Asymptotic Lower Bounds On The Number Of Bent Functions Having Odd Many Variables Over Finite Fields of Odd Characteristic

V. N. Potapov^{*} and Ferruh Özbudak^{**}

^{*}Sobolev Institute of Mathematics, Novosibirsk, Russia e-mail: vpotapov@math.nsc.ru ^{**}Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, and Middle East Technical University, 06800, Ankara, Turkey, e-mail:ozbudak@metu.edu.tr

Abstract

Using recent deep results of Keevash et al. [8] and Eberhard et al. [6] together with further new detailed techniques in combinatorics, we present constructions of two concrete families of generalized Maiorana-McFarland bent functions. Our constructions improve the lower bounds on the number of bent functions in n variables over a finite field \mathbb{F}_p if p is odd and n is odd in the limit as n tends to infinity.

Let p be a prime. Let \mathbb{F}_p be the finite field with p elements. For a set A, let |A| denote its cardinality. Let $\ln(\cdot)$ be the natural logarithm function.

Bent functions were first introduced by Rothaus in 1976 [14] over \mathbb{F}_2 . In 1985, Kumar et al. generalized the notion of bent function to arbitrary finite fields [9]. We prefer to introduce bent functions as a special class of functions, namely, plateaued functions.

For a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ and $\alpha \in \mathbb{F}_p^n$, let $\hat{f} : \mathbb{F}_{p^n} \to \mathbb{C}$ be the Walsh Transform of f at α defined as

$$\hat{f}(\alpha) = \sum_{x \in \mathbb{F}_p^n} e^{\frac{2\pi\sqrt{-1}}{p}(f(x) - \alpha \cdot x)},$$

where $\alpha \cdot x$ is the inner product $\alpha_1 x_1 + \cdots + \alpha_n x_n$ of $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $x = (x_1, \ldots, x_n)$. Let $0 \le m$ be an integer. We say that f is *m*-plateaued if

$$|\hat{f}(\alpha)| \in \{0, p^{\frac{n+m}{2}}\}$$

for all $\alpha \in \mathbb{F}_{p^n}$. Here $|\cdot|$ denotes the absolute value in complex numbers. Let $\operatorname{Supp}(\hat{f})$ denote the subset of \mathbb{F}_{p^n} consisting of α such that $\hat{f}(\alpha) \neq 0$. The following facts (definitions) are well known (see, for example, [4], [12])

- f is bent if and only if f is 0-plateaued.
- If f is m-plateaued, then $|\operatorname{Supp}(\hat{f})| = p^{n-m}$.

It seems we have rather limited knowledge in construction of plateaued functions over arbitrary finite field (see, for example, [3], [7]). A direct, but still very powerful construction of a strict subclass of plateaued functions is for the class of partially bent functions [2]. If $f: \mathbb{F}_{p^s} \to \mathbb{F}_p$ is a bent function, then for any integer $m \geq 1$, the function

$$\begin{array}{rcccc} g: \mathbb{F}_{p^s} \times \mathbb{F}_{p^m} & \to & \mathbb{F}_p \\ & (x, y) & \mapsto & f(x) \end{array}$$

is a partially bent function and *m*-plateaued function in m+s many variables over \mathbb{F}_p . Moreover, given any affine space U_1 of dimension s in \mathbb{F}_q^{m+s} , it is easy to modify g to g_1 such that $\operatorname{Supp}(\hat{g}_1)$ is U_1 .

Bent functions and plateaued functions are central objects for a variety of topics related to cryptography, coding theory and combinatorics. We refer, for example, to [4], [11], [12] and the references therein for further information.

It is an interesting open problem to count bent functions, even for rather moderate values of n (see, [10], [13]). Hence the asymptotic number of bent functions is a natural and actually difficult problem to consider (see [13] and the references therein).

Let $\mathcal{M}^{\sharp}(p, n)$ denote the family of completed Maiorana-McFarland bent functions in n variables over \mathbb{F}_p . Note that n is even if p = 2.

The following are well known (see, for example, [4], [12] and [13]):

• Case n is even:

$$\ln \left| \mathcal{M}^{\sharp}(p,n) \right| = \frac{n}{2} p^{n/2} \ln(p) \left(1 + o(1) \right)$$
(1)

as $n \to \infty$ and n is even.

