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Abstract

Let M be a square matrix of order n and X a vector of n components, each with complex

entries. We are interested in studying MX = X for some particular M where X denotes the

image of X under complex conjugation. If X ∈ Rn, X is an eigenvector for M associated to

the eigenvalue 1. Here we reduce our study to M = 1√
n
H where HH∗ = nI and the entries

of H and X are in set of the complex kth roots of unity (i.e., H is a Butson Hadamard

matrix). Connections to generalized bent functions are studied.

1 Introduction

A new notion of bent sequences was introduced in [3] as a solution in X,Y to the system

1√
n
HX = Y,

where H is a real Hadamard matrix of order n and X,Y ∈ {±1}n. X is called a bent sequence

for H. If H is the Sylvester Hadamard matrix of order n = 2m then any bent Boolean function

f : Zm
2 → Z2 determines a bent sequence for H by the rule X = (−1)f (and vice versa).

Clearly, the vector Y can also be shown to be a bent sequence attached to HT , called the

dual of X. When X = Y the sequence X is said to be self-dual. In [4] this notion of self-dual

bent sequence for a real Hadamard matrix was further generalized to a n×n Butson-Hadamard

matrix with entries in the set of complex 4-th roots of unity as a solution in X to the system

HX = λX (1)

where λ is an eigenvalue of H and X ∈ {±1,±
√
−1}n.

Bent functions are equivalent to certain Hadamard matrices and difference sets. The concept

has been generalized, yielding equivalences between various associated objects. In Schmidt’s

survey [1] equivalences between generalized bent functions f : Zm
k → Zh, group invariant Butson

Hadamard matrices, and splitting relative difference sets are described.

In this paper, we extend the definition of self-dual bent sequence X for H to any But-

son Hadamard matrix (not only for the 4-th roots of unity) which is “complementary” to the



definition given in [4]. That consists of considering, instead of (1), the system

1√
n
HX = X (or more generally, HX = λX) (2)

where the overline denotes complex conjugation, the entries of H and X belong to the set of

complex kth roots of unity. A solution X of the system (2) is what we understand in this paper

for a self-dual bent sequence for H. We believe that it is a more natural extension from the real

to the complex case. Furthermore, when H and X take values in the set {±1}, we recover the

definition of [3]. Some motivation for the study of this self-duality concept can also be found

in this reference. Finally, it is easy to realize that if H is the complex conjugation of the mth

Kronecker power of the q× q Fourier matrix then any self-dual bent sequence for H determines

a self-dual generalized bent function f : Zm
q → Zq by the rule X = [ζ

f(a)
q ]⊤a∈Zm

q
which we denote

by X = ζfq for convenience.

2 Preliminaries

Let m and k be positive integers, and ζk = exp (2π
√
−1/k) be a complex kth root of unity. We

write ⟨ζk⟩ = {ζjk}0≤j≤k−1. Let Zk be the ring of integers modulo k with k > 1, and denote by

Zm
k the set of m-tuples over Zk. If k is a prime, then Zk is the finite field of k elements. We use

bold notation x = [x1, . . . , xm] ∈ Zm
k to denote vectors (or codewords) in Zm

k . We denote the set

of n × n matrices with entries in a set S by Mn(S) (and in general, the set of m × n matrices

Mm,n(S)). Finally, overline a denotes complex conjugation of the complex number a.

2.1 Butson Hadamard matrices

Let H be a matrix of order n with complex entries of modulus 1. If the rows of H are pair-

wise orthogonal under the Hermitian inner product, then H is a Hadamard matrix. The term

Hadamard matrix is more commonly used in the literature to refer to the special case with

entries in {±1}. In this paper, such a matrix will be call a real Hadamard matrix. A Butson

Hadamard (or simply Butson) matrix of order n and phase k is a matrix H ∈ Mn(⟨ζk⟩) such

that HH∗ = nIn, where In denotes the identity matrix of order n and H∗ denotes the conjugate

transpose of H. We write BH(n, k) for the set of such matrices. The simplest examples of

Butson matrices are the Fourier matrices Fn = [ζ
(i−1)(j−1)
n ]ni,j=1 ∈ BH(n, n). Real Hadamard

matrices of order n, as they are usually defined, are the elements of BH(n, 2). Denote the set

of monomial matrices in Mn(⟨ζk⟩) by Monn(⟨ζk⟩). The phase and orthogonality of a matrix

H ∈ BH(n, k) is preserved by multiplication on the left or right by an element of Monn(⟨ζk⟩) as
well as by complex conjugation, i.e., H ∈ BH(n, k). The action of pairs (P,Q) ∈ Monn(⟨ζk⟩)2

is defined by H(P,Q) = PHQ∗, and this action induces an equivalence relation on BH(n, k). If

H(P,Q) = H ′, then H and H ′ are said to be equivalent.

