
Improving differential properties of S-boxes with

local changes of DDT

(Extended Abstract)

Pavol Zajac1*

1*Department of Computer Science and Mathematics, Slovak University
of Technology in Bratislava, Ilkovicova 3, Bratislava, 81219, Slovakia.

Corresponding author(s). E-mail(s): pavol.zajac@stuba.sk;

Keywords: differential uniformity, S-box generation algorithm, cryptographic
applications of Boolean functions

1 Introduction

In a recent article [1] we have proposed an algorithm to construct S-boxes with
prescribed differential properties. The main principle is to produce the function assign-
ment in discrete increments while checking the restrictions on a partially constructed
difference distribution table. Although the algorithm can find any S-box with pre-
scribed differential properties, it is impractical due to its high complexity. On the
other hand, it can produce S-boxes with better differential properties than a ran-
dom selection. We can naturally ask whether it is possible to obtain better S-boxes
by manipulating the vector of values in a systematic way by taking into account the
differential properties of the S-box.

We already know that the answer is positive. There is a large number of results
concerning heuristic methods (e.g., evolutionary algorithms) that produce better S-
boxes than a random search. However, these methods are typically generic, focusing
on improving some objective function with a stochastic search directed by an objec-
tive function. The objective function typically includes but is not restricted to, the
differential properties of the S-box.

In our current research, we take a different approach to the problem. We start
with a random S-box and specify the operation we are allowed to do with the S-
box value vector. We are concerned with bijective S-boxes, where the value vector is

1

a permutation. Our permitted operations are either swaps (interchange of values of
y1 = S(x1) and y2 = S(x2)) or application of cycles. We select the operation based
on the difference distribution table properties in a systematic way. Our experimental
results show that it is possible to significantly improve the differential properties of
an S-box, but there seems to be a limit to which this strategy converges.

2 Methods

Let S : Zn
2 → Zn

2 be a bijective vectorial Boolean function (an S-box). The difference
distribution table DDT of S contains values

DDT (dx, dy) = |{x ∈ Zn
2 : S(x)⊕ S(x⊕ dx) = dy}| .

S-box S is δ-differentially uniform, if δ = maxdx ̸=0 {DDT (dx, dy)}. Let c0 denote the
number of zero elements of DDT of S (for nonzero dx),

c0 = |{(dx, dy) ∈ Zn
2 × Zn

2 : DDT (dx, dy) = 0 ∧ dx ̸= 0}| .

In ideal case, δ = 2 and c0 = 2n(2n − 1)/2 (for APN function S). Randomly selected
S-box will have higher δ and c0 due to collisions of differences: for some dx, randomly
selected x1 and x2 ̸= x1, x2 ̸= x1 ⊕ dx will produce the same difference dy = S(xi)⊕
S(xi ⊕ dx). Such collisions increase the maximum value in DDT and the number of
zero positions in DDT (if there is a colliding pair, there will not be enough remaining
x values to produce some dy).

Suppose that there exists a bijective APN S-box (or some S-box of desired quality),
and consider it as a permutation. By composing the S-box with some other permuta-
tion, we will change the properties of the DDT in some way, typically decreasing the
quality of the S-box. On the other hand, with systematic compositions (e.g., by using
a swap of two elements, a transposition), it is possible to construct any other permuta-
tion from it. This process can work in the opposite direction: starting from a random
S-box, we might reach an S-box with high quality. Unfortunately, in each step we can
choose from a large number of transpositions, and the complexity of constructing the
desired permutation blindly is super-exponential.

Our main research question is as follows: Starting from a random S-box, can we
use a greedy selection of transpositions directed by DDT properties to find the best
possible S-box? If not, how far can we improve our initial random selection? We do
not know the theoretical answers to this question, but we present some experimental
results for consideration.

In our experiments, we use the following method to improve S-boxes:

1. Start from a randomly selected S-box S.
2. For each dy compute list D(dy) which contains quadruples (y1, y2, y3, y4), such

that dy = y1 ⊕ y2 ⊕ y3 ⊕ y4, with y1 = S(x1), y2 = S(x1 ⊕ dx), y3 = S(x2),
y4 = S(x2 ⊕ dx), with dx ̸= 0, x2 ̸= x1 and x2 ̸= x1 ⊕ dx.

2

Iterations Changes Initial D(0) Final D(0)
min avg max avg min avg max min avg max

Swaps 55 70.46 93 140.92 7734 8208.63 8601 4983 5161.08 5397
3-cycles 34 48.28 64 144.84 7710 8184.72 8571 4887 5082.78 5358
4-cycles 26 36.91 50 147.85 7776 8184.96 8661 4926 5053.53 5271

Table 1 The results of the experiments: number of iterations (and estimated average number of
changes in S-box), initial, and final sizes of D(0) sets.