• Case n is odd:

$$\ln \left| \mathcal{M}^{\sharp}(p,n) \right| = \frac{n-1}{2} p^{(n-1)/2} \ln(p) \left(1 + o(1)\right)$$
(2)

as $n \to \infty$ and n is odd.

Here and throughout the paper $o(\cdot)$ stands for the small o notation as $n \to \infty$.

Let $\mathcal{B}(p,n)$ denote the family of bent functions in n variables over \mathbb{F}_p . Let $\mathcal{GMM}(p,n)$ denote the family of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_p (see [1] and [5]). Note that the notions of completed Maiorana-McFarland bent functions (see [4]) and generalized Maiorana-McFarland bent functions are different.

We have the obvious bound that

$$|\mathcal{B}(p,n)| \ge |\mathcal{GMM}(p,n)|. \tag{3}$$

In [13], the authors obtain that, if p = 2, then

$$\ln\left(\left|\mathcal{GMM}(p,n)\right|\right) \ge \frac{3}{4}np^{n/2}\ln(p)\left(1+o(1)\right) \tag{4}$$

as $n \to \infty$ and n is even.

In particular they improve the lower bound in (1) so that the coefficient of the main term $np^{n/2}\ln(p)$ is increased from $\frac{1}{2}$ to $\frac{3}{4}$.

Combining (3) and (4) we obtain an asymptotic lower bound on the number of bent functions over \mathbb{F}_2 , which is the best known asymptotic lower bound on the number of bent functions over \mathbb{F}_2 .

The methods of [13] do not generalize to odd characteristic. In this paper we improve (2) and we obtain an asymptotic lower bounds on the number of bent functions in odd n variables over \mathbb{F}_p as $n \to \infty$ and p is odd.

We construct two families of generalized bent functions using two different methods related to the results of [8] and [6], respectively.

Using results of [8] and further detailed techniques we prove our first main result in the following.

Theorem 0.1 Let p be an odd prime. There exists a sequence of odd integers n (moreover $n \equiv 3 \mod 4$), $n \to \infty$ and a corresponding sequence of families $\mathcal{F}_1(n)$ of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_p satisfying

$$\ln\left(|\mathcal{F}_1(n)|\right) \ge \frac{np^{n/2}}{\sqrt{p}} \left(1 - \frac{1}{2(p^2 - 1)}\right) \ln(p)(1 + o(1))$$

as $n \to \infty$.

We present a sketch of the proof of Theorem 0.1 in Section 2 below.

Remark 0.2 In Theorem 0.1, we improve the lower bound in (2) by increasing the coefficient of the main term $np^{n/2}\ln(p)$ from $\frac{1}{2\sqrt{p}}$ to $\frac{1}{\sqrt{p}}\left(1-\frac{1}{2(p^2-1)}\right)$. Note that if p = 3, then $\frac{1}{\sqrt{p}}\left(1-\frac{1}{2(p^2-1)}\right) = \frac{1}{\sqrt{3}}\frac{15}{16}$. This also gives an improved lower bound in the number of bent functions over \mathbb{F}_p for odd number of variables n using (3) in the limit as $n \to \infty$ if p > 3.

Using results of [6] and further different detailed techniques we prove our second main result in the following.

Theorem 0.3 Recall that \mathbb{F}_3 is the finite field with 3 elements. There exists a sequence of odd integers $n \to \infty$ and a corresponding sequence of families $\mathcal{F}_2(n)$ of generalized Maiorana-McFarland bent functions in n variables over \mathbb{F}_3 satisfying

$$\ln\left(|\mathcal{F}_2(n)|\right) \ge \frac{n3^{n/2}}{\sqrt{3}}\ln(3)(1+o(1))$$

as $n \to \infty$.

We present a sketch of the proof of Theorem 0.3 in Section 3 below.

Remark 0.4 In Theorem 0.3, we improve the lower bound in Theorem 0.1 (and hence the lower bound in (2) by increasing the coefficient of the main term $n3^{n/2}\ln(3)$ from $\frac{1}{\sqrt{3}}\frac{15}{16}$ to $\frac{1}{\sqrt{3}}$. This also gives an improved lower bound in the number of bent functions over \mathbb{F}_3 for odd number of variables n using (3) in the limit as $n \to \infty$.

1 Why do we use only partially bent functions?

In this section we explain why we only use partially bent functions and not arbitrary plateaued functions shortly. Let $s \ge 1$ be an integer. Let $n_1 \ge 1$ be a variable integer which runs and tends infinity over a sequence. We construct bent functions with $2n_1 + s$ many variables over \mathbb{F}_p . Hence our number of variables tends to infinity as n_1 tends to infinity.

