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Abstract. We investigate the concept of S0 equivalent class, n-variable Boolean functions up to the addition of a
symmetric function null in 0n and 1n, as a tool to study weightwise perfectly balanced functions. On the one hand
we show that weightwise properties, such as being weightwise perfectly balanced, the weightwise nonlinearity and
weightwise algebraic immunity, are invariants of these classes. On the other hand we analyze the variation of global
parameters inside the same class, showing for example that there is always a function with high degree, algebraic
immunity, or nonlinearity in the S0 equivalent class of a function. Finally, we discuss how these results extend to
other equivalence relations and their applications in cryptography.

1 Introduction

Weightwise Perfectly Balanced (WPB) functions have been introduced by Carlet et al. in [CMR17] while studying the
cryptographic properties of Boolean functions when the input is restricted to a subset of Fn2 , motivated by the analysis
of FLIP stream cipher [MJSC16]. These objects are the functions f : Fn2 → F2, such that |{x ∈ Ek,n | f(x) = 0}| =
|{x ∈ Ek,n | f(x) = 1}| for each 1 ≤ k ≤ n−1 where the slice Ek,n denotes the set of Fn2 with all vectors of Hamming
weight k, f globally balanced, and f(0n) = 0. Since then, several articles studied the properties on restricted sets, and
multiple articles focused on WPB functions such as [LM19, TL19, LS20, MS21, ZS21, MSL21, GS22, ZS22, MPJ+22,
GM22a, GM22b, MKCL22, MSLZ22, GM22c, ZJZQ23, ZLC+23, GM23].

In this paper we study their parameters relatively to the concept of S0 equivalent class, which considers two n-
variable Boolean functions being in the same class if they are equal up to the addition of a symmetric function null in
0n and 1n. The interest for WPB functions is that being WPB is an invariant of S0-classes. Hence, by stabilizing the
WPB functions, the notion of S0-equivalence gives a new direction to find WPB functions.

Since for every practical application it is crucial to have a WPB function with both good weightwise and global
parameters, this work aims to suggest a new strategy to construct a WPB function satisfying this assumption. Indeed,
the results of this article imply that in order to find such a function, we can first search for one with suitable weightwise
properties and later improve the global properties by looking directly inside its S0-class.

Indeed, in this paper we show that the weightwise parameters such as weightwise nonlinearity and weightwise
algebraic immunity stay unchanged inside the S0-class. Then, we investigate the variation of the global parameters
such as the degree, algebraic immunity and nonlinearity, inside an S0-class and we prove bounds on the maximal
parameters in all classes. We demonstrate, for example, that from WPB functions with algebraic immunity as low as
2 (e.g. , in [GM23]), we can find a function with algebraic immunity at least t+ 1 in its S0-class provided log2(n) ≥
log2(2t+ 1) + t+ 2; while, for those whose nonlinearity is as low as 2n/2−1 (as exhibited in [GM22c]), we can find
a function with nonlinearity at least 2n−2 − 2

n
2−2 in its S0-class. We show that in every class we can find a function

with degree n− 1.
Using this framework are also able to prove that for every degree between n/2 and n − 1 we can exhibit a WPB

function with such a degree. Finally, we discuss how these results can be extended to other equivalence relations
defined up to the addition of functions from of family T . In different context of cryptography where a family T is easy
to compute, and the addition is cheap, finding a Boolean function with good cryptographic parameters could then be
reduced to finding the best function inside its T -class.

We complement our investigation performing experimental analyses on equivalence classes for WPB functions in
a small number of variables. Specifically, we are able to provide an exhaustive taxonomy of 4-variables classes. For
8-variables we selected some function from know families, e.g. [CMR17,LM19,TL19,GM22c,GM23], and computed
statistics over the properties in their classes. The result of these experiments is provided in the full version of the paper.



2 Some preliminaries

A Boolean function f in n variables is a function from Fn2 to F2. We recall here general concepts on Boolean functions
and their weightwise properties, we refer to e.g. [Car21] and to [CMR17] respectively for further details. The set
of all Boolean functions in n variables is denoted by Bn, and we denote B∗n the set without the null function. We
call Algebraic Normal Form of a Boolean n-variable polynomial representation over F2 (i.e. in F2[x1, . . . , xn]/(x

2
1 +

x1, . . . , x
2
n + xn)): f(x1, . . . , xn) =

∑
I⊆[1,n] aI

(∏
i∈I xi

)
where aI ∈ F2. The (algebraic) degree of f , denoted

deg(f) is deg(f) = maxI⊆[1,n]{|I| | aI = 1} if f is not null, 0 otherwise.
To denote when a property or a definition is restricted to a slice we use the subscript k. For example, for a n-

variable Boolean function f we denote its support supp(f) = {x ∈ Fn2 | f(x) = 1} and we denote suppk(f) its
support restricted to a slice, that is supp(f) ∩ Ek,n.

