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Abstract

For a concatenation of four bent functions f = f1||f2||f3||f4, the necessary and sufficient
condition that f is bent is that the dual bent condition is satisfied [5, Theorem III.1], i.e.,
f∗1 +f∗2 +f∗3 +f∗4 = 1. However, specifying four bent functions satisfying this duality condition
is in general quite a difficult task. Commonly, to simplify this problem, certain connections
between fi are assumed such as the one considered originally in [4] and later analyzed in [2].
Among them, is the construction method of bent functions satisfying the dual bent condition
using the permutations of Fm

2 with the (Am) property [2, Theorem 7]. In this paper, we
generalize this result and provide a construction of new permutations with the (Am) property
from the old ones. Combining these two results, we obtain a recursive construction method
of bent functions satisfying the dual bent condition. Consequently, we provide a condition
on the functions f1, f2, f3, f4, such that obtained with our approach bent functions are not
equivalent to Maiorana-McFarland ones. Finally, with our construction method, we explain
how one can construct homogeneous cubic bent functions, of which constructions only very
few are known.
Keywords: Boolean bent function, dual bent condition, Maiorana-McFarland class, bent
4-concatenation, equivalence.

1 Preliminaries

Let n = 2m and let Bn denote the set of Boolean functions in n variables. A function f ∈ Bn is
called bent, if for all non-zero a ∈ Fn

2 the first-order derivatives Daf(x) = f(x + a) + f(x) are
balanced. Let f1, f2, f3, f4 ∈ Bn be four bent functions satisfying the dual bent condition. Then
the function f = f1||f2||f3||f4 ∈ Bn+2 defined by

f(z, zn+1, zn+2) = f1(z)+zn+1(f1+f3)(z)+zn+2(f1+f2)(z)+zn+1zn+2(f1+f2+f3+f4)(z) (1.1)

is bent and called the bent 4-concatenation of f1, f2, f3, f4, see [1]. As the following result shows,
the dual bent condition could be satisfied [2] by using Maiorana-McFarland bent functions arising
from permutations with the (Am) property [6], which means that for three permutations πi of
Fm
2 , we have that π1 + π2 + π3 = π is also a permutation and π−1 = π−11 + π−12 + π−13 .

Theorem 1.1. [2, Theorem 7] Let fj(x, y) = Tr(xπj(y))+hj(y) for j ∈ {1, 2, 3} and x, y ∈ F2m,
where the permutations πj satisfy the condition (Am). If the functions hj satisfy

h1(π
−1
1 (x)) + h2(π

−1
2 (x)) + h3(π

−1
3 (x)) + (h1 + h2 + h3)((π1 + π2 + π3)

−1(x)) = 1, (1.2)

then f1, f2, f3 satisfy f∗1 + f∗2 + f∗3 + f∗4 = 1, where f1 + f2 + f3 = f4.



2 Constructing bent functions satisfying the dual bent condition
recursively

First, we provide a generalization of Theorem 1.1. We omit the proof of this statement in order
to explain in detail those results, which are more technical.

Theorem 2.1. Let fj(x, y) = Tr (xπj(y)) +hj(y) for j ∈ {1, 2, 3} and x, y ∈ F2m with n = 2m,
where the permutations πj satisfy the condition (Am), and let s ∈ Bm. Define a function h4 ∈ Bm
as h4 = h1 + h2 + h3 + s and a bent function f4 ∈ Bn as f4 = f1 + f2 + f3 + s. If the functions
hj satisfy

h1
(
π−11 (x)

)
+ h2

(
π−12 (x)

)
+ h3

(
π−13 (x)

)
+ h4

(
(π1 + π2 + π3)

−1 (x)
)

= 1, (2.1)

then f1||f2||f3||f4 ∈ Bn+2 is bent.

In the following example, we show the existence of permutations πi and functions hi with
h4 6= h1 + h2 + h3 satisfying the conditions of Theorem 2.1.

