Asymptotic Lower Bounds On The Number Of Bent Functions Having Odd Many Variables Over Finite Fields of Odd Characteristic

V. N. Potapov * and Ferruh Özbudak**
*Sobolev Institute of Mathematics, Novosibirsk, Russia e-mail: vpotapov@math.nsc.ru
${ }^{* *}$ Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, and Middle East Technical University, 06800, Ankara, Turkey, e-mail:ozbudak@metu.edu.tr

Abstract

Using recent deep results of Keevash et al. [8] and Eberhard et al. [6] together with further new detailed techniques in combinatorics, we present constructions of two concrete families of generalized Maiorana-McFarland bent functions. Our constructions improve the lower bounds on the number of bent functions in n variables over a finite field \mathbb{F}_{p} if p is odd and n is odd in the limit as n tends to infinity.

Let p be a prime. Let \mathbb{F}_{p} be the finite field with p elements. For a set A, let $|A|$ denote its cardinality. Let $\ln (\cdot)$ be the natural logarithm function.

Bent functions were first introduced by Rothaus in 1976 [14] over \mathbb{F}_{2}. In 1985, Kumar et al. generalized the notion of bent function to arbitrary finite fields 9 . We prefer to introduce bent functions as a special class of functions, namely, plateaued functions.

For a function $f: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}$ and $\alpha \in \mathbb{F}_{p}^{n}$, let $\hat{f}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{C}$ be the Walsh Transform of f at α defined as

$$
\hat{f}(\alpha)=\sum_{x \in \mathbb{F}_{p}^{n}} e^{\frac{2 \pi \sqrt{ }-1}{p}(f(x)-\alpha \cdot x)},
$$

where $\alpha \cdot x$ is the inner product $\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.
Let $0 \leq m$ be an integer. We say that f is m-plateaued if

$$
|\hat{f}(\alpha)| \in\left\{0, p^{\frac{n+m}{2}}\right\}
$$

for all $\alpha \in \mathbb{F}_{p^{n}}$. Here $|\cdot|$ denotes the absolute value in complex numbers. Let $\operatorname{Supp}(\hat{f})$ denote the subset of $\mathbb{F}_{p^{n}}$ consisting of α such that $\hat{f}(\alpha) \neq 0$. The following facts (definitions) are well known (see, for example, [4], [12])

- f is bent if and only if f is 0 -plateaued.
- If f is m-plateaued, then $|\operatorname{Supp}(\hat{f})|=p^{n-m}$.

It seems we have rather limited knowledge in construction of plateaued functions over arbitrary finite field (see, for example, [3, [7). A direct, but still very powerful construction of a strict subclass of plateaued functions is for the class of partially bent functions [2]. If $f: \mathbb{F}_{p^{s}} \rightarrow \mathbb{F}_{p}$ is a bent function, then for any integer $m \geq 1$, the function

$$
\begin{aligned}
g: \mathbb{F}_{p^{s}} \times \mathbb{F}_{p^{m}} & \rightarrow \mathbb{F}_{p} \\
(x, y) & \mapsto f(x)
\end{aligned}
$$

is a partially bent function and m-plateaued function in $m+s$ many variables over \mathbb{F}_{p}. Moreover, given any affine space U_{1} of dimension s in \mathbb{F}_{q}^{m+s}, it is easy to modify g to g_{1} such that $\operatorname{Supp}\left(\hat{g}_{1}\right)$ is U_{1}.

Bent functions and plateaued functions are central objects for a variety of topics related to cryptography, coding theory and combinatorics. We refer, for example, to [4], [1], [12] and the references therein for further information.

It is an interesting open problem to count bent functions, even for rather moderate values of n (see, [10], [13]). Hence the asymptotic number of bent functions is a natural and actually difficult problem to consider (see [13] and the references therein).

Let $\mathcal{M}^{\sharp}(p, n)$ denote the family of completed Maiorana-McFarland bent functions in n variables over \mathbb{F}_{p}. Note that n is even if $p=2$.

The following are well known (see, for example, [4], [12] and [13]):

- Case n is even:

$$
\begin{equation*}
\ln \left|\mathcal{M}^{\sharp}(p, n)\right|=\frac{n}{2} p^{n / 2} \ln (p)(1+o(1)) \tag{1}
\end{equation*}
$$

as $n \rightarrow \infty$ and n is even.

- Case n is odd:

$$
\begin{equation*}
\ln \left|\mathcal{M}^{\sharp}(p, n)\right|=\frac{n-1}{2} p^{(n-1) / 2} \ln (p)(1+o(1)) \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$ and n is odd.
Here and throughout the paper $o(\cdot)$ stands for the small o notation as $n \rightarrow \infty$.
Let $\mathcal{B}(p, n)$ denote the family of bent functions in n variables over \mathbb{F}_{p}. Let $\mathcal{G M} \mathcal{M}(p, n)$ denote the family of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_{p} (see [1] and [5]). Note that the notions of completed Maiorana-McFarland bent functions (see [4]) and generalized Maiorana-McFarland bent functions are different.