A Boolean function f ∈ Bn is called balanced if |supp(f)| = 2n−1 = |supp(f + 1)|. For k ∈ [0, n] the
function is said balanced on the slice k if ||suppk(f)| − |suppk(f + 1)|| ≤ 1. In particular when |Ek,n| is even
|suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Let m ∈ N∗ and n = 2m, f is called weightwise perfectly balanced (WPB) if, for every k ∈ [1, n − 1], f is
balanced on the slice k, that is ∀k ∈ [1, n− 1], |suppk(f)| =

(
n
k

)
/2, and f(0n) = 0 and f(1n) = 1. The set of WPB

functions in 2m variables is denotedWPBm. When n is not a power of 2, other weights than k = 0 and n give slices
of odd cardinality, in this case we call f ∈ Bn weightwise almost perfectly balanced (WAPB) if |suppk(f)| is either
|Ek,n|/2 if |Ek,n| is even, or (|Ek,n|±1)/2, otherwise. The set of WAPB functions in n variables is denotedWAPBn.
The first WAPB family of function has been exhibited in [CMR17, Proposition 5] and it is usually referred as CMR
functions.

The nonlinearity NL(f) of f ∈ Bn is the minimum Hamming distance between f and all the affine functions
in Bn, i.e. NL(f) = ming, deg(g)≤1{dH(f, g)}. For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the
minimum Hamming distance between f restricted to Ek,n and the restrictions to Ek,n of affine functions over Fn2 , i.e.
NLk(f) = ming, deg(g)≤1 |suppk(f + g)|.

The algebraic immunity (AI) of a Boolean function f ∈ Bn, denoted as AI(f), is defined as: AI(f) =
ming 6=0{deg(g) | fg = 0 or (f+1)g = 0}. The function g is called an annihilator of f (or f+1). The weightwise al-
gebraic immunity on the slice Ek,n, denoted by AIk(f), is defined as: min {deg(g) | fg = 0 or (f + 1)g = 0 over Ek,n}
where g is non null on Ek,n.

The n-variable Boolean symmetric functions are those that are constant on each slice Ek,n for k ∈ [0, n]. The set
of n-variable symmetric functions is denoted SYMn. Let i ∈ [0, n], the elementary symmetric function of degree
i in n variables, denoted σi,n, is the function which ANF contains all monomials of degree i and no monomials
of other degrees; while, the indicator functions of the slice of weight k is the such that ∀x ∈ Fn2 , ϕk,n(x) =
1 if and only if wH(x) = k.

3 The S0-equivalence relation

For a fixed n = 2m we consider the set of symmetric functions null in 0n and 1n:

S0 = {σ ∈ SYMn : σ(0n) = σ(1n) = 0} ,

and the sets of Boolean functions in Bn up to addition of an element of S0:

Definition 1 (S0-equivalent functions). Let m ∈ N∗ and f, g ∈ Bn Boolean functions in n = 2m variables. f, g are
called S0-equivalent if there exists a symmetric function σ ∈ S0 such that f = g + σ. We call S0-class of f the set of
functions S0-equivalent to f and we denote it by S0(f).

Remark 1. Being S0-equivalent is an equivalence relation.

Lemma 1. Let m ∈ N∗ and n = 2m,

1. S0 is a F2-vector space of dimension n − 1. In particular, S0 = 〈ϕk,n : k ∈ [1, n − 1]〉F2
where we denote by

ϕk,n’s the slice indicator functions.
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2. For all f ∈ Bn, S0(f) = f + S0 and |S0(f)| = 2n−1.
3. S0 = 〈σd,n : d ∈ [1, n− 1]〉F2

where we denote by σd,n’s the elementary symmetric functions.

Both S0-classes of weightwise almost perfectly balanced functions and weightwise perfectly balanced functions
consist of functions having the same W(A)PB property.

Proposition 1. Let m ∈ N∗ and n = 2m,

1. For all f ∈ WAPBn, S0(f) ⊆ WAPBn.
2. For all f ∈ WPBm, S0(f) ⊆ WPBm.
3. Let v = (v1, . . . , vn−1) be a tuple such that ∀k ∈ [1, n − 1], vk ∈ Ek,n. For any f ∈ Bn, there exists a unique
gv ∈ S0(f) such that for all k ∈ [1, n − 1], gv(vk) = 1. We call gv the canonical representative of its class
respectively to v.

