On bent functions satisfying the dual bent condition

Alexandr Polujan ${ }^{1}$, Enes Pasalic ${ }^{2}$, Sadmir Kudin ${ }^{2}$, Fengrong Zhang ${ }^{3,4}$
${ }^{1}$ Otto-von-Guericke-Universität, Universitätsplatz 2, 39106, Magdeburg, Germany
alexandr.polujan@gmail.com
${ }^{2}$ University of Primorska, FAMNIT \& IAM, Glagoljaška 8, 6000 Koper, Slovenia \{enes.pasalic6@gmail.com, sadmir.kudin@iam.upr.si\}
${ }^{3}$ State Key Laboratory of Integrated Services Networks, Xidian University, Xian 710071, P.R. China
${ }^{4}$ Mine Digitization Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
zhfl203@163.com

Abstract

For a concatenation of four bent functions $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$, the necessary and sufficient condition that f is bent is that the dual bent condition is satisfied [5, Theorem III.1], i.e., $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1$. However, specifying four bent functions satisfying this duality condition is in general quite a difficult task. Commonly, to simplify this problem, certain connections between f_{i} are assumed such as the one considered originally in [4] and later analyzed in [2]. Among them, is the construction method of bent functions satisfying the dual bent condition using the permutations of \mathbb{F}_{2}^{m} with the $\left(\mathcal{A}_{m}\right)$ property [2, Theorem 7]. In this paper, we generalize this result and provide a construction of new permutations with the $\left(\mathcal{A}_{m}\right)$ property from the old ones. Combining these two results, we obtain a recursive construction method of bent functions satisfying the dual bent condition. Consequently, we provide a condition on the functions $f_{1}, f_{2}, f_{3}, f_{4}$, such that obtained with our approach bent functions are not equivalent to Maiorana-McFarland ones. Finally, with our construction method, we explain how one can construct homogeneous cubic bent functions, of which constructions only very few are known.

Keywords: Boolean bent function, dual bent condition, Maiorana-McFarland class, bent 4 -concatenation, equivalence.

1 Preliminaries

Let $n=2 m$ and let \mathcal{B}_{n} denote the set of Boolean functions in n variables. A function $f \in \mathcal{B}_{n}$ is called bent, if for all non-zero $a \in \mathbb{F}_{2}^{n}$ the first-order derivatives $D_{a} f(x)=f(x+a)+f(x)$ are balanced. Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ be four bent functions satisfying the dual bent condition. Then the function $f=f_{1}| | f_{2}\left\|f_{3}\right\| f_{4} \in \mathcal{B}_{n+2}$ defined by

$$
\begin{equation*}
f\left(z, z_{n+1}, z_{n+2}\right)=f_{1}(z)+z_{n+1}\left(f_{1}+f_{3}\right)(z)+z_{n+2}\left(f_{1}+f_{2}\right)(z)+z_{n+1} z_{n+2}\left(f_{1}+f_{2}+f_{3}+f_{4}\right)(z) \tag{1.1}
\end{equation*}
$$

is bent and called the bent 4-concatenation of $f_{1}, f_{2}, f_{3}, f_{4}$, see [1]. As the following result shows, the dual bent condition could be satisfied [2] by using Maiorana-McFarland bent functions arising from permutations with the $\left(\mathcal{A}_{m}\right)$ property [6], which means that for three permutations π_{i} of \mathbb{F}_{2}^{m}, we have that $\pi_{1}+\pi_{2}+\pi_{3}=\pi$ is also a permutation and $\pi^{-1}=\pi_{1}^{-1}+\pi_{2}^{-1}+\pi_{3}^{-1}$.

Theorem 1.1. [2, Theorem 7] Let $f_{j}(x, y)=\operatorname{Tr}\left(x \pi_{j}(y)\right)+h_{j}(y)$ for $j \in\{1,2,3\}$ and $x, y \in \mathbb{F}_{2^{m}}$, where the permutations π_{j} satisfy the condition $\left(\mathcal{A}_{m}\right)$. If the functions h_{j} satisfy

$$
\begin{equation*}
h_{1}\left(\pi_{1}^{-1}(x)\right)+h_{2}\left(\pi_{2}^{-1}(x)\right)+h_{3}\left(\pi_{3}^{-1}(x)\right)+\left(h_{1}+h_{2}+h_{3}\right)\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(x)\right)=1 \tag{1.2}
\end{equation*}
$$

then f_{1}, f_{2}, f_{3} satisfy $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1$, where $f_{1}+f_{2}+f_{3}=f_{4}$.

2 Constructing bent functions satisfying the dual bent condition recursively

First, we provide a generalization of Theorem 1.1. We omit the proof of this statement in order to explain in detail those results, which are more technical.