Example 2.2. Define the permutations πi on F4
2 as follows:

π1(y) =


y1 + y2 + y1y4 + y2y4 + y3y4
y1 + y1y2 + y3 + y2y3 + y2y4
y1y2 + y3 + y1y3 + y2y4 + y3y4

y1 + y3 + y1y3 + y2y3 + y4 + y1y4 + y2y4

 , π2(y) = π1(y) +


y2 + y3 + y4

1 + y2 + y3 + y4
y1 + y3
y1 + y3

 ,

π3(y) = π1(y) +


y1 + y4
y1 + y2

1 + y1 + y2
1 + y1 + y4

 , π4(y) = (π1 + π2 + π3)(y).

The algebraic normal forms of the functions hi are given as follows:

h1(y) = y1y3y4, h2(y) = y2y3 + y1y4 + y2y4 + y3y4 + y1y3y4,

h3(y) = y1y3 + y2y3 + y3y4 + y1y3y4, h4(y) = (h1 + h2 + h3)(y) + s(y),

where s(y) = y1 + y2 + y4. One can check that the defined above permutations πi of F4
2, satisfy

the (A4) property. Moreover, the condition (2.1) is satisfied as well, and thus by Theorem 2.1,
we have that f1||f2||f3||f4 ∈ B10 is bent for bent functions fi(x, y) = x · πi(y) + hi(y), where
x, y ∈ F4

2.

Now, we show that as soon as a single example of such permutations πi on Fm
2 and Boolean

functions hi on Fm
2 is found (here m is a fixed integer), then one can always construct many

such examples on Fk
2, where k > m is an arbitrary integer.

Lemma 2.3. Let σ1, σ2 be permutations of Fm
2 . Define the function π : Fm+1

2 → Fm+1
2 by

π(y, ym+1) = (ym+1σ1(y) + (1 + ym+1)σ2(y), ym+1) , for all y ∈ Fm
2 , ym+1 ∈ F2.

Then, π is a permutation, and its inverse on Fm+1
2 is given by the permutation ρ on Fm+1

2 ,
defined by

ρ(y, ym+1) =
(
ym+1σ

−1
1 (y) + (1 + ym+1)σ

−1
2 (y), ym+1

)
, for all y ∈ Fm

2 , ym+1 ∈ F2.

Now we are ready to provide a recursive construction of Maiorana-McFarland bent functions
f ′1, f

′
2, f
′
3, f
′
4 ∈ Bn+2 satisfying the condition (f ′1)

∗+ (f ′2)
∗+ (f ′3)

∗+ (f ′4)
∗ = 1 from bent functions

f1, f2, f3, f4 ∈ Bn satisfying the condition f∗1 + f∗2 + f∗3 + f∗4 = 1 using Theorem 2.1.

2



Proposition 2.4. Let πj for j ∈ {1, 2, 3} be three permutations on Fm
2 which satisfy the condition

(Am). Let σ be a permutation of Fm
2 . Denote by π4 = π1 + π2 + π3 and let Boolean functions hj

on Fm
2 j ∈ {1, 2, 3, 4} satisfy

h1
(
π−11 (y)

)
+ h2

(
π−12 (y)

)
+ h3

(
π−13 (y)

)
+ h4

(
π−14 (y)

)
= 1.

Define four permutations φi on Fm+1
2 as

φi(y, ym+1) =

{
(πi(y), 1) if ym+1 = 1

(σ(y), 0) if ym+1 = 0
, for all y ∈ Fm

2 , ym+1 ∈ F2,

and four Boolean functions h′i on Fm+1
2 as follows

h′i(y, ym+1) = ym+1hi(y) for i ∈ {1, 2, 3},
h′4(y, ym+1) = ym+1h4(y) + ym+1 + 1.

Then, the following hold.

1. Permutations φ1, φ2, φ3 satisfy the condition (Am).

2. Functions h′j satisfy

h′1
(
φ−11 (y, ym+1)

)
+ h′2

(
φ−12 (y, ym+1)

)
+ h′3

(
φ−13 (y, ym+1)

)
+ h′4

(
φ−14 (y, ym+1)

)
= 1,

for all y ∈ Fm
2 , ym+1 ∈ F2, where φ4 = φ1 + φ2 + φ3.