We have the obvious bound that

$$
\begin{equation*}
|\mathcal{B}(p, n)| \geq|\mathcal{G} \mathcal{M} \mathcal{M}(p, n)| . \tag{3}
\end{equation*}
$$

In [13], the authors obtain that, if $p=2$, then

$$
\begin{equation*}
\ln (|\mathcal{G M M}(p, n)|) \geq \frac{3}{4} n p^{n / 2} \ln (p)(1+o(1)) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$ and n is even.
In particular they improve the lower bound in (1) so that the coefficient of the main term $n p^{n / 2} \ln (p)$ is increased from $\frac{1}{2}$ to $\frac{3}{4}$.

Combining (3) and (4) we obtain an asymptotic lower bound on the number of bent functions over \mathbb{F}_{2}, which is the best known asymptotic lower bound on the number of bent functions over \mathbb{F}_{2}.

The methods of [13] do not generalize to odd characteristic. In this paper we improve (2) and we obtain an asymptotic lower bounds on the number of bent functions in odd n variables over \mathbb{F}_{p} as $n \rightarrow \infty$ and p is odd.

We construct two families of generalized bent functions using two different methods related to the results of 8$]$ and [6, respectively.

Using results of [8] and further detailed techniques we prove our first main result in the following.

Theorem 0.1 Let p be an odd prime. There exists a sequence of odd integers n (moreover $n \equiv 3 \bmod 4$), $n \rightarrow \infty$ and a corresponding sequence of families $\mathcal{F}_{1}(n)$ of generalized MaioranaMcFarland bent functions in n variables over \mathbb{F}_{p} satisfying

$$
\ln \left(\left|\mathcal{F}_{1}(n)\right|\right) \geq \frac{n p^{n / 2}}{\sqrt{p}}\left(1-\frac{1}{2\left(p^{2}-1\right)}\right) \ln (p)(1+o(1))
$$

as $n \rightarrow \infty$.

We present a sketch of the proof of Theorem 0.1 in Section 2 below.
Remark 0.2 In Theorem 0.1, we improve the lower bound in (2) by increasing the coefficient of the main term $n p^{n / 2} \ln (p)$ from $\frac{1}{2 \sqrt{p}}$ to $\frac{1}{\sqrt{p}}\left(1-\frac{1}{2\left(p^{2}-1\right)}\right)$. Note that if $p=3$, then $\frac{1}{\sqrt{p}}\left(1-\frac{1}{2\left(p^{2}-1\right)}\right)=\frac{1}{\sqrt{3}} \frac{15}{16}$. This also gives an improved lower bound in the number of bent functions over \mathbb{F}_{p} for odd number of variables n using (3) in the limit as $n \rightarrow \infty$ if $p>3$.

Using results of [6] and further different detailed techniques we prove our second main result in the following.

Theorem 0.3 Recall that \mathbb{F}_{3} is the finite field with 3 elements. There exists a sequence of odd integers $n \rightarrow \infty$ and a corresponding sequence of families $\mathcal{F}_{2}(n)$ of generalized MaioranaMcFarland bent functions in n variables over \mathbb{F}_{3} satisfying

$$
\ln \left(\left|\mathcal{F}_{2}(n)\right|\right) \geq \frac{n 3^{n / 2}}{\sqrt{3}} \ln (3)(1+o(1))
$$

as $n \rightarrow \infty$.
We present a sketch of the proof of Theorem 0.3 in Section 3 below.
Remark 0.4 In Theorem 0.3, we improve the lower bound in Theorem 0.1 (and hence the lower bound in (2) by increasing the coefficient of the main term $n 3^{n / 2} \ln (3)$ from $\frac{1}{\sqrt{3}} \frac{15}{16}$ to $\frac{1}{\sqrt{3}}$. This also gives an improved lower bound in the number of bent functions over \mathbb{F}_{3} for odd number of variables n using (3) in the limit as $n \rightarrow \infty$.

1 Why do we use only partially bent functions?

In this section we explain why we only use partially bent functions and not arbitrary plateaued functions shortly. Let $s \geq 1$ be an integer. Let $n_{1} \geq 1$ be a variable integer which runs and tends infinity over a sequence. We construct bent functions with $2 n_{1}+s$ many variables over \mathbb{F}_{p}. Hence our number of variables tends to infinity as n_{1} tends to infinity.

Let $\mathcal{P}=\left(A_{1}, \ldots, A_{p^{n_{1}}}\right)$ be an ordered partition of $\mathbb{F}_{p^{n_{1}+s}}$ into subsets of size exactly p^{s}. We will need a huge number of such partitions that we can control.