Theorem 2.1. Let $f_{j}(x, y)=\operatorname{Tr}\left(x \pi_{j}(y)\right)+h_{j}(y)$ for $j \in\{1,2,3\}$ and $x, y \in \mathbb{F}_{2^{m}}$ with $n=2 m$, where the permutations π_{j} satisfy the condition $\left(\mathcal{A}_{m}\right)$, and let $s \in \mathcal{B}_{m}$. Define a function $h_{4} \in \mathcal{B}_{m}$ as $h_{4}=h_{1}+h_{2}+h_{3}+s$ and a bent function $f_{4} \in \mathcal{B}_{n}$ as $f_{4}=f_{1}+f_{2}+f_{3}+s$. If the functions h_{j} satisfy

$$
\begin{equation*}
h_{1}\left(\pi_{1}^{-1}(x)\right)+h_{2}\left(\pi_{2}^{-1}(x)\right)+h_{3}\left(\pi_{3}^{-1}(x)\right)+h_{4}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(x)\right)=1 \tag{2.1}
\end{equation*}
$$

then $f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is bent.
In the following example, we show the existence of permutations π_{i} and functions h_{i} with $h_{4} \neq h_{1}+h_{2}+h_{3}$ satisfying the conditions of Theorem 2.1.
Example 2.2. Define the permutations π_{i} on \mathbb{F}_{2}^{4} as follows:

$$
\begin{aligned}
& \pi_{1}(y)=\left(\begin{array}{c}
y_{1}+y_{2}+y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4} \\
y_{1}+y_{1} y_{2}+y_{3}+y_{2} y_{3}+y_{2} y_{4} \\
y_{1} y_{2}+y_{3}+y_{1} y_{3}+y_{2} y_{4}+y_{3} y_{4} \\
y_{1}+y_{3}+y_{1} y_{3}+y_{2} y_{3}+y_{4}+y_{1} y_{4}+y_{2} y_{4}
\end{array}\right), \pi_{2}(y)=\pi_{1}(y)+\left(\begin{array}{c}
y_{2}+y_{3}+y_{4} \\
1+y_{2}+y_{3}+y_{4} \\
y_{1}+y_{3} \\
y_{1}+y_{3}
\end{array}\right), \\
& \pi_{3}(y)=\pi_{1}(y)+\left(\begin{array}{c}
y_{1}+y_{4} \\
y_{1}+y_{2} \\
1+y_{1}+y_{2} \\
1+y_{1}+y_{4}
\end{array}\right), \pi_{4}(y)=\left(\pi_{1}+\pi_{2}+\pi_{3}\right)(y) .
\end{aligned}
$$

The algebraic normal forms of the functions h_{i} are given as follows:

$$
\begin{aligned}
& h_{1}(y)=y_{1} y_{3} y_{4}, \quad h_{2}(y)=y_{2} y_{3}+y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}+y_{1} y_{3} y_{4}, \\
& h_{3}(y)=y_{1} y_{3}+y_{2} y_{3}+y_{3} y_{4}+y_{1} y_{3} y_{4}, \quad h_{4}(y)=\left(h_{1}+h_{2}+h_{3}\right)(y)+s(y),
\end{aligned}
$$

where $s(y)=y_{1}+y_{2}+y_{4}$. One can check that the defined above permutations π_{i} of \mathbb{F}_{2}^{4}, satisfy the $\left(\mathcal{A}_{4}\right)$ property. Moreover, the condition (2.1) is satisfied as well, and thus by Theorem 2.1, we have that $f_{1}| | f_{2}| | f_{3}| | f_{4} \in \mathcal{B}_{10}$ is bent for bent functions $f_{i}(x, y)=x \cdot \pi_{i}(y)+h_{i}(y)$, where $x, y \in \mathbb{F}_{2}^{4}$.

Now, we show that as soon as a single example of such permutations π_{i} on \mathbb{F}_{2}^{m} and Boolean functions h_{i} on \mathbb{F}_{2}^{m} is found (here m is a fixed integer), then one can always construct many such examples on \mathbb{F}_{2}^{k}, where $k>m$ is an arbitrary integer.
Lemma 2.3. Let σ_{1}, σ_{2} be permutations of \mathbb{F}_{2}^{m}. Define the function $\pi: \mathbb{F}_{2}^{m+1} \rightarrow \mathbb{F}_{2}^{m+1}$ by

$$
\pi\left(y, y_{m+1}\right)=\left(y_{m+1} \sigma_{1}(y)+\left(1+y_{m+1}\right) \sigma_{2}(y), y_{m+1}\right), \text { for all } y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2} .
$$

Then, π is a permutation, and its inverse on \mathbb{F}_{2}^{m+1} is given by the permutation ρ on \mathbb{F}_{2}^{m+1}, defined by

$$
\rho\left(y, y_{m+1}\right)=\left(y_{m+1} \sigma_{1}^{-1}(y)+\left(1+y_{m+1}\right) \sigma_{2}^{-1}(y), y_{m+1}\right), \text { for all } y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}
$$

Now we are ready to provide a recursive construction of Maiorana-McFarland bent functions $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}, f_{4}^{\prime} \in \mathcal{B}_{n+2}$ satisfying the condition $\left(f_{1}^{\prime}\right)^{*}+\left(f_{2}^{\prime}\right)^{*}+\left(f_{3}^{\prime}\right)^{*}+\left(f_{4}^{\prime}\right)^{*}=1$ from bent functions $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ satisfying the condition $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}+f_{4}^{*}=1$ using Theorem 2.1.

