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Abstract

For n ≤ 6, we provide the number of n-variable unate and monotone Boolean functions
under various restrictions. Additionally, we provide the number of balanced 7-variable monotone
Boolean functions.
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1 Introduction

For a positive integer n, an n-variable Boolean function f is a map f : {0, 1}n → {0, 1}. A Boolean
function f is said to be monotone increasing (resp. decreasing) in the i-th variable if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

(resp. f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 1, xi+1, . . . , xn))

for all possible x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}. The function f is said to be locally monotone
or unate, if for each i ∈ {1, . . . , n}, it is either monotone increasing or monotone decreasing in the
i-th variable. The function f is said to be monotone increasing (or, simply monotone) if for each
i ∈ {1, . . . , n}, it is monotone increasing in the i-th variable.

Unate functions have been studied in the literature from various viewpoints such as switching
theory, combinatorial aspects, and complexity theoretic aspects. Monotone Boolean functions have
been studied much more extensively than unate functions and have many applications so much
so that it is difficult to mention a few representative works. The focus of the present work is on
counting unate and monotone Boolean functions under various restrictions.

A Boolean function is said to be balanced if it takes the values 0 and 1 equal number of times.
Two Boolean functions are said to be equivalent, if one can be obtained from the other by a
permutation of the variables. We say that two functions are inequivalent if they are not equivalent.
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The number of n-variable Boolean functions is 22
n

and the number of n-variable balanced
Boolean functions is

(
2n

2n−1

)
. For n ≤ 5, it is possible to enumerate all n-variable Boolean functions.

Consequently, the problem of counting various sub-classes of n-variable Boolean functions becomes
a reasonably simple problem. Non-triviality of counting Boolean functions arises for n ≥ 6. Often
though, it becomes difficult to obtain results for n more than 7 or 8.

The number of n-variable monotone Boolean functions is called the Dedekind number, denoted
D(n), after Dedekind who posed the problem in 1897. Till date D(n) is known only up to n = 8
(see [6]). A closed form summation formula for D(n) was given in [2], though it was pointed out
in [3] that using the formula to compute D(n) has the same complexity as direct enumeration
of all n-variable monotone Boolean functions. The numbers of n-variable inequivalent monotone
Boolean functions are known for n up to 8 (see [7, 4]). To the best of our knowledge, there is
no work in the literature on counting the number of n-variable (inequivalent) balanced monotone
Boolean functions.

The number of NPN-equivalence classes1 of unate Boolean functions has been studied (see
A003183 in [6]). Even though the problem is to count NPN inequivalent unate functions, the entry
for A003183 in [6] shows that by using simple operations, the problem can be reduced to that of
counting monotone functions under certain restrictions. A proper subclass of unate functions is
the class of unate cascade functions which have been studied in [5]. Entry A005612 in [6] provides
counts of unate cascade functions. To the best of our knowledge, there is no work in the literature
on counting the number of n-variable (inequivalent) unate functions and the number of n-variable
(inequivalent) balanced unate functions.

The following notation will be used.

UBFn : The set of all n-variable unate Boolean functions (UBFs).
MBFn : The set of all n-variable monotone Boolean functions (MBFs).
U(n),V (n) : Number of all n-variable UBFs and balanced UBFs respectively.
W (n),X(n) : Number of all n-variable inequivalent UBFs and balanced inequivalent UBFs respectively.
D(n),E(n) : Number of all n-variable MBFs and balanced MBFs respectively.
F (n) : Number of all n-variable balanced inequivalent MBFs.

Our Contributions. We obtain the values of U(n), V (n),W (n), X(n) and F (n) for n ≤ 6, and
the values of E(n) for n ≤ 7. None of these values were previously known.

2 Mathematical Results

Let f be an n-variable Boolean function. By f , we will denote the negation of f , i.e. f(x) = 1 if
and only if f(x) = 0. The weight wt(f) of f is the size of its support, i.e. wt(f) = #{x : f(x) = 1}.
An n-variable Boolean function f can be uniquely represented by a binary string of length 2n in
the following manner: for 0 ≤ i < 2n, the i-th bit of the string is the value of f on the n-bit binary
representation of i. We will use the same notation f to denote the string representation of f . So
f0 · · · f2n−1 is the bit string of length 2n which represents f .

1Two Boolean functions are said to be NPN equivalent, if one can be obtained from the other by some combination
of the following operations: a permutation of the variables, negation of a subset of the variables, and negation of the
output. We say that two functions are NPN inequivalent if they are not NPN equivalent.
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Let g and h be two n-variable Boolean functions having string representations g0 · · · g2n−1 and
h0 · · ·h2n−1. We write g ≤ h if gi ≤ hi for i = 0, . . . , 2n−1. From g and h, it is possible to construct
an (n + 1)-variable function f whose string representation is obtained by concatenating the string
representations of g and h. We denote this construction as f = g||h.

In addition to the previous notation, we will also require the following notation.

Un,w, Mn,w : Number of n-variable UBFs and MBFs of weight w respectively.

We record a known fact about MBFs.

Fact 1 [1] Let g and h be n-variable Boolean functions and f = g||h. Then f is an MBF if and
only if g and h are both MBFs and g ≤ h.

Next we present some new results on unate and monotone Boolean functions which will be
useful in our enumeration strategy. However, the complete proofs will be presented in the full
version.