3. Boolean functions f ′j(x
′, y′) = Tr (x′φj(y

′)) + h′j(y
′) for j ∈ {1, 2, 3, 4} and x′, y′ ∈ Fm+1

2

are bent, moreover, f ′1||f ′2||f ′3||f ′4 ∈ Bn+2 is bent as well.

Proof. 1. The property (Am) means that for three permutations φi on Fm+1
2 , we have that

φ1 + φ2 + φ3 = φ4 is also a permutation and φ−14 = φ−11 + φ−12 + φ−13 . First, we show that φ4 is
a permutation. By definition of φ4, we get that for all y ∈ Fm

2 , ym+1 ∈ F2 holds

φ4(y, ym+1) =

{
((π1 + π2 + π3)(y), 1) if ym+1 = 1

(σ(y), 0) if ym+1 = 0
.

Since π4 = π1 +π2 +π3 is a permutation, we get that φ4 is a permutation as well. Now, we show
that φ−14 = φ−11 + φ−12 + φ−13 . By Lemma 2.3, we have that for all y ∈ Fm

2 , ym+1 ∈ F2 holds

φ−14 (y, ym+1) = (φ−11 + φ−12 + φ−13 )(y, ym+1),

from what follows that permutations φ1, φ2, φ3 satisfy the condition (Am).
2. Observe that for j ∈ {1, 2, 3}, we have that for all y ∈ Fm

2 , ym+1 ∈ F2 holds

h′i(φ
−1
i (y, ym+1)) =

{
h′i(φ

−1
i (y, 1)) if ym+1 = 1

h′i(φ
−1
i (y, 0)) if ym+1 = 0

=

{
hi(π

−1
i (y)) if ym+1 = 1

0 if ym+1 = 0

Similarly, one can show that for all y ∈ Fm
2 , ym+1 ∈ F2 holds

h′4(φ
−1
i (y, ym+1)) =

{
h′4(φ

−1
4 (y, 1)) if ym+1 = 1

h′4(φ
−1
4 (y, 0)) if ym+1 = 0

=

{
h4((π1 + π2 + π3)

−1(y)) if ym+1 = 1

1 if ym+1 = 0
.

Finally, for all y ∈ Fm
2 , ym+1 ∈ F2, we consider the sum

4∑
i=1

h′i
(
φ−1i (y, ym+1)

)
=


3∑

i=1
hi
(
φ−1i (y)

)
+ h4((π1 + π2 + π3)

−1(y)) if ym+1 = 1

1 if ym+1 = 0

= 1,

since h1
(
π−11 (y)

)
+h2

(
π−12 (y)

)
+h3

(
π−13 (y)

)
+h4((π1 +π2 +π3)

−1(y)) = 1 holds for all y ∈ Fm
2 .

3. The statement follows immediately from Theorem 2.1.
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3 Analysis of the obtained construction method

Recall that the set of all bent functions, which are extended-affine equivalent to functions of the
form f(x, y) = x · π(y) + h(y) for x, y ∈ Fm

2 , where π is a permutation of Fm
2 , and h ∈ Bm is

an arbitrary Boolean function is called the completed Maiorana-McFarland class and denoted
by M#. It is well-known [3] that a bent function f ∈ Bn belongs to the M# iff there exists a
vector space U of dimension m, such that DaDbf = 0 for all a, b ∈ U ; such a vector space is
called [10] an M-subspace of a bent function f ∈ M#. Note that if f ∈ M, then at least one
M-subspace of f has the form U = Fm

2 × {0m}, which we call the canonical M-subspace of f .
Since in the bent 4-concatenation we consider bent functions fi ∈ Bn in M#, it is essential

to specify the conditions on these functions such that the resulting function f = f1||f2||f3||f4 ∈
Bn+2 is outside M#. Otherwise one just gets a complicated construction method of bent
functions in M#. For this purpose, we will use the following description of M-subspaces of
f = f1||f2||f3||f4 ∈ Bn+2.