Proposition 2.4. Let π_{j} for $j \in\{1,2,3\}$ be three permutations on \mathbb{F}_{2}^{m} which satisfy the condition $\left(\mathcal{A}_{m}\right)$. Let σ be a permutation of \mathbb{F}_{2}^{m}. Denote by $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ and let Boolean functions h_{j} on $\mathbb{F}_{2}^{m} j \in\{1,2,3,4\}$ satisfy

$$
h_{1}\left(\pi_{1}^{-1}(y)\right)+h_{2}\left(\pi_{2}^{-1}(y)\right)+h_{3}\left(\pi_{3}^{-1}(y)\right)+h_{4}\left(\pi_{4}^{-1}(y)\right)=1 .
$$

Define four permutations ϕ_{i} on \mathbb{F}_{2}^{m+1} as

$$
\phi_{i}\left(y, y_{m+1}\right)=\left\{\begin{array}{ll}
\left(\pi_{i}(y), 1\right) & \text { if } y_{m+1}=1 \\
(\sigma(y), 0) & \text { if } y_{m+1}=0
\end{array}, \quad \text { for all } y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}\right.
$$

and four Boolean functions h_{i}^{\prime} on \mathbb{F}_{2}^{m+1} as follows

$$
\begin{aligned}
& h_{i}^{\prime}\left(y, y_{m+1}\right)=y_{m+1} h_{i}(y) \text { for } i \in\{1,2,3\}, \\
& h_{4}^{\prime}\left(y, y_{m+1}\right)=y_{m+1} h_{4}(y)+y_{m+1}+1 .
\end{aligned}
$$

Then, the following hold.

1. Permutations $\phi_{1}, \phi_{2}, \phi_{3}$ satisfy the condition $\left(\mathcal{A}_{m}\right)$.
2. Functions h_{j}^{\prime} satisfy

$$
h_{1}^{\prime}\left(\phi_{1}^{-1}\left(y, y_{m+1}\right)\right)+h_{2}^{\prime}\left(\phi_{2}^{-1}\left(y, y_{m+1}\right)\right)+h_{3}^{\prime}\left(\phi_{3}^{-1}\left(y, y_{m+1}\right)\right)+h_{4}^{\prime}\left(\phi_{4}^{-1}\left(y, y_{m+1}\right)\right)=1
$$

for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$, where $\phi_{4}=\phi_{1}+\phi_{2}+\phi_{3}$.
3. Boolean functions $f_{j}^{\prime}\left(x^{\prime}, y^{\prime}\right)=\operatorname{Tr}\left(x^{\prime} \phi_{j}\left(y^{\prime}\right)\right)+h_{j}^{\prime}\left(y^{\prime}\right)$ for $j \in\{1,2,3,4\}$ and $x^{\prime}, y^{\prime} \in \mathbb{F}_{2}^{m+1}$ are bent, moreover, $f_{1}^{\prime}\left\|f_{2}^{\prime}\right\| f_{3}^{\prime} \| f_{4}^{\prime} \in \mathcal{B}_{n+2}$ is bent as well.
Proof. 1. The property $\left(\mathcal{A}_{m}\right)$ means that for three permutations ϕ_{i} on \mathbb{F}_{2}^{m+1}, we have that $\phi_{1}+\phi_{2}+\phi_{3}=\phi_{4}$ is also a permutation and $\phi_{4}^{-1}=\phi_{1}^{-1}+\phi_{2}^{-1}+\phi_{3}^{-1}$. First, we show that ϕ_{4} is a permutation. By definition of ϕ_{4}, we get that for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$ holds

$$
\phi_{4}\left(y, y_{m+1}\right)=\left\{\begin{array}{ll}
\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)(y), 1\right) & \text { if } y_{m+1}=1 \\
(\sigma(y), 0) & \text { if } y_{m+1}=0
\end{array} .\right.
$$