By control we mean the following. Given such \mathcal{P}, we need to design a corresponding ordered set of n_{1}-plateaued functions $\left(g_{1}, \ldots, g_{p^{n_{1}}}\right)$ such that $g_{i}: \mathbb{F}_{p^{s+n_{1}}} \rightarrow \mathbb{F}_{p}$ and

$$
\begin{equation*}
\operatorname{Supp}\left(\hat{g}_{i}\right)=A_{i} \tag{5}
\end{equation*}
$$

for each $1 \leq i \leq p^{n_{1}}$.
Let $\phi: \mathbb{F}_{p^{n_{1}}} \rightarrow\left\{1,2, \ldots, p^{n_{1}}\right\}$ be a fixed bijection. A generalized Maiorana-McFarland bent function in $\left(2 n_{1}+s\right)$ variables over \mathbb{F}_{p} is defined as (see [1] [5])

$$
\begin{aligned}
f: \mathbb{F}_{p}^{s+n_{1}} \times \mathbb{F}_{p}^{n_{1}} & \rightarrow \mathbb{F}_{p} \\
(y, z) & \mapsto g_{\phi(z)}(y) .
\end{aligned}
$$

If $\left(A_{1}, \ldots, A_{p^{n_{1}}}\right)$ and $\left(B_{1}, \ldots, B_{p^{n_{1}}}\right)$ are two distinct ordered partitions of $\mathbb{F}_{p^{n_{1}+s}}$ into subsets of size exactly p^{s}, i.e. $A_{i} \neq B_{i}$ for at least one i, then independent from the corresponding ordered set of n_{1}-plateaued functions (provided they exist), the constructed bent functions f_{A} and f_{B} in $\left(2 n_{1}+s\right)$ variables are distinct. Moreover assume that we fix an ordered partition $\left(A_{1}, \ldots, A_{p^{n_{1}}}\right)$ of $\mathbb{F}_{p^{n_{1}+s}}$ into subsets of size exactly p^{s}. Assume also that there are two corresponding ordered set of n_{1}-plateaued functions $\left(g_{1}, \ldots, g_{p^{n_{1}}}\right)$ and $\left(h_{1}, \ldots, h_{p^{n_{1}}}\right)$ such that $g_{i}, h_{i}: \mathbb{F}_{p^{s+n_{1}}} \rightarrow \mathbb{F}_{p}$ and

$$
\begin{equation*}
\operatorname{Supp}\left(\hat{g}_{i}\right)=\operatorname{Supp}\left(\hat{h}_{i}\right)=A_{i} \tag{6}
\end{equation*}
$$

for each $1 \leq i \leq p^{n_{1}}$. Then if $g_{i} \neq h_{i}$ for some i, then the constructed bent functions f_{g} and f_{h} in $\left(2 n_{1}+s\right)$ variables are distinct.

An important problem is to have a large number of such partitions \mathcal{P} that we make sure existence of a large number of corresponding ordered sequences of n_{1}-plateaued functions.

We know sufficiently large number of such partitions using affine subspaces of $\mathbb{F}_{p^{n_{1}+s}}$ of dimension s. This implies that we use only partially bent functions [2]. It is still not an easy problem to count even this particular subject as n_{1} tends to infinity. We use methods from [8], [6] together with many new and further techniques to have a good asymptotic lower bound. It seems difficult to improve these asymptotic lower bounds making also use of non partially bent but plateaued functions.

2 Sketch of proof of Theorem 0.1

Let $s \geq 1$ be an integer. Let m be an integer such that $(s+1) \mid m$. Recall that a spread \mathbb{S} of dimension $(s+1)$ in $\mathbb{F}_{p^{m}}$ is a collection of $(s+1)$-dimensional subspaces of $\mathbb{F}_{p^{m}}$ such that any one dimensional subspace of $\mathbb{F}_{p^{m}}$ lies in exactly one of the elements of \mathbb{S}. Note that \mathbb{S} should have exactly $\frac{1+p+\cdots+p^{m-1}}{1+p+\cdots+p^{s}}$ many elements. As $m \rightarrow \infty$ and $(s+1) \mid m$, Keevash et al. [8] proved existence of $M_{1}(s, m)$ many spreads such that

$$
\ln \left(M_{1}(s, m)\right)=p^{m-s-1}(m-1) s \ln (p)(1+o(1))
$$

as $m \rightarrow \infty$.
Take $m=n_{1}+s+1$. Using an hyperplane restriction of these spreads and using also more techniques from perfect matchings we obtain that the number $M_{2}\left(s, n_{1}\right)$ of ordered partitions of $\mathbb{F}_{p^{n_{1}+s}}$ into s dimensional affine subspaces satisfies