Proposition 3.1. [9] Let f1, f2, f3, f4 ∈ Bn be four Boolean functions (not necessarily bent),
such that f = f1||f2||f3||f4 ∈ Bn+2 is a bent function in M#. Let W ⊂ Fn+2

2 be an M-subspace
of f . Then, there exists an (n2 − 1)-dimensional subspace V of Fn

2 such that V × {(0, 0)} is a
subspace of W , and such that for all i = 1, . . . , 4 the equality DaDbfi = 0 holds for all a, b ∈ V .

For the main result of this section, we will also need to define the (P1) property, which was
recently introduced in [9] for specifying Maiorana-McFarland bent functions with the unique
canonicalM-subspace. We say that the mapping π : Fm

2 → Fm
2 has the property (P1) ifDvDwπ 6=

0m for all linearly independent v, w ∈ Fm
2 .

Theorem 3.2. Let n = 2m for m > 3 and define three bent functions fi(x, y) = x ·πi(y)+hi(y),
with x, y ∈ Fm

2 , for i = 1, . . . , 3, where πi satisfies the property (P1) and additionally π1 + π2
satisfies the property (P1), and furthermore we assume that the components of π1 + π2 do not
admit linear structures. Define f = f1||f2||f3||f4 where f4(x, y) = f1(x, y) + f2(x, y) + f3(x, y) +
s(y) (consequently h4 = h1+h2+h3+s) using suitable hi so that the dual bent condition in (2.1)
is satisfied. Then, the functions fi share the unique canonical M-subspace U = Fm

2 × {0m} and
furthermore bent function f ∈ Bn+2 is outside M#. In particular, the same conclusion is valid
when s(y) = 0.

Proof. Denoting a = (a′, a(1), a(2)) and b = (b′, b(1), b(2)) and a′, b′ ∈ Fn
2 and a(i), b(i) ∈ F2, the

second-order derivative of f is given by DaDbf(x, y1, y2) =

= Da′Db′f1(x) + y1Da′Db′f13(x) + y2Da′Db′f12(x) + y1y2Da′Db′f1234(x)

+ a(1)Db′f13(x+ a′) + b(1)Da′f13(x+ b′) + a(2)Db′f12(x+ a′) + b(2)Da′f12(x+ b′)

+ (a(1)y2 + a(2)y1 + a(1)a(2))Db′f1234(x+ a′) + (b(1)y2 + b(2)y1 + b(1)b(2))

×Da′f1234(x+ b′) + (a(1)b(2) + b(1)a(2))f1234(x+ a′ + b′),

(3.1)

where fi1...ik := fi1 + · · ·+ fik . Since DuDvπi(y) 6= 0 for any nonzero u 6= v ∈ Fm
2 (as πi satisfies

the property (P1), the functions fi share the unique canonicalM-subspace U = Fm
2 ×{0m}. For

convenience, we denote a′ = (a1, a2) and b′ = (b1, b2), where ai, bi ∈ Fm
2 . W.l.o.g. we assume

that Da2Db2(π1(y) + π2(y)) 6= 0 for any a2, b2 ∈ Fm
2 (a2, b2 6= 0 and distinct), and the term

y2Da′Db′f12(x, y) in (3.1) cannot be canceled unless a2 = 0 or b2 = 0 or a2 = b2, which is due
to the fact that (same can be deduced for D(a1,a2)D(b1,b2)f13(x, y))

D(a1,a2)D(b1,b2)f12(x, y) =x · (Da2Db2(π1(y) + π2(y))) + a1 ·Db2(π1 + π2)(y + a2)

+b1 ·Da2(π1 + π2)(y + b2) +Da2Db2h12(y).
(3.2)