Since $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$ is a permutation, we get that ϕ_{4} is a permutation as well. Now, we show that $\phi_{4}^{-1}=\phi_{1}^{-1}+\phi_{2}^{-1}+\phi_{3}^{-1}$. By Lemma 2.3, we have that for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$ holds

$$
\phi_{4}^{-1}\left(y, y_{m+1}\right)=\left(\phi_{1}^{-1}+\phi_{2}^{-1}+\phi_{3}^{-1}\right)\left(y, y_{m+1}\right),
$$

from what follows that permutations $\phi_{1}, \phi_{2}, \phi_{3}$ satisfy the condition $\left(\mathcal{A}_{m}\right)$.
2. Observe that for $j \in\{1,2,3\}$, we have that for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$ holds

$$
h_{i}^{\prime}\left(\phi_{i}^{-1}\left(y, y_{m+1}\right)\right)=\left\{\begin{array}{ll}
h_{i}^{\prime}\left(\phi_{i}^{-1}(y, 1)\right) & \text { if } y_{m+1}=1 \\
h_{i}^{\prime}\left(\phi_{i}^{-1}(y, 0)\right) & \text { if } y_{m+1}=0
\end{array}= \begin{cases}h_{i}\left(\pi_{i}^{-1}(y)\right) & \text { if } y_{m+1}=1 \\
0 & \text { if } y_{m+1}=0\end{cases}\right.
$$

Similarly, one can show that for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$ holds

$$
h_{4}^{\prime}\left(\phi_{i}^{-1}\left(y, y_{m+1}\right)\right)=\left\{\begin{array}{ll}
h_{4}^{\prime}\left(\phi_{4}^{-1}(y, 1)\right) & \text { if } y_{m+1}=1 \\
h_{4}^{\prime}\left(\phi_{4}^{-1}(y, 0)\right) & \text { if } y_{m+1}=0
\end{array}=\left\{\begin{array}{ll}
h_{4}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right) & \text { if } y_{m+1}=1 \\
1 & \text { if } y_{m+1}=0
\end{array} .\right.\right.
$$

Finally, for all $y \in \mathbb{F}_{2}^{m}, y_{m+1} \in \mathbb{F}_{2}$, we consider the sum

$$
\sum_{i=1}^{4} h_{i}^{\prime}\left(\phi_{i}^{-1}\left(y, y_{m+1}\right)\right)= \begin{cases}\sum_{i=1}^{3} h_{i}\left(\phi_{i}^{-1}(y)\right)+h_{4}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right) & \text { if } y_{m+1}=1 \\ 1 & \text { if } y_{m+1}=0\end{cases}
$$

since $h_{1}\left(\pi_{1}^{-1}(y)\right)+h_{2}\left(\pi_{2}^{-1}(y)\right)+h_{3}\left(\pi_{3}^{-1}(y)\right)+h_{4}\left(\left(\pi_{1}+\pi_{2}+\pi_{3}\right)^{-1}(y)\right)=1$ holds for all $y \in \mathbb{F}_{2}^{m}$. 3. The statement follows immediately from Theorem 2.1.

3 Analysis of the obtained construction method

Recall that the set of all bent functions, which are extended-affine equivalent to functions of the form $f(x, y)=x \cdot \pi(y)+h(y)$ for $x, y \in \mathbb{F}_{2}^{m}$, where π is a permutation of \mathbb{F}_{2}^{m}, and $h \in \mathcal{B}_{m}$ is an arbitrary Boolean function is called the completed Maiorana-McFarland class and denoted by $\mathcal{M}^{\#}$. It is well-known [3] that a bent function $f \in \mathcal{B}_{n}$ belongs to the $\mathcal{M}^{\#}$ iff there exists a vector space U of dimension m, such that $D_{a} D_{b} f=0$ for all $a, b \in U$; such a vector space is called [10] an \mathcal{M}-subspace of a bent function $f \in \mathcal{M}^{\#}$. Note that if $f \in \mathcal{M}$, then at least one \mathcal{M}-subspace of f has the form $U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$, which we call the canonical \mathcal{M}-subspace of f.

Since in the bent 4-concatenation we consider bent functions $f_{i} \in \mathcal{B}_{n}$ in $\mathcal{M}^{\#}$, it is essential to specify the conditions on these functions such that the resulting function $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in$ \mathcal{B}_{n+2} is outside $\mathcal{M}^{\#}$. Otherwise one just gets a complicated construction method of bent functions in $\mathcal{M}^{\#}$. For this purpose, we will use the following description of \mathcal{M}-subspaces of $f=f_{1} \| f_{2}| | f_{3}| | f_{4} \in \mathcal{B}_{n+2}$.

Proposition 3.1. [9] Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{B}_{n}$ be four Boolean functions (not necessarily bent), such that $f=f_{1}| | f_{2}\left\|f_{3}\right\| f_{4} \in \mathcal{B}_{n+2}$ is a bent function in $\mathcal{M}^{\#}$. Let $W \subset \mathbb{F}_{2}^{n+2}$ be an \mathcal{M}-subspace of f. Then, there exists an $\left(\frac{n}{2}-1\right)$-dimensional subspace V of \mathbb{F}_{2}^{n} such that $V \times\{(0,0)\}$ is a subspace of W, and such that for all $i=1, \ldots, 4$ the equality $D_{a} D_{b} f_{i}=0$ holds for all $a, b \in V$.