Let $\mathcal{P} = (A_1, \ldots, A_{p^{n_1}})$ be an ordered partition of $\mathbb{F}_{p^{n_1+s}}$ into subsets of size exactly p^s . We will need a huge number of such partitions that we can control.

By control we mean the following. Given such \mathcal{P} , we need to design a corresponding ordered set of n_1 -plateaued functions $(g_1, \ldots, g_{p^{n_1}})$ such that $g_i : \mathbb{F}_{p^{s+n_1}} \to \mathbb{F}_p$ and

$$\operatorname{Supp}(\hat{g}_i) = A_i \tag{5}$$

for each $1 \leq i \leq p^{n_1}$.

Let $\phi : \mathbb{F}_{p^{n_1}} \to \{1, 2, \dots, p^{n_1}\}$ be a fixed bijection. A generalized Maiorana-McFarland bent function in $(2n_1 + s)$ variables over \mathbb{F}_p is defined as (see [1], [5])

$$\begin{array}{rccc} f: \mathbb{F}_p^{s+n_1} \times \mathbb{F}_p^{n_1} & \to & \mathbb{F}_p \\ (y, z) & \mapsto & g_{\phi(z)}(y). \end{array}$$

If $(A_1, \ldots, A_{p^{n_1}})$ and $(B_1, \ldots, B_{p^{n_1}})$ are two distinct ordered partitions of $\mathbb{F}_{p^{n_1+s}}$ into subsets of size exactly p^s , i.e. $A_i \neq B_i$ for at least one *i*, then independent from the corresponding ordered set of n_1 -plateaued functions (provided they exist), the constructed bent functions f_A and f_B in $(2n_1+s)$ variables are distinct. Moreover assume that we fix an ordered partition $(A_1, \ldots, A_{p^{n_1}})$ of $\mathbb{F}_{p^{n_1+s}}$ into subsets of size exactly p^s . Assume also that there are two corresponding ordered set of n_1 -plateaued functions $(g_1, \ldots, g_{p^{n_1}})$ and $(h_1, \ldots, h_{p^{n_1}})$ such that $g_i, h_i : \mathbb{F}_{p^{s+n_1}} \to \mathbb{F}_p$ and

$$\operatorname{Supp}(\hat{g}_i) = \operatorname{Supp}(\hat{h}_i) = A_i \tag{6}$$

for each $1 \leq i \leq p^{n_1}$. Then if $g_i \neq h_i$ for some *i*, then the constructed bent functions f_g and f_h in $(2n_1 + s)$ variables are distinct.

An important problem is to have a large number of such partitions \mathcal{P} that we make sure existence of a large number of corresponding ordered sequences of n_1 -plateaued functions.

We know sufficiently large number of such partitions using affine subspaces of $\mathbb{F}_{p^{n_1+s}}$ of dimension s. This implies that we use only partially bent functions [2]. It is still not an easy problem to count even this particular subject as n_1 tends to infinity. We use methods from [8], [6] together with many new and further techniques to have a good asymptotic lower bound. It seems difficult to improve these asymptotic lower bounds making also use of non partially bent but plateaued functions.

2 Sketch of proof of Theorem 0.1

Let $s \ge 1$ be an integer. Let m be an integer such that $(s + 1) \mid m$. Recall that a spread S of dimension (s + 1) in \mathbb{F}_{p^m} is a collection of (s + 1)-dimensional subspaces of \mathbb{F}_{p^m} such that any one dimensional subspace of \mathbb{F}_{p^m} lies in exactly one of the elements of S. Note that S should have exactly $\frac{1+p+\dots+p^{m-1}}{1+p+\dots+p^s}$ many elements. As $m \to \infty$ and $(s + 1) \mid m$, Keevash et al. [8] proved existence of $M_1(s, m)$ many spreads such that

$$\ln (M_1(s,m)) = p^{m-s-1}(m-1)s\ln(p)(1+o(1))$$

as $m \to \infty$.