Thus, for any a = (a1, a2, a
(1), a(2)) and b = (b1, b2, b

(1), b(2)) in some (m + 1)-dimensional
subspace W of F2m+2

2 , we necessarily have that either a2 = 0 or b2 = 0, alternatively a2 = b2.
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Since the functions fi share the unique canonical M-subspace U = Fm
2 × {0m}, any other

subspace V of Fm
2 × Fm

2 for which Da′Db′fi(x, y) = 0 for all a′, b′ ∈ V must have dimension less
than m. By Proposition 3.1, if f defined on F2m+2

2 belongs toM# then for anyM-subspace W
of f of dimension m+ 1 there must exist V ⊂ F2m

2 of dimension m− 1 such that DaDbfi = 0 for
all i = 1, . . . , 4 and any a, b ∈ V . Furthermore, V × (0, 0) is a subspace of W . There are only
two possibilities for V , i.e., either V ⊂ U = Fm

2 × {0m} or V 6⊂ U .
We first consider the case that V ⊂ U = Fm

2 × {0m}, where dim(V ) = m − 1. Then,
V × (0, 0) ⊂W and to extend this subspace to W , we need to adjoin two elements of F2m+2

2 , say
u = (u1, u2, u

(1), u(2)), v = (v1, v2, v
(1), v(2)) ∈ Fm

2 ×Fm
2 ×F2×F2, and u′ = (u1, u2), v

′ = (v1, v2).
Then, we cannot have the case that u2 = v2 = 0m since this would imply that f12 on Fn

2 has an
M-subspace of dimension n/2 + 1 which is impossible (see for instance [8]). On the other hand,
if u2 6= v2 6= 0 then again y1Du′Dv′f12(x, y) cannot be canceled in (3.1). W.l.o.g. we assume
that u2 = 0 and v2 6= 0, which implies that U × (0, 0) ⊂ W . Hence, W = 〈U × (0, 0), v〉, where
v2 6= 0. Notice that the case u2 = v2, which also might lead to Du′Dv′f12(x, y) = 0, reduces
to this case since u2 + v2 = 0 and then u′ + v′ ∈ U . Now, we note that in W = 〈U × (0, 0), v〉
there must exist an element z = (z′, 0, 0) such that z1 = v1 and consequently z′ + v′ = (0m, v2).
Considering (3.2), and replacing a′ → z′ = (v1, 0m) and b′ → (0m, v2), we have that only the term
v1 ·Db2(π1 + π2)(y) remains, which cannot be zero due to our assumption that the components
of π1 + π2(y) do not admit linear structures.

The second case arises when V 6⊂ U , where dim(V ) = m− 1. Hence, V contains at least one
element a′ = (a1, a2) 6∈ U , so that a2 6= 0. If V contains one more element not in U , say b′, then
Da′Db′f12(x, y) 6= 0 and consequently DaDbf(x, y, y1, y2) 6= 0. If V does not contain one more
element which is not in U , then it can be extended to U (by replacing a′ with some (u1, 0m))
and the above arguments apply.

Monomial permutations satisfying the (Am) property were specified in [7]. We show that in
a small number of variables, it is possible to find suitable functions hi, such that the conditions
of Theorem 3.2 are satisfied.

Theorem 3.3. [7] Let m ≥ 3 be an integer and d2 ≡ 1 mod 2m−1. Let πi be three permutations
of Fm

2 defined by πi(y) = αiy
d, for i = 1, 2, 3, where αi ∈ F∗2m are pairwise distinct elements

such that αd+1
i = 1 and αd+1

4 = 1 where α4 = α1 + α2 + α3. Then, the permutations πi satisfy
the property (Am) and furthermore πi are involutions as well as π4 = π1 + π2 + π3.