For the main result of this section, we will also need to define the $\left(P_{1}\right)$ property, which was recently introduced in [9] for specifying Maiorana-McFarland bent functions with the unique canonical \mathcal{M}-subspace. We say that the mapping $\pi: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ has the property $\left(P_{1}\right)$ if $D_{v} D_{w} \pi \neq$ 0_{m} for all linearly independent $v, w \in \mathbb{F}_{2}^{m}$.

Theorem 3.2. Let $n=2 m$ for $m>3$ and define three bent functions $f_{i}(x, y)=x \cdot \pi_{i}(y)+h_{i}(y)$, with $x, y \in \mathbb{F}_{2}^{m}$, for $i=1, \ldots, 3$, where π_{i} satisfies the property $\left(P_{1}\right)$ and additionally $\pi_{1}+\pi_{2}$ satisfies the property $\left(P_{1}\right)$, and furthermore we assume that the components of $\pi_{1}+\pi_{2}$ do not admit linear structures. Define $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4}$ where $f_{4}(x, y)=f_{1}(x, y)+f_{2}(x, y)+f_{3}(x, y)+$ $s(y)$ (consequently $\left.h_{4}=h_{1}+h_{2}+h_{3}+s\right)$ using suitable h_{i} so that the dual bent condition in (2.1) is satisfied. Then, the functions f_{i} share the unique canonical \mathcal{M}-subspace $U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$ and furthermore bent function $f \in \mathcal{B}_{n+2}$ is outside \mathcal{M} \#. In particular, the same conclusion is valid when $s(y)=0$.

Proof. Denoting $a=\left(a^{\prime}, a^{(1)}, a^{(2)}\right)$ and $b=\left(b^{\prime}, b^{(1)}, b^{(2)}\right)$ and $a^{\prime}, b^{\prime} \in \mathbb{F}_{2}^{n}$ and $a^{(i)}, b^{(i)} \in \mathbb{F}_{2}$, the second-order derivative of f is given by $D_{a} D_{b} f\left(x, y_{1}, y_{2}\right)=$

$$
\begin{align*}
& =D_{a^{\prime}} D_{b^{\prime}} f_{1}(x)+y_{1} D_{a^{\prime}} D_{b^{\prime}} f_{13}(x)+y_{2} D_{a^{\prime}} D_{b^{\prime}} f_{12}(x)+y_{1} y_{2} D_{a^{\prime}} D_{b^{\prime}} f_{1234}(x) \\
& +a^{(1)} D_{b^{\prime}} f_{13}\left(x+a^{\prime}\right)+b^{(1)} D_{a^{\prime}} f_{13}\left(x+b^{\prime}\right)+a^{(2)} D_{b^{\prime}} f_{12}\left(x+a^{\prime}\right)+b^{(2)} D_{a^{\prime}} f_{12}\left(x+b^{\prime}\right) \\
& +\left(a^{(1)} y_{2}+a^{(2)} y_{1}+a^{(1)} a^{(2)}\right) D_{b^{\prime}} f_{1234}\left(x+a^{\prime}\right)+\left(b^{(1)} y_{2}+b^{(2)} y_{1}+b^{(1)} b^{(2)}\right) \tag{3.1}\\
& \times D_{a^{\prime}} f_{1234}\left(x+b^{\prime}\right)+\left(a^{(1)} b^{(2)}+b^{(1)} a^{(2)}\right) f_{1234}\left(x+a^{\prime}+b^{\prime}\right),
\end{align*}
$$

where $f_{i_{1} \ldots i_{k}}:=f_{i_{1}}+\cdots+f_{i_{k}}$. Since $D_{u} D_{v} \pi_{i}(y) \neq 0$ for any nonzero $u \neq v \in \mathbb{F}_{2}^{m}$ (as π_{i} satisfies the property $\left(P_{1}\right)$, the functions f_{i} share the unique canonical \mathcal{M}-subspace $U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$. For convenience, we denote $a^{\prime}=\left(a_{1}, a_{2}\right)$ and $b^{\prime}=\left(b_{1}, b_{2}\right)$, where $a_{i}, b_{i} \in \mathbb{F}_{2}^{m}$. W.l.o.g. we assume that $D_{a_{2}} D_{b_{2}}\left(\pi_{1}(y)+\pi_{2}(y)\right) \neq 0$ for any $a_{2}, b_{2} \in \mathbb{F}_{2}^{m}\left(a_{2}, b_{2} \neq 0\right.$ and distinct $)$, and the term $y_{2} D_{a^{\prime}} D_{b^{\prime}} f_{12}(x, y)$ in (3.1) cannot be canceled unless $a_{2}=0$ or $b_{2}=0$ or $a_{2}=b_{2}$, which is due to the fact that (same can be deduced for $D_{\left(a_{1}, a_{2}\right)} D_{\left(b_{1}, b_{2}\right)} f_{13}(x, y)$)

$$
\begin{align*}
D_{\left(a_{1}, a_{2}\right)} D_{\left(b_{1}, b_{2}\right)} f_{12}(x, y) & =x \cdot\left(D_{a_{2}} D_{b_{2}}\left(\pi_{1}(y)+\pi_{2}(y)\right)\right)+a_{1} \cdot D_{b_{2}}\left(\pi_{1}+\pi_{2}\right)\left(y+a_{2}\right) \tag{3.2}\\
& +b_{1} \cdot D_{a_{2}}\left(\pi_{1}+\pi_{2}\right)\left(y+b_{2}\right)+D_{a_{2}} D_{b_{2}} h_{12}(y) .
\end{align*}
$$

