lyndon words. Let n̄ = n − 1 and L(n̄) be the set of all Lyndon words with a length that
divides n̄. Recall that η2 is a concatenation of two copies of the word η.

Theorem 4.1. The trail sequence part of T
(n)
O (on) is a concatenation of all Lyndon words in L(n̄), such

that each word appears twice, starting with two consecutive 0, with the other words appended inductively
as follows. Suppose η0 has just been appended and let η = τ01j be the lexicographically next word in L(n̄),
where τ = c1 . . . cλ−j−1 and λ is the length of η. Let w = w(η) mod 2. Then

(1) If either w = j = 1 or w = 1, j = 2 and τ = 0λ−j−1 then append η2.
(2) If w = 1, j > 2 and τ = 0λ−j−1 then append η · η̃1 . . . η̃j−2 · η where η̃1 = 0λ−j101j−2, η̃2 =

0λ−j1101j−3,. . . ,η̃j−2 = 0λ−j1j−201.

(3) If w = 1, j > 1 and τ 6= 0λ−j−1 then if η̃1 is a Lyndon word append η · η̃1 . . . η̃j−1 · η otherwise (if η̃1
is not a Lyndon word) append η2, where η̃1 = τ001j−1, η̃2 = τ0101j−2,. . . ,η̃j−1 = τ01j−201.

(4) If w = 0 and τ 6= 0λ−j−1 then append η.
(5) If w = 0 and τ = 0λ−j−1 then append η1 ? η2 ? · · · ? ηj+1, where η1 = η = 0λ−j1j, η2 = 0λ−j−1101j−1,

η3 = 0λ−j−11101j−2,. . .,ηj = 0λ−j−11j−201, ηj+1 = 0λ−j−11j0. The stars (?) indicate segments of the
sequence that contain the possible Lyndon words which are lexicographically ordered between ηi and ηi+1,
arranged according to (1)-(4).
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We will give a proof of this in the extended paper, due to the lack of space. We also omit a similar
factorization theorem for the prefer-same sequence and only present some examples. We first list the
factorization of the prefer-opposite sequence for orders 4 to 7. the Lyndon words are separated by one dot,
blocks of types (1)-(4) are separated by an asterik (∗), while words of type (5) are in bold. Note that there
is a missing 1 relating to the missing word 1n in (O, 0n).
n = 4 : 0000|0 · 0 ∗ 001 · 010 ∗ 011 · 011 ∗ 1
n = 5 : 00000|0 · 0 ∗ 0001 · 0001 ∗ 0011 · 01 · 01 ∗ 0110 ∗ 0111 · 0111 ∗ 1
n = 6 : 000000|0 · 0 ∗ 00001 · 00010 ∗ 00011 · 00011 ∗ 00101 · 00101 ∗ 00111 ∗ 01011 ∗ 01101 ∗ 01110 ∗

01111 · 01111 ∗ 1
n = 7 : 0000000|0 · 0 ∗ 000001 · 000001 ∗ 000011 ∗ 000101 ∗ 000110 ∗ 000111 · 000101 · 000111 ∗ 001∗
∗001011 ·001 ·001011∗001101 ·001101∗001111∗01 ·01∗010111∗011 ·011∗011101∗011110∗011111 ·

011111 ∗ 1
The following is a factorization of trail sequences of the prefer-same sequence with n = 4 and 5.
n = 4 : 0101|0 ∗ 001 · 0 · 001 ∗ 011 ∗ 1 · 011 ∗ 1
n = 5 : 01010|0 ∗ 0001 · 0 · 0001 ∗ 0011 ∗ 01 · 01 ∗ 01110̇011 · 0111 ∗ 1
Finally, letting P be the preference function of span 2 given in Table 1, which was arbitrarily chosen,

we give a factorization of (P, 0010). Note that Lyndon words of sizes 1 and 2, that divide n − 2 are each
repeated 32 = 9 times. Also note that there is only one rotated Lyndon word (underlined).
n = 4, q = 3 : 0010|0 · 0 · 0 · 01 · 0 · 0 · 02 · 1 · 0 · 0 · 0 · 01 · 01 · 10 · 12 · 01 · 1 · 01 · 01 · 02 · 0 · 01 · 02 · 02 · 02 ·

02 · 01 · 02 · 02 · 1 · 1 · 1 · 1 · 1 · 12 · 12 · 02 · 2 · 2 · 12 · 1 · 12 · 1 · 12 · 12 · 2 · 2 · 2 · 2 · 12 · 12 · 2 · 2 · 2

5. Discussion and Conclusion

We introduced a transform that maps a de Bruijn sequence (or any sequence) to a trail sequence using
an arbitrary but fixed preference function. Observe that the prefer-zero sequence (Z, 1n) is identical to
its trail sequence when the leading digits 1n are not considered. It is a concatenation of Lyndon words
that appear one time each. In this paper we have presented binary de Bruijn sequences of span 1 whose
trail sequence is a concatenation of Lyndon words, appearing twice each. More numerical experimentation
strongly suggest that the trail sequence of any q-ary de Bruijn sequence generated by a preference function
of span s is equally a concatenation of Lyndon words that divide n− s, and each appearing qs times, in a
way that if η1 is less than η2 then the first appearance of η1 occurs before the first appearance of η2. This
is a subject of further research.
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