Example 3.4. Let m = 4 and the multiplicative group of F24 be given by F∗24 = 〈a〉, where
the primitive element a satisfies a4 + a + 1 = 0. Let d = 14, which satisfies d2 ≡ 1 mod 15.
Define α1 = a, α2 = a2, α3 = a4 and α4 = α1 + α2 + α3 = a8. It is possible to check that
for i = 1, . . . , 3, the defined permutations πi as well as π1 + π2 satisfy the property (P1) and
additionally the components of π1 +π2 do not admit linear structures. Define the following four
Boolean functions h1(y) = 0, h2(y) = Tr(y), h3(y) = Tr(ay), h4(y) = Tr(a13y) + 1, as well as
four bent Maiorana-McFarland bent functions fi(x, y) = Tr(xπi(y)) + hi(y) for i = 1, 2, 3, 4,
where x, y ∈ F23 . Note that h1(y) + h2(y) + h3(y) + h4(y) = s(y) = Tr(a11y) + 1, and hence,
f4 = f1 + f2 + f3 + s. Since the functions hi satisfy the condition (2.1) of Theorem 2.1, we have
that f = f1||f2||f3||f4 ∈ B8. By Theorem 3.2, the function f is outside M#.

Open Problem 3.5. 1. Find explicit infinite families of permutations πi and Boolean functions
hi satisfying the conditions of Theorem 2.1. 2. Relax the conditions of Theorem 2.1. The latter
question is motivated by the fact that even in n = 6 variables we were able to find permutations
πi and Boolean functions hi in m = 3 variables, such that the concatenation of corresponding
bent functions fi is bent and outside M#. These examples, however, cannot be covered by
Theorem 2.1, since all permutations in 3 variables are quadratic, and hence, their components
have linear structures.
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4 An application to the design of homogeneous bent functions

A Boolean function is called homogeneous if all the monomials in its ANF have the same algebraic
degree. Now, we show how bent functions satisfying the dual bent condition and permutations
with the (Am) property can be used for the construction of homogeneous bent functions.

Proposition 4.1. Let f1 ∈ Bn be a homogeneous cubic bent function. Let q1, q2 ∈ Bn be
two homogeneous quadratic functions, such that f2 = f1 + q2 and f3 = f1 + q3 are bent, and
additionally f1 + f2 + f3 is also bent. Defining f4 = f1 + f2 + f3 + s for s ∈ Bn, the function
f = f1||f2||f3||f4 ∈ Bn+2 is homogeneous cubic bent iff f∗1 + f∗2 + f∗3 = (f1 + f2 + f3 + s)∗ + 1,
where s ∈ Bn is a linear function.

Example 4.2. Consider the following homogeneous functions f1, q2, q3, s ∈ B8, which are given
by their algebraic normal forms as follows:

f1(z) =z1z2z5 + z1z2z8 + z1z3z4 + z1z3z5 + z1z3z6 + z1z3z7 + z1z4z5 + z1z4z7 + z1z4z8

+z1z5z8 + z1z6z8 + z2z3z4 + z2z3z5 + z2z4z5 + z2z4z6 + z2z4z8 + z2z5z6 + z2z6z7

+z2z6z8 + z2z7z8 + z3z4z6 + z3z4z8 + z3z5z6 + z3z5z7 + z3z6z8 + z4z7z8 + z5z6z7

+z5z6z8,

q2(z) =z1z4 + z1z5 + z1z7 + z5z7 + z1z8 + z4z8 + z6z7 + z6z8 + z7z8,

q3(z) =z1z3 + z1z4 + z1z7 + z1z8 + z2z3 + z2z8 + z3z5 + z3z8 + z4z7 + z5z6 + z6z7 + z7z8,

s(z) =z1 + z4 + z6 + z8.

One can check that the functions f1, q2, q3, s ∈ B8 satisfy the conditions of Proposition 4.1,
and hence f = f1||f2||f3||f4 ∈ B10 constructed as in Proposition 4.1 is homogeneous cubic
bent. Notably, there exists a linear non-degenerate transformation z 7→ zA such that fi(zA) =
x · πi(y) + hi(y), where permutations πi and Boolean functions hi are defined in Example 2.2,
and hence, permutations πi have the (A4) property. Finally, we note that the function f /∈M#

since the functions fi satisfy the conditions of [9, Theorem 5.11].

Open Problem 4.3. Find explicit infinite families of homogeneous bent functions using the
dual bent condition and permutations with the (Am) property.
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