Thus, for any $a=\left(a_{1}, a_{2}, a^{(1)}, a^{(2)}\right)$ and $b=\left(b_{1}, b_{2}, b^{(1)}, b^{(2)}\right)$ in some $(m+1)$-dimensional subspace W of $\mathbb{F}_{2}^{2 m+2}$, we necessarily have that either $a_{2}=0$ or $b_{2}=0$, alternatively $a_{2}=b_{2}$.

Since the functions f_{i} share the unique canonical \mathcal{M}-subspace $U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$, any other subspace V of $\mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{m}$ for which $D_{a^{\prime}} D_{b^{\prime}} f_{i}(x, y)=0$ for all $a^{\prime}, b^{\prime} \in V$ must have dimension less than m. By Proposition 3.1, if f defined on $\mathbb{F}_{2}^{2 m+2}$ belongs to $\mathcal{M}^{\#}$ then for any \mathcal{M}-subspace W of f of dimension $m+1$ there must exist $V \subset \mathbb{F}_{2}^{2 m}$ of dimension $m-1$ such that $D_{a} D_{b} f_{i}=0$ for all $i=1, \ldots, 4$ and any $a, b \in V$. Furthermore, $V \times(0,0)$ is a subspace of W. There are only two possibilities for V, i.e., either $V \subset U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$ or $V \not \subset U$.

We first consider the case that $V \subset U=\mathbb{F}_{2}^{m} \times\left\{0_{m}\right\}$, where $\operatorname{dim}(V)=m-1$. Then, $V \times(0,0) \subset W$ and to extend this subspace to W, we need to adjoin two elements of $\mathbb{F}_{2}^{2 m+2}$, say $u=\left(u_{1}, u_{2}, u^{(1)}, u^{(2)}\right), v=\left(v_{1}, v_{2}, v^{(1)}, v^{(2)}\right) \in \mathbb{F}_{2}^{m} \times \mathbb{F}_{2}^{m} \times \mathbb{F}_{2} \times \mathbb{F}_{2}$, and $u^{\prime}=\left(u_{1}, u_{2}\right), v^{\prime}=\left(v_{1}, v_{2}\right)$. Then, we cannot have the case that $u_{2}=v_{2}=0_{m}$ since this would imply that f_{12} on \mathbb{F}_{2}^{n} has an \mathcal{M}-subspace of dimension $n / 2+1$ which is impossible (see for instance [8]). On the other hand, if $u_{2} \neq v_{2} \neq 0$ then again $y_{1} D_{u^{\prime}} D_{v^{\prime}} f_{12}(x, y)$ cannot be canceled in (3.1). W.l.o.g. we assume that $u_{2}=0$ and $v_{2} \neq 0$, which implies that $U \times(0,0) \subset W$. Hence, $W=\langle U \times(0,0), v\rangle$, where $v_{2} \neq 0$. Notice that the case $u_{2}=v_{2}$, which also might lead to $D_{u^{\prime}} D_{v^{\prime}} f_{12}(x, y)=0$, reduces to this case since $u_{2}+v_{2}=0$ and then $u^{\prime}+v^{\prime} \in U$. Now, we note that in $W=\langle U \times(0,0), v\rangle$ there must exist an element $z=\left(z^{\prime}, 0,0\right)$ such that $z_{1}=v_{1}$ and consequently $z^{\prime}+v^{\prime}=\left(0_{m}, v_{2}\right)$. Considering (3.2), and replacing $a^{\prime} \rightarrow z^{\prime}=\left(v_{1}, 0_{m}\right)$ and $b^{\prime} \rightarrow\left(0_{m}, v_{2}\right)$, we have that only the term $v_{1} \cdot D_{b_{2}}\left(\pi_{1}+\pi_{2}\right)(y)$ remains, which cannot be zero due to our assumption that the components of $\pi_{1}+\pi_{2}(y)$ do not admit linear structures.

The second case arises when $V \not \subset U$, where $\operatorname{dim}(V)=m-1$. Hence, V contains at least one element $a^{\prime}=\left(a_{1}, a_{2}\right) \notin U$, so that $a_{2} \neq 0$. If V contains one more element not in U, say b^{\prime}, then $D_{a^{\prime}} D_{b^{\prime}} f_{12}(x, y) \neq 0$ and consequently $D_{a} D_{b} f\left(x, y, y_{1}, y_{2}\right) \neq 0$. If V does not contain one more element which is not in U, then it can be extended to U (by replacing a^{\prime} with some $\left(u_{1}, 0_{m}\right)$) and the above arguments apply.