Take $m = n_1 + s + 1$. Using an hyperplane restriction of these spreads and using also more techniques from perfect matchings we obtain that the number $M_2(s, n_1)$ of ordered partitions of $\mathbb{F}_{n^{n_1+s}}$ into s dimensional affine subspaces satisfies

$$\ln\left(M_2(s,n_1)\right) \ge \left(p^{n_1} - \delta(s)p^{n_1 - s - 1}\right)\left(n_1 + s\right)s\ln(p)(1 + o(1)) + p^{n_1}n_1\ln(p)(1 + o(1)) \tag{7}$$

as $n_1 \to \infty$. Here $\delta(s) = \frac{p^{s+1}}{(p^{s+1}-1)}$.

Using generalized Maiorana-McFarland construction and (7) we obtain that the number $M_3(s, n_1)$ of bent functions in $(2n_1 + s)$ variables gives

$$\ln(M_3(s,n_1)) \ge p^{n_1} \left(n_1 s + n_1 + s^2 - \frac{(n_1 + s)s\delta(s)}{p^{s+1}} \right) \ln(p)(1 + o(1))$$

as $n_1 \to \infty$. Putting s = 1 we complete the proof.

3 Sketch of proof of Theorem 0.3

Using results of Eberhald et al. [6] we obtain exact number of transversals of the Cayley table of \mathbb{F}_3^n . This implies that the number $M_4(m)$ of unordered partitions of \mathbb{F}_{3^m} into 1-dimensional affine subspaces satisfies

$$\ln(M_4(m)) \ge 3^{m-1} m \ln(3) - 2 \cdot 3^{m-1} \ln(3)(1+o(1)) \tag{8}$$

as $m \to \infty$. Take $m = n_1 + 1$. Using generalized Maiorana-McFarland construction and (8) we obtain that the number $M_5(n_1)$ of $(2n_1 + 1)$ -variable bent functions over \mathbb{F}_3 satisfies

$$\ln(M_5(n_1)) \ge 3^{n_1} 2n_1 \ln(3)(1+o(1))$$

as $n_1 \to \infty$. This completes the proof.

References

- S. Agievich. Bent rectangles. Boolean functions in cryptology and information security, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 18, pp. 3–22, Amsterdam, 2008.
- [2] C. Carlet. Partially-bent functions. Advances in cryptology 'CRYPTO '92 (Santa Barbara, CA, 1992), 280-291, Lecture Notes in Comput. Sci., 740, Springer, Berlin, 1993.
- [3] C. Carlet. Boolean and vectorial plateaued functions and APN functions. *IEEE Transac*tions on Information Theory, vol. 61, no. 11. pp. 6272–6289, 2015.
- [4] C. Carlet. Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021.
- [5] A.Çesmelioğlu, W. Meidl and A. Pott. Generalized Maiorana-McFarland class and normality of *p*-ary bent functions. *Finite Fields and Their Applications*, vol. 24, pp. 105–117, 2013.
- [6] S. Eberhard, F. Manners and R. Mrazovic. An asymptotic for the Hall-Paige conjecture. Advances in Mathematics, Part A, Paper No. 108423, 73 pp, 2022.
- S. Hodžić, E. Pasalic, Y. Wei, F. Zhang. Designing plateaued Boolean functions in Spectral Domain and Their Classification. *IEEE Transactions on Information Theory*, vol. 65, no. 9. pp. 5865–5879, 2019.
- [8] P. Keevash, M. Sah and M. Sawhney. The existence of subspace designs. arXiv: 2212.00870, 61 pp, 2022.
- P. V. Kumar, R. A. Scholtz, L. R. Welch, "Generalized bent functions and their properties", J. Combinatorial Theory Ser. A vol. 40, no. 1, pp. 90–107, 1985.
- P. Langevin and G. Leander. Counting all bent functions in dimension eight 99270589265934370305785861242880. Designs, Codes and Cryptography, vol. 59, no. 1-3, pp. 193-205, 2011.
- [11] W. Meidl. A survey on p-ary and generalized bent functions. Cryptography and Communications, vol. 14, pp. 737–782, 2022.
- [12] S. Mesnager. Bent Functions. Fundamentals and Results, Springer International Publishing, 2016.
- [13] V. N. Potapov, A. A. Taranenko and Yu. V. Tarannikov. An asymptotic lower bound on the number of bent functions. *Designs, Codes and Cryptography*, 2023. DOI: 10.1007/s10623-023-01239-z
- [14] O. S. Rothaus "On 'bent' functions" J. Combinatorial Theory Ser. A vol. 20, no. 3, pp. 300–305, 1976.