A matrix is said to be in dephased form if every entry in its first row and first column is

equal to 1. Every matrix can be dephased by using equivalence operations. Throughout this

paper all matrices are assumed to be dephased.

Example 2.1 Let Dq,m be the mth Kronecker power of the q×q Fourier matrix, i.e., (Dq,m)i,j =

ζ
αi−1·αj−1
q , where α0 = (0, . . . , 0), α1 = (0, 0, . . . , 1), . . . , αqm−1 = (q− 1, . . . , q− 1) with αi ∈ Zm

q .

Dq,m ∈ BH(qm, q). When q = 2 this is the well known Sylvester Hadamard matrix of order 2n.
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Let us mention that when q is a prime number, Dq,m is related to the generalized first order

Reed-Muller code Rq(1,m).

2.2 Bent functions and generalizations

The notion of bentness admits various generalizations. We use the one in Schmidt’s survey [1].

For positive integers q,m, h, a map f : Zm
q → Zh is a generalized bent function (GBF) if∣∣∣Wf (w)
∣∣∣2 = qm ∀w ∈ Zm

q ,

where |z| as usual denotes the modulus of z ∈ C and Wf (w) =
∑
x∈Zm

q

ζ
f(x)
h ζ−w·x

q (the so-called

the Walsh-Hadamard transform of f) where w · x is the inner product wx⊤ of w and x. Thus,

a GBF for q = h = 2 and even m is a (Boolean) bent function. For h = q, GBFs exist if m is

even or q ̸≡ 2 mod 4. However, no GBF with h = q, m odd, and q ≡ 2 mod 4 is known.

Remark 2.2 The map f : Zm
q → Zh is a GBF if, and only if, there exists X ∈ Mqm,1(⟨ζh⟩) with

Xi = ζ
f(αi)
h is a solution of the system 1

qm/2Dq,mX = Y for some Y ∈ Mqm,1({y ∈ C : |y| = 1})
(the αi’s and Dq,m are defined in Example 2.1).

For Boolean functions, Wf (w) is always an integer and if it is also bent then Wf (w) =

2m/2(−1)f
⋆(w) for f⋆ : Zm

2 → Z2 called the dual of f . As is well-known, the dual f⋆ is a bent

function as well, and (f⋆)⋆ = f . If f = f⋆, the bent function f is called self-dual.

For q = h an odd prime and f : Zm
q → Zq a GBF, the value of its Walsh-Hadamard transform

satisfies

Wf (w) =

 ±ζ
f⋆(w)
q qm/2 qm = 1 mod 4;

±
√
−1 ζ

f⋆(w)
q qm/2 qm = 3 mod 4,

where f⋆ : Zm
q → Zq, which again is called the dual of f . A GBF f is said to be (γ, u)-self dual

if for all w ∈ Zm
q , Wf (w) = γqm/2ζuf(w)

q where γ ∈ ⟨ζ4⟩ and u ∈ Z∗
q . Here we are interested in

the case γ = 1 and u = −1.

Example 2.3 Let f : Zm
q → Zq with m = 2t be the map

f(x1, . . . , x2t) = x1xt+1 + . . .+ xtx2t

is a (1,−1)-self dual GBF.

Remark 2.4 If we consider X = ζfq where f is the function defined in Example 2.3, then X is

a solution of the system 1
qm/2Dq,mX = X. In other words, X is a self-dual bent sequence for

Dq,m.

The nonlinearity of a map f : Zm
q → Zq is the Hamming distance between f and the set of

the qm+1 affine functions from Zm
q to Zq. When q is a prime, the largest possible nonlinear-

ity, denoted by ρq(m), is the covering radius of the (generalized) first order Reed-Muller code

Rq(1,m) over Zq. For m even and q a prime, we have (see [2])

ρq(m) = qm−1(q − 1)− qm/2−1.
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Boolean (q = 2) bent functions are characterized as the Boolean functions in even dimension

with the largest possible nonlinearity. However, a similar characterization does not apply for

GBF in general (even when q = h an odd prime and m even). For q = h an odd prime, the

nonlinearity of a GBF is known. Here we only mention that the nonlinearity of a (1, u)-self

dual GBF for m even is (q − 1)qm−1 − (q − 1)qm/2−1 (different to ρq(m)). For m odd, the

determination of ρq(m) is an open problem in general.