As a consequence of Proposition 1 we obtain that S0-classes form a partition of WAPBn and WPBm and that
for every tuple v we can represent the partition using canonical representatives. We prove that S0-equivalent classes
have invariant restricted weightwise nonlinearity and restricted algebraic immunity:

Theorem 1. Let m ∈ N∗, n = 2m and f, g ∈ Bn S0-equivalent functions. For every k ∈ [0, n] it holds NLk(f) =
NLk(g).

Theorem 2. Let m ∈ N∗, n = 2m and f, g ∈ WPBm S0-equivalent functions. For every k ∈ [0, n] it holds
AIk(f) = AIk(g).

While functions in the same S0-class have the same restricted weightwise nonlinearities and restricted algebraic
immunities, they do not necessarily share the global properties such as the degree, nonlinearity and algebraic immunity.
Working with S0-classes provides us a different principle for the construction of new functions. In fact, suppose we
have a WPB function h with certain NLk ’s and AIk ’s and we are interested in increasing, for instance, its algebraic
immunity, we can start our search for a new function inside S0(h). Additionally, if h is a WPB function, we are
guaranteed to obtain a function that is also WPB.

In the rest of this article we study the behavior of degree, nonlinearity and algebraic immunity inside S0-classes.
Specifically, we are interested in the following edge quantities for WPB functions that characterize the best guaranteed
value, for degree, algebraic immunity and nonlinearity, achievable by modifying a function inWPBm, while staying
within its S0-class:

Definition 2. Let m ∈ N∗ and n = 2m, we define:

mdegS0(m) = min
f∈WPBm

max
g∈S0(f)

deg(g),

mAIS0(m) = min
f∈WPBm

max
g∈S0(f)

AI(g),

mNLS0(m) = min
f∈WPBm

max
g∈S0(f)

NL(g).

4 Degree in S0-classes

In this part we study the potential algebraic degree inside S0-classes. We prove that we can preview the behavior of the
degree inside the S0-class S0(f) by looking at the ANF of f . As a consequence, we show that for any value between
n/2 and n− 1 (included) there exist WPB functions reaching this degree. The proof is constructive, we exhibit a new
family of WPB functions with prescribed degree for all n = 2m (with m ∈ N∗).

Definition 3 (Sigma-degree σdeg(f)). Let n ∈ N∗, and f ∈ Bn. LetDf be the set of d ∈ [1, n−1] such that the ANF
of f contains at least a degree d monomial but not all of them. We define: σdeg(f) = maxDf if Df 6= ∅, 0 otherwise.

Lemma 2. Let m ∈ N∗ and n = 2m. Let f, g S0-equivalent Boolean functions in n variables. Then, σdeg(f) =
σdeg(g).
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Hence, σdeg(f) is an invariant of the S0-class and it is in fact the minimum degree in the class when f is not a
symmetric function:

Theorem 3. Let m ∈ N∗ and n = 2m. Let f ∈ Bn such that f 6∈ SYMn and δ ∈ N.

- there exist exactly 2σdeg(f) functions g ∈ S0(f) such that deg(g) = σdeg(f).
- if σdeg(f) < δ < n, there exist exactly 2δ−1 functions g ∈ S0(f) such that deg(g) = δ.
- if δ < σdeg(f), there does not exist g ∈ S0(f) such that deg(g) = δ.

Therefore, in the S0 class of every WPB function there exists at least a function of degree n− 1, i.e. the minimum
of the maximal degree inside an S0-class ofWPBm is n− 1:

Corollary 1. Let m ∈ N∗. mdegS0(m) = n− 1.

We can specialize the argument of Theorem 3 to explicitly construct WPB functions having for degree any value
between n/2 and n− 1 included, from CMR family.

Corollary 2 (WPB functions with prescribed degree). Let m ∈ N∗, n = 2m, and d ∈ [n2 , n − 1]. We define
fn,n/2 = fn as in [CMR17, Proposition 5], and for all n2 < d < n, fn,d = fn+σd,n. The function fn,d is weightwise
perfectly balanced and deg(fn,d) = d.

Degree distribution in WPBm. Let m ∈ N∗ and n = 2m. We observe that S0-classes form a partition of
WPBm from Proposition 1. Denoting by θd,m the number of S0-classes such that σdeg(f) = d and setting
Dd,m = | {f ∈ WPBm : deg f = d} |, from Theorem 3 we have that:

Dd,m = 2d · θd,m + 2d−1 ·
d−1∑
k=0

θk,m = 2d−1 · θd,m + 2d−1 ·
d∑
k=0

θk,m.

