
Asymptotic Lower Bounds On The Number Of Bent Functions

Having Odd Many Variables Over Finite Fields of Odd

Characteristic

V. N. Potapov * and Ferruh Özbudak**
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Abstract

Using recent deep results of Keevash et al. [8] and Eberhard et al. [6] together with further
new detailed techniques in combinatorics, we present constructions of two concrete families
of generalized Maiorana-McFarland bent functions. Our constructions improve the lower
bounds on the number of bent functions in n variables over a finite field Fp if p is odd and
n is odd in the limit as n tends to infinity.

Let p be a prime. Let Fp be the finite field with p elements. For a set A, let |A| denote its
cardinality. Let ln(·) be the natural logarithm function.

Bent functions were first introduced by Rothaus in 1976 [14] over F2. In 1985, Kumar et
al. generalized the notion of bent function to arbitrary finite fields [9]. We prefer to introduce
bent functions as a special class of functions, namely, plateaued functions.

For a function f : Fn
p → Fp and α ∈ Fn

p , let f̂ : Fpn → C be the Walsh Transform of f at α
defined as

f̂(α) =
∑
x∈Fn

p

e
2π

√
−1

p
(f(x)−α·x)

,

where α · x is the inner product α1x1 + · · ·+ αnxn of α = (α1, . . . , αn) and x = (x1, . . . , xn).
Let 0 ≤ m be an integer. We say that f is m-plateaued if

|f̂(α)| ∈ {0, p
n+m

2 }

for all α ∈ Fpn . Here | · | denotes the absolute value in complex numbers. Let Supp(f̂) denote

the subset of Fpn consisting of α such that f̂(α) ̸= 0. The following facts (definitions) are well
known (see, for example, [4], [12])

� f is bent if and only if f is 0-plateaued.

� If f is m-plateaued, then |Supp(f̂)| = pn−m.

It seems we have rather limited knowledge in construction of plateaued functions over ar-
bitrary finite field (see, for example, [3], [7]). A direct, but still very powerful construction
of a strict subclass of plateaued functions is for the class of partially bent functions [2]. If
f : Fps → Fp is a bent function, then for any integer m ≥ 1, the function

g : Fps × Fpm → Fp

(x, y) 7→ f(x)

is a partially bent function and m-plateaued function in m+s many variables over Fp. Moreover,
given any affine space U1 of dimension s in Fm+s

q , it is easy to modify g to g1 such that Supp(ĝ1)
is U1.



Bent functions and plateaued functions are central objects for a variety of topics related to
cryptography, coding theory and combinatorics. We refer, for example, to [4], [11], [12] and the
references therein for further information.

It is an interesting open problem to count bent functions, even for rather moderate values
of n (see, [10], [13]). Hence the asymptotic number of bent functions is a natural and actually
difficult problem to consider (see [13] and the references therein).

Let M♯(p, n) denote the family of completed Maiorana-McFarland bent functions in n vari-
ables over Fp. Note that n is even if p = 2.

The following are well known (see, for example, [4], [12] and [13]):

� Case n is even:

ln
∣∣∣M♯(p, n)

∣∣∣ = n

2
pn/2 ln(p) (1 + o(1)) (1)

as n → ∞ and n is even.

� Case n is odd:

ln
∣∣∣M♯(p, n)

∣∣∣ = n− 1

2
p(n−1)/2 ln(p) (1 + o(1)) (2)

as n → ∞ and n is odd.

Here and throughout the paper o(·) stands for the small o notation as n → ∞.
Let B(p, n) denote the family of bent functions in n variables over Fp. Let GMM(p, n)

denote the family of generalized Maiorana-McFarland bent functions in n variables over Fp (see
[1] and [5]). Note that the notions of completed Maiorana-McFarland bent functions (see [4])
and generalized Maiorana-McFarland bent functions are different.

We have the obvious bound that

|B(p, n)| ≥ |GMM(p, n)|. (3)

In [13], the authors obtain that, if p = 2, then

ln (|GMM(p, n)|) ≥ 3

4
npn/2 ln(p) (1 + o(1)) (4)

as n → ∞ and n is even.
In particular they improve the lower bound in (1) so that the coefficient of the main term

npn/2 ln(p) is increased from 1
2 to 3

4 .
Combining (3) and (4) we obtain an asymptotic lower bound on the number of bent functions

over F2, which is the best known asymptotic lower bound on the number of bent functions over
F2.

The methods of [13] do not generalize to odd characteristic. In this paper we improve (2)
and we obtain an asymptotic lower bounds on the number of bent functions in odd n variables
over Fp as n → ∞ and p is odd.

We construct two families of generalized bent functions using two different methods related
to the results of [8] and [6], respectively.

Using results of [8] and further detailed techniques we prove our first main result in the
following.

Theorem 0.1 Let p be an odd prime. There exists a sequence of odd integers n (moreover
n ≡ 3 mod 4), n → ∞ and a corresponding sequence of families F1(n) of generalized Maiorana-
McFarland bent functions in n variables over Fp satisfying

ln (|F1(n)|) ≥
npn/2
√
p

(
1− 1

2(p2 − 1)

)
ln(p)(1 + o(1))

as n → ∞.



We present a sketch of the proof of Theorem 0.1 in Section 2 below.

Remark 0.2 In Theorem 0.1, we improve the lower bound in (2) by increasing the coeffi-

cient of the main term npn/2 ln(p) from 1
2
√
p to 1√

p

(
1− 1

2(p2−1)

)
. Note that if p = 3, then

1√
p

(
1− 1

2(p2−1)

)
= 1√

3
15
16 . This also gives an improved lower bound in the number of bent

functions over Fp for odd number of variables n using (3) in the limit as n → ∞ if p > 3.