3 Self-dual bent sequences for Butson matrices

In Remark 2.4, we have seen that for n = qm and k = q there are self-dual bent sequences for

Dq,m when m is even. In this Section, we show further progress on the study of self-dual bent

sequences for Butson matrices.

Firstly, we study necessary conditions of existence for self-dual bent sequences over BH(n, k)

for k = 2, 3 and 4.

Proposition 3.1 If there exists at least one self-dual bent sequence for BH(n, 3) (resp. BH(n, 4)),

then n = 9m2 (resp. n = 4m2) with m a positive integer.

We have checked by computer that there are self-dual bent sequences for, at least, one

element of any of the three matrices in BH(9, 3) up to equivalence.

The necessary condition of existence for self-dual bent sequences for BH(n, 2) is also that

n = 4m2 (see [3]). Let us observe that our definition of self-dual in the real case and the one

given in [3] are the same.

Proposition 3.2 If H ∈ BH(4m2, 4) is of Bush-type, then it has at least 22m self-dual bent

sequences attached to −H.

Secondly, we give more general results on the existence. The methods for obtaining them

are based on some matrix analysis and the orthogonality relations in the matrices.

Proposition 3.3 The map f : Zm
q × Zm

q → Zq defined by ζ
f(αi,αj)
q =

(
Dq,m

)
i,j

is a (1,−1)-self

dual GBF for any integer q > 1. In other words, X = ζfq is a self-dual bent sequence for Dq,2m.

Remark 3.4 The GBF of Proposition 3.3 and Example 2.3 are the same.

Proposition 3.5 If H ∈ BH(n, k) is symmetric then the sequence X(i−1)n+j = (H)i,j is a

self-dual bent sequence for H∗ ⊗H∗.

Example 3.6 Each of the representatives of the three classes of BH(9, 3) posted at

https://www.daneflannery.com/classifying-cocyclic-butson-hadamard-matrices are sym-

metric. The Paley type II elements of BH(n, 2) are symmetric too.

Remark 3.7 The same argument of Proposition 3.5 runs for any symmetric Hadamard matrix.

That is, if C is a Hadamard matrix of order n (i.e, the entries of C belong to the set of complex

numbers of modulus 1 satisfying that CC∗ = nI) which is symmetric, then 1
n

(
C∗ ⊗C∗

)
X = X

where X(i−1)n+j = (C)i,j . Hence, X is a self-dual bent sequence for C∗ ⊗ C∗.
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4 On the covering radius of Butson codes

For the remainder of this section we assume, for convenience, every Butson matrix is represented

in logarithmic form and we are using the Hamming distance.

The covering radius of a Zk-code C of length n is defined by r(C) = maxx∈Zn
k
miny∈C d(x, y).

Let H ∈ BH(n, k). We denote by FH the Zk-code of length n consisting of the rows of H, and we

denote by CH the Zk-code defined as CH = ∪α∈Zk
(FH +α1) where 1 denotes the all-one vector

(and α1 the all-α vector). The code CH over Zk is called a Butson Hadamard code (briefly,

BH-code).

If H ∈ BH(n, k), then the deviation Θ(CH ,x) of an arbitrary vector x ∈ Zn
k from CH is

defined as

Θ(CH ,x) = max{|⟨x,y⟩| : y ∈ CH},

where ⟨x,y⟩ = (ζx1
k , . . . , ζxn

k )(ζy1k , . . . , ζynk )∗ =
∑n

i=1 ζ
xi−yi
k . Then the total deviation of CH is

Θ(CH) = min{Θ(CH ,x) : x ∈ Zn
k}.

Proposition 4.1 Let H ∈ BH(n, 3). Then, CH is a (n, 3n, 2/3n) code and r(CH) ≥ 2/3(n −
Θ(CH)). If there is a bent sequence for H ∈ BH(n, 3), then Θ(CH) =

√
n.

Example 4.2 We can always choose H ∈ BH(9, 3) such that there is a self-dual bent sequence

for H (this is always possible for the three equivalence classes). Then, r(CH) ≥ 4. On the other

hand, the covering radius of the generalized Reed-Muller code R3(1, 2) is 5. Let us point out

that R3(1, 2) and CD3,2 are equivalent.
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