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1 Introduction

Bent functions are maximally nonlinear boolean functions with an even number of vari-
ables and are optimal combinatorial objects. In cryptography, bent functions are used in
block ciphers. They are the source of nonlinearity and provide confusion in cryptosystems.
Moreover, bent functions have many theoretical applications in discrete mathematics. Full
classification of bent functions would be very useful for combinatorics and cryptography.
But constructive classifications and enumerations of bent functions in n variables are
likely impossible for large n.

The numbers of n-variable bent functions are only known for n ≤ 8. There exist 8
bent functions for n = 2, 896 for n = 4, approximately 232.3 for n = 6 and 2106.3 for
n = 8 [5]. Thus, lower and upper asymptotic bounds on the number of bent functions
are very interesting. Currently, there exists a drastic gap between the upper and lower
bounds of this number. Let N (n) = log2 |B(n)|, where B(n) is the set of boolean bent
functions in n variables. The best known asymptotic lower bound on the number of
boolean bent functions is proven in [9]. It holds N (n) ≥ 3n

4
2n/2(1+ o(1)) as n is even and

n → ∞. This bound is slightly better than the bound N (n) ≥ n
2
2n/2(1 + o(1)) based on

the Maiorana–McFarland construction of bent functions.
It is well known (see e.g. [2], [4], [6]) that the algebraic degree of a boolean bent function

in n variables is at most n/2. Therefore, N (n) ≤
n/2∑
i=0

(
n
i

)
= 2n−1+ 1

2

(
n

n/2

)
. The bounds in [3]

and [1] are of type N (n) ≤ 2n−1(1+o(1)). A better upper bound N (n) ≤ 3
4
·2n−1(1+o(1))

is proven in [7]. In this paper we improve it. We obtained that N (n) < 11
16
· 2n−1(1+ o(1))

(Theorem 2). Note that Tokareva’s conjecture (see [10] and [6]) of the decomposition of
boolean functions into sums of bent functions implies that N (n) ≥ 1

2
2n−1 + 1

4

(
n

n/2

)
.

The bounds mentioned above are asymptotic. We can use the suggested method to
find a non-asymptotic upper bound. But for fixed n = 6 and n = 8 such bound is greater
than the number of 2

3
· 2n−1 in two times. The main reason of this difference lies in the

cardinality of the middle layer of the n-dimensional boolean cube. This cardinality is
asymptotically negligible, but that is not the case for n = 6 and n = 8.
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The new upper bound on the number of bent functions is based on new asymptotic
upper bound on the number of s-plateaued boolean functions in n variables (Theorem
1). s-Plateaued functions are a generalization of bent functions, which are the same as 0-
plateaued functions. Plateaued functions can combine important cryptographic properties
of nonlinearity and correlation immunity.

The method of the proof of the listed above bounds implies a storage algorithm for
bent and plateaued functions. The number of bits required by the algorithm is equal to
the corresponding upper bound.

2 Walsh–Hadamard transform

Let F = {0, 1}. The set Fn is called a boolean hypercube (or a boolean n-cube). Fn

equipped with coordinate-wise modulo 2 addition⊕ can be considered as an n-dimensional
vector space. Define by 〈x, y〉 = x1y1 ⊕ · · · ⊕ xnyn the inner product of vectors x and y.

Let G be a function that maps from the boolean hypercube to real numbers. Denote
by Ĝ(y) =

∑
x∈Fn

G(x)(−1)⊕〈x,y〉 the Fourier transform of G. We can define the Walsh–

Hadamard transform of a boolean function f : Fn → F by the formula Wf (y) = (̂−1)f (y).
A boolean function b is called a bent function if Wb(y) = ±2n/2 for all y ∈ Fn. It is easy to
see that n-variable bent functions exist only if n is even. A boolean function p is called an
s-plateaued function if Wp(y) = ±2(n+s)/2 or Wp(y) = 0 for all y ∈ Fn. So, bent functions
are 0-plateaued functions. 1-Plateaued functions are called near-bent.

From Parseval’s identity
∑

y∈Fn

Ĥ2(y) = 2n
∑

x∈Fn

H2(x), where H : Fn → C, it follows

straightforwardly:

Proposition 1. For every s-plateaued function, a proportion of nonzero values of its
Walsh–Hadamard transform is equal to 1

2s .

It is well known (see e.g. [2]) that for any function H, G : Fn → C it holds

Ĥ ∗G = Ĥ · Ĝ, (̂Ĥ) = 2nH and 2nH ∗G =
̂̂
H · Ĝ, (1)

where H ∗G(z) =
∑

x∈Fn

H(x)G(z⊕ x) is a convolution. Let Γ be a subspace of hypercube.