Using results of [6] and further different detailed techniques we prove our second main result
in the following.

Theorem 0.3 Recall that F3 is the finite field with 3 elements. There exists a sequence of
odd integers n → ∞ and a corresponding sequence of families F2(n) of generalized Maiorana-
McFarland bent functions in n variables over F3 satisfying

ln (|F2(n)|) ≥
n3n/2√

3
ln(3)(1 + o(1))

as n → ∞.

We present a sketch of the proof of Theorem 0.3 in Section 3 below.

Remark 0.4 In Theorem 0.3, we improve the lower bound in Theorem 0.1 (and hence the lower
bound in (2) by increasing the coefficient of the main term n3n/2 ln(3) from 1√

3
15
16 to 1√

3
. This

also gives an improved lower bound in the number of bent functions over F3 for odd number of
variables n using (3) in the limit as n → ∞.

1 Why do we use only partially bent functions?

In this section we explain why we only use partially bent functions and not arbitrary plateaued
functions shortly. Let s ≥ 1 be an integer. Let n1 ≥ 1 be a variable integer which runs and
tends infinity over a sequence. We construct bent functions with 2n1 + s many variables over
Fp. Hence our number of variables tends to infinity as n1 tends to infinity.

Let P = (A1, . . . , Apn1 ) be an ordered partition of Fpn1+s into subsets of size exactly ps. We
will need a huge number of such partitions that we can control.

By control we mean the following. Given such P, we need to design a corresponding ordered
set of n1-plateaued functions (g1, . . . , gpn1 ) such that gi : Fps+n1 → Fp and

Supp(ĝi) = Ai (5)

for each 1 ≤ i ≤ pn1 .
Let ϕ : Fpn1 → {1, 2, . . . , pn1} be a fixed bijection. A generalized Maiorana-McFarland bent

function in (2n1 + s) variables over Fp is defined as (see [1], [5])

f : Fs+n1
p × Fn1

p → Fp

(y, z) 7→ gϕ(z)(y).

If (A1, . . . , Apn1 ) and (B1, . . . , Bpn1 ) are two distinct ordered partitions of Fpn1+s into subsets
of size exactly ps, i.e. Ai ̸= Bi for at least one i, then independent from the corresponding ordered
set of n1-plateaued functions (provided they exist), the constructed bent functions fA and fB in
(2n1+s) variables are distinct. Moreover assume that we fix an ordered partition (A1, . . . , Apn1 )
of Fpn1+s into subsets of size exactly ps. Assume also that there are two corresponding ordered
set of n1-plateaued functions (g1, . . . , gpn1 ) and (h1, . . . , hpn1 ) such that gi, hi : Fps+n1 → Fp and

Supp(ĝi) = Supp(ĥi) = Ai (6)



for each 1 ≤ i ≤ pn1 . Then if gi ̸= hi for some i, then the constructed bent functions fg and fh
in (2n1 + s) variables are distinct.

An important problem is to have a large number of such partitions P that we make sure
existence of a large number of corresponding ordered sequences of n1-plateaued functions.

We know sufficiently large number of such partitions using affine subspaces of Fpn1+s of
dimension s. This implies that we use only partially bent functions [2]. It is still not an easy
problem to count even this particular subject as n1 tends to infinity. We use methods from [8],
[6] together with many new and further techniques to have a good asymptotic lower bound. It
seems difficult to improve these asymptotic lower bounds making also use of non partially bent
but plateaued functions.

2 Sketch of proof of Theorem 0.1

Let s ≥ 1 be an integer. Let m be an integer such that (s + 1) | m. Recall that a spread S of
dimension (s + 1) in Fpm is a collection of (s + 1)-dimensional subspaces of Fpm such that any
one dimensional subspace of Fpm lies in exactly one of the elements of S. Note that S should

have exactly 1+p+···+pm−1

1+p+···+ps many elements. As m → ∞ and (s+ 1) | m, Keevash et al. [8] proved
existence of M1(s,m) many spreads such that

ln (M1(s,m)) = pm−s−1(m− 1)s ln(p)(1 + o(1))

as m → ∞.
Take m = n1 + s+ 1. Using an hyperplane restriction of these spreads and using also more

techniques from perfect matchings we obtain that the number M2(s, n1) of ordered partitions of
Fpn1+s into s dimensional affine subspaces satisfies

ln (M2(s, n1)) ≥
(
pn1 − δ(s)pn1−s−1

)
(n1 + s)s ln(p)(1 + o(1)) + pn1n1 ln(p)(1 + o(1)) (7)

as n1 → ∞. Here δ(s) = ps+1

(ps+1−1)
.

Using generalized Maiorana-McFarland construction and (7) we obtain that the number
M3(s, n1) of bent functions in (2n1 + s) variables gives

ln(M3(s, n1)) ≥ pn1

(
n1s+ n1 + s2 − (n1 + s)sδ(s)

ps+1

)
ln(p)(1 + o(1))

as n1 → ∞. Putting s = 1 we complete the proof.

3 Sketch of proof of Theorem 0.3

Using results of Eberhald et al. [6] we obtain exact number of transversals of the Cayley table
of Fn

3 . This implies that the number M4(m) of unordered partitions of F3m into 1-dimensional
affine subspaces satisfies

ln(M4(m)) ≥ 3m−1m ln(3)− 2 · 3m−1 ln(3)(1 + o(1)) (8)

as m → ∞. Take m = n1 + 1. Using generalized Maiorana-McFarland construction and (8) we
obtain that the number M5(n1) of (2n1 + 1)-variable bent functions over F3 satisfies

ln(M5(n1)) ≥ 3n12n1 ln(3)(1 + o(1))

as n1 → ∞. This completes the proof.
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