Proposition 1 Let g and h be n-variable Boolean functions and f = g||h. Then f is a UBF if
and only if g and h are both UBFs satisfying the following two conditions.

1. For each variable, g and h are either both monotone increasing, or both monotone decreasing.

2. Either g ≤ h or h ≤ g.

Proposition 2 If f is a UBF then f is also a UBF.

Proposition 3 For any n ≥ 1 and weight w ∈ [0, 2n], Un,w = Un,2n−w and Mn,w = Mn,2n−w.

3 Enumeration Strategies

To generate all n-variable unate Boolean functions, the direct method is to generate all n-variable
Boolean functions and then check each function for unateness. The problem with this approach is
that there is no easy method to check whether a function is unate. So we adopted the recursive
strategy which follows from Proposition 1 to generate unate functions which does not require
the generation of all Boolean functions and hence is more efficient than the naive generate-and-
check strategy. To generate all (n + 1)-variable unate functions, our recursive algorithm requires
considering all pairs of n-variable unate functions, i.e. a total of (U(n))2 options. This is feasible
for n ≤ 5, but not for higher values of n. However, there is some subtlety in developing a recursive
generation algorithm based on Proposition 1 which will be described in the full version. To obtain
balanced functions, from the set of all unate functions, we filter out the ones that are unbalanced.

A similar and somewhat simpler method to recursively generate all n-variable monotone func-
tions can be obtained from Fact 1. This method also becomes infeasible for n > 6. It is, however,
possible to generate all 7-variable balanced monotone functions using a modified version of the
recursive enumeration. We provide a general description of the method.

Suppose the set of all n-variable monotone functions have already been generated. Partition
these functions into weight classes, where the number of n-variable monotone functions in weight
class w is Mn,w, w = 0, . . . , 2n. The method for generating all (n+ 1)-variable monotone functions
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based on Fact 1 is modified as follows. Choose g from weight class w and h from weight class
2n − w and check whether g ≤ h. If the check passes, then generate f = g||h. The procedure
ensures that the weight of f is 2n, so that f is an (n+1)-variable monotone balanced function. The
number of pairs of n-variable unate functions that need to be considered is

∑2n

w=0Mn,wMn,2n−w =∑2n

w=0 (Mn,w)2 , where the equality follows from Proposition 3. This is a substantial reduction from
(D(n))2 that would be otherwise required. To generate all balanced 7-variable monotone functions,
the generate-and-filter strategy would have required considering (D(6))2 ≈ 245 pairs. The modified
strategy requires considering

∑64
w=0 (M6,w)2 ≈ 240 pairs, which makes the enumeration much faster.

The modified method for generating balanced monotone functions can also be adapted to generate
balanced unate functions and for generating all (n + 1)-variable balanced unate functions requires
considering

∑2n

w=0 (Un,w)2 pairs.
Along with enumerating all unate functions, we also enumerate inequivalent unate functions.

Similarly for the other classes of functions we enumerate inequivalent functions in the respective
classes. Given a permutation π of {1, . . . , n} and an n-variable function f , let fπ denote the function
such that for all (x1, . . . , xn) ∈ {0, 1}n, fπ(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). Consider the set S to
be filterd is given as a list of functions. We incrementally generate T as follows. The first function
in S is moved to T . We iterate over the other functions in S. For a function f in S, we generate
fπ for all permutations π of {1, . . . , n} using the technique described above. For each such fπ, we
check whether it is present in T . If none of the fπ’s are present in T , then we append f to T . At
the end of the procedure, T is the desired set of functions.

We are interested in the number of inequivalent n-variable unate functions. So we may apply
the above inequivalent filtering procedure to UBFn. It is possible to gain efficiency by noting that
the weight of a function is invariant under permutation of variables. So instead of applying the
inequivalent filtering procedure to UBFn, we apply it to the weight-wise partition of UBFn. This
leads to a gain in efficiency, since a function of weight w is checked for equivalence only with other
functions of weight w. The strategy for inequivalent filtering works in the same way for balanced
unate functions, monotone functions and balanced monotone functions. This allows us to also find
the number of inequivalent functions in these classes.

The results of the above enumeration procedures for the different classes of functions are shown
in Tables 1 to 3.

n 1 2 3 4 5 6

U(n) 4 14 104 2170 230540 499596550

V (n) 2 4 14 296 18202 31392428

Table 1: Number of n-variable (balanced) UBFs for n ≤ 6

n 1 2 3 4 5 6

W (n) 4 10 34 200 3466 829774

X(n) 2 2 6 24 254 50172

Table 2: Number of n-variable (balanced) inequivalent UBFs for n ≤ 6
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n 1 2 3 4 5 6 7

E(n) 1 2 4 24 621 492288 81203064840

F (n) 1 1 2 4 16 951 –

Table 3: Number of balanced (inequivalent) monotone functions.

4 Concluding Remarks

With access to a adequate computing resources, it should be possible to obtain F (7), i.e. the
number of inequivalent balanced monotone functions, and V (7), i.e. the number of balanced unate
functions. Both of these require computations which is somewhat more that 250. The computations
can be parallelised and distributed across a large number of cores. With access to a sufficiently large
computational cluster, the computations will be feasible. On the other hand, obtaining the values
of U(n),W (n) and X(n) for n ≥ 7 and the values of V (n), E(n) and F (n) for n ≥ 8 will require
new ideas. The running times for the enumeration of the corresponding sets using the techniques
used in the present work are likely to remain infeasible in the forseeable future.
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