Monomial permutations satisfying the $\left(\mathcal{A}_{m}\right)$ property were specified in [7]. We show that in a small number of variables, it is possible to find suitable functions h_{i}, such that the conditions of Theorem 3.2 are satisfied.

Theorem 3.3. [7] Let $m \geq 3$ be an integer and $d^{2} \equiv 1 \bmod 2^{m}-1$. Let π_{i} be three permutations of \mathbb{F}_{2}^{m} defined by $\pi_{i}(y)=\alpha_{i} y^{d}$, for $i=1,2,3$, where $\alpha_{i} \in \mathbb{F}_{2^{m}}^{*}$ are pairwise distinct elements such that $\alpha_{i}^{d+1}=1$ and $\alpha_{4}^{d+1}=1$ where $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then, the permutations π_{i} satisfy the property $\left(\mathcal{A}_{m}\right)$ and furthermore π_{i} are involutions as well as $\pi_{4}=\pi_{1}+\pi_{2}+\pi_{3}$.

Example 3.4. Let $m=4$ and the multiplicative group of $\mathbb{F}_{2^{4}}$ be given by $\mathbb{F}_{2^{4}}^{*}=\langle a\rangle$, where the primitive element a satisfies $a^{4}+a+1=0$. Let $d=14$, which satisfies $d^{2} \equiv 1 \bmod 15$. Define $\alpha_{1}=a, \alpha_{2}=a^{2}, \alpha_{3}=a^{4}$ and $\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}=a^{8}$. It is possible to check that for $i=1, \ldots, 3$, the defined permutations π_{i} as well as $\pi_{1}+\pi_{2}$ satisfy the property $\left(P_{1}\right)$ and additionally the components of $\pi_{1}+\pi_{2}$ do not admit linear structures. Define the following four Boolean functions $h_{1}(y)=0, h_{2}(y)=\operatorname{Tr}(y), h_{3}(y)=\operatorname{Tr}(a y), h_{4}(y)=\operatorname{Tr}\left(a^{13} y\right)+1$, as well as four bent Maiorana-McFarland bent functions $f_{i}(x, y)=\operatorname{Tr}\left(x \pi_{i}(y)\right)+h_{i}(y)$ for $i=1,2,3,4$, where $x, y \in \mathbb{F}_{2^{3}}$. Note that $h_{1}(y)+h_{2}(y)+h_{3}(y)+h_{4}(y)=s(y)=\operatorname{Tr}\left(a^{11} y\right)+1$, and hence, $f_{4}=f_{1}+f_{2}+f_{3}+s$. Since the functions h_{i} satisfy the condition (2.1) of Theorem 2.1, we have that $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{8}$. By Theorem 3.2, the function f is outside $\mathcal{M}^{\#}$.

Open Problem 3.5. 1. Find explicit infinite families of permutations π_{i} and Boolean functions h_{i} satisfying the conditions of Theorem 2.1. 2. Relax the conditions of Theorem 2.1. The latter question is motivated by the fact that even in $n=6$ variables we were able to find permutations π_{i} and Boolean functions h_{i} in $m=3$ variables, such that the concatenation of corresponding bent functions f_{i} is bent and outside $\mathcal{M}^{\#}$. These examples, however, cannot be covered by Theorem 2.1, since all permutations in 3 variables are quadratic, and hence, their components have linear structures.

4 An application to the design of homogeneous bent functions

A Boolean function is called homogeneous if all the monomials in its ANF have the same algebraic degree. Now, we show how bent functions satisfying the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property can be used for the construction of homogeneous bent functions.

Proposition 4.1. Let $f_{1} \in \mathcal{B}_{n}$ be a homogeneous cubic bent function. Let $q_{1}, q_{2} \in \mathcal{B}_{n}$ be two homogeneous quadratic functions, such that $f_{2}=f_{1}+q_{2}$ and $f_{3}=f_{1}+q_{3}$ are bent, and additionally $f_{1}+f_{2}+f_{3}$ is also bent. Defining $f_{4}=f_{1}+f_{2}+f_{3}+s$ for $s \in \mathcal{B}_{n}$, the function $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{n+2}$ is homogeneous cubic bent iff $f_{1}^{*}+f_{2}^{*}+f_{3}^{*}=\left(f_{1}+f_{2}+f_{3}+s\right)^{*}+1$, where $s \in \mathcal{B}_{n}$ is a linear function.
Example 4.2. Consider the following homogeneous functions $f_{1}, q_{2}, q_{3}, s \in \mathcal{B}_{8}$, which are given by their algebraic normal forms as follows:

$$
\begin{aligned}
f_{1}(z) & =z_{1} z_{2} z_{5}+z_{1} z_{2} z_{8}+z_{1} z_{3} z_{4}+z_{1} z_{3} z_{5}+z_{1} z_{3} z_{6}+z_{1} z_{3} z_{7}+z_{1} z_{4} z_{5}+z_{1} z_{4} z_{7}+z_{1} z_{4} z_{8} \\
& +z_{1} z_{5} z_{8}+z_{1} z_{6} z_{8}+z_{2} z_{3} z_{4}+z_{2} z_{3} z_{5}+z_{2} z_{4} z_{5}+z_{2} z_{4} z_{6}+z_{2} z_{4} z_{8}+z_{2} z_{5} z_{6}+z_{2} z_{6} z_{7} \\
& +z_{2} z_{6} z_{8}+z_{2} z_{7} z_{8}+z_{3} z_{4} z_{6}+z_{3} z_{4} z_{8}+z_{3} z_{5} z_{6}+z_{3} z_{5} z_{7}+z_{3} z_{6} z_{8}+z_{4} z_{7} z_{8}+z_{5} z_{7} z_{7} \\
& +z_{5} z_{6} z_{8}, \\
q_{2}(z) & =z_{1} z_{4}+z_{1} z_{5}+z_{1} z_{7}+z_{5} z_{7}+z_{1} z_{8}+z_{4} z_{8}+z_{6} z_{7}+z_{6} z_{8}+z_{7} z_{8}, \\
q_{3}(z) & =z_{1} z_{3}+z_{1} z_{4}+z_{1} z_{7}+z_{1} z_{8}+z_{2} z_{3}+z_{2} z_{8}+z_{3} z_{5}+z_{3} z_{8}+z_{4} z_{7}+z_{5} z_{6}+z_{6} z_{7}+z_{7} z_{8}, \\
s(z) & =z_{1}+z_{4}+z_{6}+z_{8} .
\end{aligned}
$$

One can check that the functions $f_{1}, q_{2}, q_{3}, s \in \mathcal{B}_{8}$ satisfy the conditions of Proposition 4.1, and hence $f=f_{1}\left\|f_{2}\right\| f_{3} \| f_{4} \in \mathcal{B}_{10}$ constructed as in Proposition 4.1 is homogeneous cubic bent. Notably, there exists a linear non-degenerate transformation $z \mapsto z A$ such that $f_{i}(z A)=$ $x \cdot \pi_{i}(y)+h_{i}(y)$, where permutations π_{i} and Boolean functions h_{i} are defined in Example 2.2, and hence, permutations π_{i} have the $\left(\mathcal{A}_{4}\right)$ property. Finally, we note that the function $f \notin \mathcal{M}^{\#}$ since the functions f_{i} satisfy the conditions of [9, Theorem 5.11].
Open Problem 4.3. Find explicit infinite families of homogeneous bent functions using the dual bent condition and permutations with the $\left(\mathcal{A}_{m}\right)$ property.

References

[1] A. Canteaut, P. Charpin. "Decomposing bent functions". IEEE Transactions on Information Theory, vol. 49, no. 8, pp. 2004-2019 (2003). p. 1.
[2] N. Cepak, E. Pasalic, A. Muratović-Ribić. "Frobenius linear translators giving rise to new infinite classes of permutations and bent functions". Cryptogr. Commun. 11(6): 1275-1295 (2019). p. 1.
[3] J. F. Dillon. "Elementary Hadamard difference sets". Ph.D. dissertation. University of Maryland, USA (1974). p. 4.
[4] S. Hodžić, E. Pasalic, Y. Wei. "A general framework for secondary constructions of bent and plateaued functions". Des. Codes Cryptogr. 88(10): 2007-2035 (2020). p. 1.
[5] S. Hodžić, E. Pasalic, W. G. Zhang. "Generic constructions of five-valued spectra Boolean functions". IEEE Trans. Inf. Theory 65(11): 7554-7565 (2019). p. 1.
[6] S. Mesnager. "Further constructions of infinite families of bent functions from new permutations and their duals". Cryptogr. Commun. 8, 229-246 (2016). p. 1.
[7] S. Mesnager, G. D. Cohen, and D. Madore. "On existence (based on an arithmetical problem) and constructions of bent functions". In: Groth, J. (eds) Cryptography and Coding. IMACC 2015. Lecture Notes in Computer Science, vol 9496. Springer, Cham., (2015). p. 5.
[8] E. Pasalic, A. Bapic, F. Zhang, Y. Wei. "Explicit infinite families of bent functions outside the completed Maiorana-McFarland class". Des. Codes Cryptogr. (2023).p. 5.
[9] E. Pasalic, A. Polujan, S. Kudin, F. Zhang. "Design and analysis of bent functions using \mathcal{M}-subspaces". arXiv preprint arXiv:2304.13432 (2023) pp. 4 and 6.
[10] A. Polujan, A. Pott. "Cubic bent functions outside the completed Maiorana-McFarland class". Des. Codes Cryptogr. 88, 1701-1722 (2020). p. 4.