$$
\begin{equation*}
\ln \left(M_{2}\left(s, n_{1}\right)\right) \geq\left(p^{n_{1}}-\delta(s) p^{n_{1}-s-1}\right)\left(n_{1}+s\right) s \ln (p)(1+o(1))+p^{n_{1}} n_{1} \ln (p)(1+o(1)) \tag{7}
\end{equation*}
$$

as $n_{1} \rightarrow \infty$. Here $\delta(s)=\frac{p^{s+1}}{\left(p^{s+1}-1\right)}$.
Using generalized Maiorana-McFarland construction and (7) we obtain that the number $M_{3}\left(s, n_{1}\right)$ of bent functions in $\left(2 n_{1}+s\right)$ variables gives

$$
\ln \left(M_{3}\left(s, n_{1}\right)\right) \geq p^{n_{1}}\left(n_{1} s+n_{1}+s^{2}-\frac{\left(n_{1}+s\right) s \delta(s)}{p^{s+1}}\right) \ln (p)(1+o(1))
$$

as $n_{1} \rightarrow \infty$. Putting $s=1$ we complete the proof.

3 Sketch of proof of Theorem 0.3

Using results of Eberhald et al. [6] we obtain exact number of transversals of the Cayley table of \mathbb{F}_{3}^{n}. This implies that the number $M_{4}(m)$ of unordered partitions of $\mathbb{F}_{3^{m}}$ into 1-dimensional affine subspaces satisfies

$$
\begin{equation*}
\ln \left(M_{4}(m)\right) \geq 3^{m-1} m \ln (3)-2 \cdot 3^{m-1} \ln (3)(1+o(1)) \tag{8}
\end{equation*}
$$

as $m \rightarrow \infty$. Take $m=n_{1}+1$. Using generalized Maiorana-McFarland construction and (8) we obtain that the number $M_{5}\left(n_{1}\right)$ of $\left(2 n_{1}+1\right)$-variable bent functions over \mathbb{F}_{3} satisfies

$$
\ln \left(M_{5}\left(n_{1}\right)\right) \geq 3^{n_{1}} 2 n_{1} \ln (3)(1+o(1))
$$

as $n_{1} \rightarrow \infty$. This completes the proof.

References

[1] S. Agievich. Bent rectangles. Boolean functions in cryptology and information security, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 18, pp. 3-22, Amsterdam, 2008.
[2] C. Carlet. Partially-bent functions. Advances in cryptology'CRYPTO '92 (Santa Barbara, CA, 1992), 280-291, Lecture Notes in Comput. Sci., 740, Springer, Berlin, 1993.
[3] C. Carlet. Boolean and vectorial plateaued functions and APN functions. IEEE Transactions on Information Theory, vol. 61, no. 11. pp. 6272-6289, 2015.
[4] C. Carlet. Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021.
[5] A.Çesmelioğlu, W. Meidl and A. Pott. Generalized Maiorana-McFarland class and normality of p-ary bent functions. Finite Fields and Their Applications, vol. 24, pp. 105-117, 2013.
[6] S. Eberhard, F. Manners and R. Mrazovic. An asymptotic for the Hall-Paige conjecture. Advances in Mathematics, Part A, Paper No. 108423, 73 pp, 2022.
[7] S. Hodžić, E. Pasalic, Y. Wei, F. Zhang. Designing plateaued Boolean functions in Spectral Domain and Their Classification. IEEE Transactions on Information Theory, vol. 65, no. 9. pp. 5865-5879, 2019.
[8] P. Keevash, M. Sah and M. Sawhney. The existence of subspace designs. arXiv: 2212.00870, $61 \mathrm{pp}, 2022$.
[9] P. V. Kumar, R. A. Scholtz, L. R. Welch, "Generalized bent functions and their properties", J. Combinatorial Theory Ser. A vol. 40, no. 1, pp. 90-107, 1985.
[10] P. Langevin and G. Leander. Counting all bent functions in dimension eight 99270589265934370305785861242880 . Designs, Codes and Cryptography, vol. 59, no. 1-3, pp. 193-205, 2011.
[11] W. Meidl. A survey on p-ary and generalized bent functions. Cryptography and Communications, vol. 14, pp. 737-782, 2022.
[12] S. Mesnager. Bent Functions. Fundamentals and Results, Springer International Publishing, 2016.
[13] V. N. Potapov, A. A. Taranenko and Yu. V. Tarannikov. An asymptotic lower bound on the number of bent functions. Designs, Codes and Cryptography, 2023. DOI: 10.1007/s10623-023-01239-z
[14] O. S. Rothaus "On 'bent' functions" J. Combinatorial Theory Ser. A vol. 20, no. 3, pp. 300-305, 1976.

