
Optimizing Implementations of Boolean Functions

Meltem Sönmez Turan

National Institute of Standards and Technology

Abstract

Symmetric cryptography primitives are constructed by iterative applications of
linear and nonlinear layers. Constructing efficient circuits for these layers, even for the
linear one, is challenging. In 1997, Paar proposed a heuristic to minimize the number
of XORs (modulo 2 addition) necessary to implement linear layers. In this study,
we slightly modify Paar’s heuristics to find implementations for nonlinear Boolean
functions, in particular to homogeneous Boolean functions. Additionally, we show
how this heuristic can be used to construct circuits for generic Boolean functions with
small number of AND gates, by exploiting affine equivalence relations.

1 Introduction

Symmetric cryptography primitives are constructed by iterative applications of linear and
nonlinear layers. Linear layers are typically composed of binary matrices, and are used
for diffusion, whereas the nonlinear layers are composed of nonlinear substitution boxes
(s-box), and are used for confusion. Constructing efficient circuits for these layers, even
for the linear ones, is challenging. There are various metrics to measure the efficiency of
the circuits such as number of specific gates (e.g., AND, XOR), or the depth of the circuits.

Multiplicative Complexity. The metric Multiplicative Complexity (MC) is defined
as the minimum number of AND gates required to implement a function with a circuit
over the basis {AND, XOR, NOT}. This complexity measure is relevant for many advanced
cryptographic protocols (e.g., [1]), fully homomorphic encryption (e.g., [2]), and zero-
knowledge proofs (e.g., [3]), where processing nonlinear gates such as AND, NAND, is more
expensive than processing linear gates such as XOR. These protocols benefit from new
symmetric-key primitives that can be implemented with small number of AND gates (e.g.,
Rasta [4], LowMC [5]).

There is no known asymptotically efficient technique to compute the MC of a random
Boolean function. In 2000, Boyar et al. [6] showed that the MC of an n-variable random
Boolean function is at least 2n/2−O(n) with high probability. For arbitrary n, it is known
that under standard cryptographic assumptions, it is not possible to compute the MC in
polynomial time in the length of the truth table [7]. The degree bound states that the MC
of a Boolean function having degree d is at least d− 1 [8].

Although there are no efficient techniques to find MC of for random Boolean functions,
the MC distribution has been established for Boolean functions having up to 6 variables
[9, 10]. There are also known techniques specific for Boolean functions with low degree
(e.g., less then or equal to three) or structure (e.g., symmetric). The MC of affine Boolean
functions is zero. Mirwald and Schnorr [11] showed that the MC of a quadratic function
f is k, iff f is affine equivalent to the canonical form

⊕k
i=1 x2i−1x2i. This implies the MC

of quadratic functions is at most ⌊n2 ⌋. Turan and Peralta [12] improved the bounds on



MC of cubic Boolean functions. Brandão et al. [13] studied the MC of symmetric Boolean
functions and constructed circuits for all such functions with up to 25 variables. In 2017,
Find et al. [14] characterized the Boolean functions with MC 2 by using the fact that
MC is invariant with respect to affine transformations. In 2020, Çalık et al. extended the
result to Boolean functions with MC up to 4 [15]. In 2022, Häner and Soeken [16] showed
the MC of interval checking.

XOR complexity. In addition to the optimization of AND gates for Boolean function,
another line of research focuses on optimizing the implementations of linear matrices over
F2, where the goal is to minimize the number of XOR gates necessary to implement the
matrices. There are three metrics used while optimizing the number of XOR gates: direct
XOR (d-XOR), sequential XOR (s-XOR) and general XOR (g-XOR). d-XOR is the direct XOR

count and corresponds to the the number of 1’s in the binary matrix representation of
the linear layer. The s-XOR metric counts the number of XOR operations of the form
xi = xi⊕xj , that updates the value of input xi, whereas, g-XOR metric corresponds to the
number of operations of the form xi = xj ⊕ xk. Determining optimal implementations for
s-XOR and g-XOR is a hard problem. Boyar et al. [17] argue that minimizing the number
of XORs to compute a binary matrix is equivalent to solving the Shortest Linear Program
problem over GF(2), which is known to be NP-hard. One of the early heuristics for XOR
optimization is by Paar[18] in 1997, which is cancellation-free, i.e., the circuits generated
by Paar’s heuristic does not include cancellation of identical input bits. Since ability to
cancellation leads to better circuit, many new heuristics were suggested (e.g., [19, 20, 21]).