Denote by Γ⊥ a dual subspace, i.e., Γ⊥ = {y ∈ Fn : ∀x ∈ Γ, 〈x, y〉 = 0}. Let 1S be
an indicator function for S ⊂ Fn. It is easy to see that for every subspace Γ it holds
1̂Γ⊥ = 2n−dim Γ1Γ. By (1) we have

H ∗ 1Γ⊥ = 2−dim Γ ̂̂
H · 1Γ (2)

for any subspace Γ ⊂ Fn.
Denote by supp(G) = {x ∈ Fn : G(x) 6= 0} a support of G. We need the following

known property of bent functions (see e.g. [6]).

Proposition 2. Let f be an n-variable bent function and let Γ be a hyperplane. Consider
h = f · 1Γ as an (n− 1)-variable function. Then h is a 1-plateaued function.
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3 Möbius transform

Denote by wt(z) a number of units in z ∈ Fn. Every boolean function f can be represented
as a polynomial

f(x1, . . . , xn) =
⊕
y∈Fn

M [f ](y)xy1

1 · · ·xyn
n ,

where x0 = 1, x1 = x, and M [f ] : Fn → F is the Möbius transform of f . Note that
M [M [f ]] = f for each boolean function. The degree of this polynomial is called the
algebraic degree of f .

Denote by b(n, r) the cardinality of a ball Bn,r with radius r in Fn, i.e., b(n, r) =
|{x ∈ Fn : wt(x) ≤ r}|. By properties of the Möbius transform, the number of n-variable
boolean functions with degree deg f ≤ r is equal to 2b(n,r).

Lemma 1 ([7]). Suppose that f and g are n-variable boolean functions and
max{deg(f), deg(g)} ≤ r. If f |Bn,r = g|Bn,r then f = g.

Lemma 2 ([2], Theorem 2). Let f be an n-variable boolean function. Suppose for every

v ∈ Fn it holds (̂−1)f (v) = 2km(v), where m(v) is integer. Then deg(f) ≤ n− k + 1.

Corollary 1 ([2], Proposition 96). The degree of n-variable s-plateaued functions is not
greater than n−s

2
+ 1.

Note that degrees of bent (0-plateaued) functions is n/2 at most (see e.g. [2], [4], [6]).
But for 1-plateaued function the bound n+1

2
is tight.

Proposition 3. Let f be an n-variable bent function. Then for any hyperplane Γ the

degree of the boolean function h = supp( ̂(−1)f · 1Γ) is not greater than n/2.

4 Subspace distribution

We will use the following well-known criterium (see, e.g. [2], Proposition 96).

Lemma 3. An n-variable boolean function f is s-plateaued if and only if
(−1)f ∗ (−1)f ∗ (−1)f = 2n+s(−1)f .

Consider an n-variable s-plateaued boolean function f and any fixed x ∈ Fn. There are
V = (2n−1)(2n−2)

6
2-dimensional affine subspaces which contain x. Let S(x) be a number

of the subspaces that contain an odd number of zero values of f . By Lemma 3 we obtain

Corollary 2. For any fixed x ∈ Fn, S(x)
V

= 1
2
− 1

2
· 2n+s−3·2n+2

(2n−1)(2n−2)
.

Thus we have two equations: S(x)
V

= 1
2

+ 1
2(2n−1−1)

for every bent function and S(x)
V

=
1
2
+ 1

2(2n−1)
for every 1-plateaued function. We will use the following property of bent and

plateaued functions.

Proposition 4 ([2], [4], [6]). Let f : Fn → F be an s-plateaued function, let A : Fn → Fn

be a non-degenerate affine transformation and let ` : Fn → F be an affine function. Then
g = (f ◦ A)⊕ ` is an s-plateaued function.
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Functions f and g from Proposition 4 are called AE-equivalent. It is easy to see that
the cardinality of any equivalence class is not greater than an = 2n2+n+1(1 + o(1)). Note
that two AE-equivalent functions f and g have the same algebraic degree as deg(f) > 1.

There are 8 boolean 2-variable functions such that take value 0 even times. All of
them are affine. 6 of them take value 0 two times and the other take value 0 four or zero
times. Consider a 2-dimensional affine subspace Γ and an n-variable boolean function g.
Let g take value 0 even times on Γ. It is easy to see that 3/4 among functions of the set
{g ⊕ ` : ` is an affine function} take value 0 two times and the other take value 0 four or
zero times. Consequently, from Propositions 2 and 4 we deduced:

Corollary 3. Let Γ be a 2-dimensional face (axes-aligned plane) of the hypercube and let
f : Fn → F be an s-plateaued function. There exists a non-degenerate affine transforma-
tion A and an affine function ` such that the s-plateaued function g = (f ◦A)⊕ ` satisfies
the following conditions.

(a) The number of faces Γ⊕ y, y ∈ Fn, that contain an odd number of zero values of
g, is less than 2n−3.