3. List D(0) contains ”DDT collissions”. In the ideal case, we want this list to be
empty. We terminate the algorithm if D(0) is empty, or if we cannot decrease its
size by any transposition (see the next step).

4. For each pair (y, z), y ̸= z, compute the effect of applying transposition y ↔ z to
S on the size of D(0) (see discussion below).

5. Apply the transposition that minimizes the next D(0). Repeat the algorithm with
the new S-box.

The crucial step in the algorithm is the estimation of the size of D(0) in the next
step. In the case of transpositions, we can compute the value exactly. Each element of
type (y, z, y3, y4) will remain in the corresponding set D(dy), as swapping y and z will
not change the sum dy. Each element of type (y, y2, y3, y4) or (z, y2, y3, y4) will change
its position in sets D(dy): If y⊕y2⊕y3⊕y4 = dy, than z⊕y2⊕y3⊕y4 = dy⊕ (y⊕z).
Thus, all elements of this type will move from set D(0) to set D(y⊕z), decreasing the
size of new D(0). On the other hand, such elements from D(y⊕ z) will move to D(0),
increasing its size. By summing all such contributions (with a minus sign for elements
in D(0) and a plus sign for elements in D(y ⊕ z)), we can assign a score (expected
change of |D(0)|) to each pair (y, z).

Using the greedy approach, we first select such pair with the lowest score, if the
score is less than 0. If there is no pair (y, z) with a negative score, we end the algorithm
to ensure that it stops.

The method can be generalized in multiple ways. One generalization is to apply
multiple transpositions at once (e.g., all that produce a negative score). In such a case,
however, we cannot predict the change of D(0) exactly because of the interactions
between contributions of elements containing values from multiple transposition pairs.
The preliminary experiments with multiple transpositions were unsuccessful.

The second generalization is to replace transpositions with more general permuta-
tions. We have used small cycles of sizes 3 and 4. In the experiments, we computed the
estimated score for all possible cycles of a given size. This means that the complexity
quickly grows with the cycle size and becomes impractical for longer cycles. Note that
in case of more cycles, we have computed the score just as the unidirectional contri-
butions of individual elements in the cycle (e.g., a ← b, then b ← c, then c ← a).
This score is then only an estimate, as it ignores the effects of elements that contain
multiple elements from the cycles. Even if the estimated change of D(0) is negative,
sometimes the contribution from the shared elements causes the D(0) in the next step
to grow. In such a case we again terminate the algorithm to ensure that it stops.

3

Fig. 1 Average fraction of zeroes (y) in the DDT (of 100 randomly generated S-boxes) after x
iterations of the algorithm.

3 Results and Discussion

We have conducted 3 experiments with custom software implementing three methods
from Section 2: swap, 3-cycles, and 4-cycles. For each experiment, we generated 100
random bijective 8-bit S-boxes. In the initial set, the S-boxes had differential unifor-
mity between 10 and 16, with 60.7% of zeroes in the DDT. The ”smoothing algorithm”
improved the DDT of S-boxes gradually (see Figure 1), reaching a minimum of 57.1%
of zeroes in the DDT (consistently for the 3 different methods). The final differen-
tial uniformity was between 8 and 10, the 3-cycle method produced two S-boxes with
δ = 6 (but not as a final step), and the 4-cycle method produced 1 S-box with δ = 6
(in a final step).

While the number of steps depends on the chosen method, the expected number
of changes in the S-box table, and the final results seem independent of the method
chosen. From the computational perspective, it is better to implement only the ”swap”
method, which exchanges two values at a time, and each iteration is faster than the
other methods.

An interesting observation is that the DDT-smoothing method also improved the
non-linearity of the S-boxes. From the initial values between 86 and 96, we have
reached S-boxes with non-linearity between 98 and 102. Interestingly, these values are
comparable to results of advanced evolutionary techniques (see [2]) while using only
a simple algorithm focusing on a completely different S-box characteristic.

Acknowledgments. This research was supported in part by the NATO Science
for Peace and Security Programme under Project G5985 and in part by the Slovak
Scientific Grant Agency, Grant Number VEGA 1/0105/23.

References

[1] Marochok, S., Zajac, P.: Algorithm for generating s-boxes with prescribed differ-
ential properties. Algorithms 16(3), 157 (2023)

[2] Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of s-boxes.
Evolutionary computation 24(4), 695–718 (2016)

4

	Introduction
	Methods
	Results and Discussion
	Acknowledgments