Theorem 4. Let m ∈ N∗, n = 2m, the probability of a WPB function fromWPBm having degree n− 1 is:

Dn−1,m

|WPBm|
=

2n−2θn−1,m
|WPBm|

+
1

2
> 1/2. (1)

Practical experiments. To complement this investigation on the degree, we perform an experimental study of the
degree distribution for WPB functions in a small number of variables. The results will be displayed in the full version
of the paper.

5 Minimal parameters inside the S0-classes of WPB functions

For a WPB function reaching a very small algebraic immunity or nonlinearity, there always exists a function with better
parameters in its S0-class. On the experimental side, it allows to optimize the parameters of a WPB while staying in
the class.

Algebraic immunity inside an S0 class. In this part we focus on the mAIS0(m) parameter ( Definition 2). In [GM23],
the minimal AI that a WPB function can have is proven to be 2. In the following we show that mAIS0(m) > 2 (for
m ≥ 6), which means that for such WPB functions exhibited in [GM23], there always exist functions with better AI
in their S0-class, more adequate to be used in a cipher. We begin by demonstrating a general lemma:

Lemma 3. Let m ∈ N∗ and n = 2m, let t ∈ N∗, if there exist 2t functions si in S0 such that AI(si) > 2t, and
AI(si + sj) > 2t for all i 6= j, then for all f ∈ Bn there exists g ∈ S0(f) such that AI(g) ≥ t+ 1.

Then, we need a result on the AI of some symmetric functions, to show the existence of 2t functions satisfying the
conditions of Lemma 3 in S0.
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Proposition 2. Let m ∈ N∗ and n = 2m, let r ∈ N∗, r < m, for all vector v ∈ (Fr2)∗ the symmetric function f
defined as: f =

∑r
i=1 viσ2m−2m−i,2m is such that AI(f) ≥ 2m−r − 1.

It allows to derive a first lower bound on mAIS0(m):

Theorem 5 (Lower bound on mAIS0(m)). Let t,m ∈ N, t ≥ 2, if m > log(2t + 1) + t + 1 + (t mod 2) then
mAIS0(m) ≥ t+ 1.

Taking the first m satisfying the condition of Theorem 5, mt = blog(2t+1)c+ t+2+(t mod 2), the first values
are m2 = 6, m3 = 8, m4 = 9, and m5 = 11.

Theorem 5 shows that for m ≥ 6 there are functions with AI at least 3 in each S0-class ofWPBm. An interesting
research direction is to determine if mAIS0(m) = 2m−1. If it holds, there are functions with optimal AI in each S0-
class, and then finding a WPB function with good AI together with good NLk and AIk boils down to determining the
adequate representative. If it does not hold, it is appealing to characterize the classes where optimal AI is not reachable.

Nonlinearity inside an S0-class. In this part we focus on mNLS0(m), as defined in Definition 2. In [GM22c], WPB
functions with a nonlinearity as low as 2n/2−1 have been exhibited. In this part we demonstrate that mNLS0(m) ≥
2n−2 − 2

n
2−2.

Theorem 6 (Lower bound on mNLS0(m)). Let m ∈ N, m ≥ 2 and n = 2m, the following holds:

mNLS0(m) ≥ 2n−2 − 2
n
2−2.

6 Beyond parameters in S0-classes

These results have more implications for cryptographic applications: for example in the (improved) filter permutator
context [MJSC16, MCJS19], for hybrid homomorphic encryption, there are efficient ways to evaluate symmetric
functions (as illustrated in [HMR20]), and doing one addition is cheap, therefore it is interesting to consider the
best function in the S0-class of a filter function. In that case, for all contexts where adding one function is cheap, the
hunt for optimized functions could be split into finding a cheap function to evaluate, and then determining the one
with best cryptographic parameters in its T -class. The T -class would be the class given by an equivalence relation up
to the addition of a fixed family of functions, at the same time efficiently computable in the context and enabling good
cryptographic parameters.

Different results we presented can be generalized to T -classes, in particular denoting mdegT ,mAIT and mNLT ,
the minimum over the maximum degree, AI and nonlinearity parameter inside a T -class:

– Similarly to Corollary 1, denoting by D the maximum degree of functions inside T , we obtain that mdegT ≥ D.
– Lemma 3 can be generalized to any family T , hence for any family T with functions with high AI and such that

the sum of two elements still have high AI, we can obtain a bound on mAIT similarly to the one of Theorem 5.
– The bound on mNLS0(m) from Theorem 6 comes from the fact that a bent function belongs to S0. Then, the same

bound applies for each family T containing a bent function. More generally, denoting B the maximal nonlinearity
for a function in T , the bound mNLT ≥ B/2 holds.
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