(b) Among the faces Γ⊕ y, y ∈ Fn, that contain an even number of zero values of g,
not less than one fourth part contain four or zero values 0.

Let p0 be a probability of an even number of zero values in a 2-dimensional face and
let p1 be a probability of an odd number of zero values in a 2-dimensional face. Moreover,
p′0 is the probability of two zero value in a 2-dimensional face and p′0 < 3p0/4. How many
bits on average we need to find four values (−1)g(x) from their sum in a 2-dimensional
face? Under conditions (a) and (b) from the corollary, it is sufficient p′0 log2 6 + 2p1 ≤
1 + 3

8
log2 6 = α ≈ 1.969 bits by Shannon’s theorem.

5 Main results

Denote by ~ Shannon’s entropy function, i.e., ~(p) = −p log p − (1 − p) log(1 − p) for
p ∈ (0, 1). Let N (n, s) be the binary logarithm of the number of n-variable s-plateaued
boolean functions. Since the Walsh–Hadamard transform is a bijection, N (n, s) is not
greater than the number of bits such that is sufficient to identify Wf for an s-plateaued
function f . Therefore, by Shannon’s theorem and Proposition 1 we obtain inequality:

N (n, s) ≤ 2n

(
~(

1

2s
)(1 + o(1)) +

1

2s

)
. (3)

Let N0(n, 1) be the binary logarithm of the number of n-variable 1-plateaued boolean
functions which are obtained by a restriction of (n + 1)-variable bent functions into hy-
perplanes.

Theorem 1. (a) N (n, s) ≤ (αb(n−2, dn−s
2
e+1)+2n−2(~( 1

2s )+ 1
2s ))(1+o(1)) where s > 0

is fixed and n →∞.
(b) N0(n, 1) ≤ b(n− 2, n+1

2
)(α + 3

2
)(1 + o(1)) as n →∞.

The main idea of the proof is the following. Let f be an s-plateaued function. We
count the number of possible restrictions of Wf into (n− 2)-dimensional face by (3). Let

4



we have such restrictions of Wf . By (2) we recover f on the ball with an appropriate
radius. By Corollary 3 and the entropy estimation α we find the number of bits needed
for this recovering. By Lemma 1 and Corollary 1 we restore f in full.

Theorem 2. N (n) ≤ N0(n− 1, 1) + 2n−3(1 + o(1)) ≈ 11
32

2n(1 + o(1)) as n →∞.

The proof is similar to the previous one. By Proposition 2 the restriction of a bent
function into a hyperplane is a 1-plateaued function. We have counted these functions in
Theorem 1 (b). Then we count the number of 1-plateaued function in (n − 1) variables
corresponding to one n-variable bent function. Completed proofs are available in [8].

References

[1] S.V. Agievich, “On the continuation to bent functions and upper bounds on their
number,” Prikl. Diskr. Mat. Suppl., no. 13, 2020, pp. 18–21 (in Russian).

[2] C. Carlet, Boolean Functions for Cryptography and Coding Theory. Cambridge Uni-
versity Press, 562 pages, 2020.

[3] C. Carlet and A. Klapper, “Upper bounds on the number of resilient functions and
of bent functions,” Proceedings of the 23rd Symposium on Information Theory in
the Benelux, Louvain-La-Neuve, Belgium. 2002.

[4] C. Carlet and S. Mesnager, “Four decades of research on bent functions,” Des. Codes
Cryptogr., vol. 78(1), 2016, pp. 5–50.

[5] P. Langevin, G. Leander, P. Rabizzoni, P. Veron, and J.-P. Zanotti. “Counting
all bent functions in dimension eight 99270589265934370305785861242880,” In Des.
Codes Cryptography 59 (1-3), pages 193-205, 2011.

[6] S. Mesnager, Bent Functions: Fundamentals and Results. Springer International Pub-
lishing Switzerland, 2016.

[7] V.N. Potapov, “An Upper Bound on the Number of Bent Functions,” 2021 XVII
International Symposium on Problems of Redundancy in Information and Control
Systems (25-29 October 2021 Moscow, Russia).IEEE, 2021. P. 95–96.

[8] V.N. Potapov, “Upper bounds on the numbers of binary plateaued and bent func-
tions,” DOI:10.48550/arXiv.2303.16547

[9] V.N. Potapov, A.A. Taranenko, Yu.V. Tarannikov, “Asymptotic bounds on numbers
of bent functions and partitions of the Boolean hypercube into linear and affine sub-
spaces,” Designs, Codes and Cryptography, 2023. DOI: 10.1007/s10623-023-01239-z

[10] N. Tokareva, “On the number of bent functions from iterative constructions: lower
bounds and hypothesis,” Adv. Math. Commun., vol. 5(4), 2011, pp. 609–621.

5