Contributions. In this study, we propose a modification to Paar’s heuristics so
that it can also be applied to nonlinear functions, in particular to homogeneous Boolean
functions. Additionally, we show how this heuristic can be used to construct circuits for
generic Boolean functions with small number of AND gates, by exploiting affine equivalance
relations.

2 Preliminaries

2.1 Boolean functions

Let F2 be the finite field with two elements. An n-variable Boolean function f is a mapping
from Fn

2 to F2. Let Bn be the set of n-variable Boolean functions.The algebraic normal
form (ANF) of f is the multivariate polynomial

f(x1, . . . , xn) =
∑
u∈Fn

2

aux
u, (1)

where au ∈ F2 and xu = xu1
1 xu2

2 · · ·xun
n is a monomial containing the variables xi where

ui = 1. The degree of the monomial xu is the number of variables appearing in xu. The
algebraic degree of a Boolean function, denoted deg(f), is the highest degree among the
monomials appearing in its ANF. A Boolean function is called homogeneous, if all the
monomials in its algebraic normal form have the same algebraic degree.

Two functions f, g ∈ Bn are affine equivalent if f can be written as

f(x) = g(Ax+ a) + b⊤x+ c, (2)

where A is a non-singular n×n matrix over F2, a,b are column vectors in Fn
2 , and c ∈ F2.

We use [f ] to denote the affine equivalence class of the function f . Degree and MC are
invariant under affine transformations.



2.2 Boolean Circuits

A Boolean circuit C with n inputs and m outputs is a directed acyclic graph, where the
inputs and the gates are the nodes, and the edges correspond to the Boolean-valued wires.
The fanin and fanout of a node is the number of wires going in and out of the node,
respectively. The nodes with fanin zero are called the input nodes and are labeled with
an input variable from {x0, . . . , xn−1}. The circuits considered in this study only contain
gates from the complete basis {AND, XOR, NOT} and have exactly one node with fanout
zero (i.e., m = 1), which is called the output node. For our purposes, we assume AND gates
have fan-in two, but XOR gates have arbitrary fan-in (i.e., > 0).

2.3 Paar’s Heuristics

The linear layers of symmetric key primitives can be represented by a m×n binary matrix
M , where there are n input variables (x0, . . . , xn−1) andm output variables (y0, . . . , ym−1).
An upper bound for the number of XOR operations is w −m, where w is the weight of M
(i.e., the number of ones).

Paar [18] proposed two heuristics to implement linear layers with small number of
XOR operations. Both heuristics operate on the matrix representation of the linear layer.
The heuristic determines the frequency for each possible pairs of input variable xi, xj
(i ̸= j) that are XORed together in m linear functions. The pair with highest frequency is
computed and placed to the matrix as a new variable. In the next iteration, the operation
is repeated on the matrix of size m× (n+1). This procedure is repeated until all outputs
have been computed (i.e., the weight of the resulting matrix is m).

Example. Let the linear layer to implement be given as follows:

x0 + x1 + x2 = y0

x1 + x3 + x4 = y1

x0 + x2 + x3 + x4 = y2

x1 + x2 + x3 = y3

x0 + x1 + x3 = y4

x1 + x2 + x3 + x4 = y5

The matrix representation of the linear layer is

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

 .


x0
x1
x2
x3
x4

 =



y0
y1
y2
y3
y4
y5


Frequency of each pair of inputs appearing in the linear layer is

Pair Frequency Pair Frequency
(x0, x1) 2 (x1, x3) 4
(x0, x2) 2 (x1, x4) 2
(x0, x3) 2 (x2, x3) 3
(x0, x4) 1 (x2, x4) 2
(x1, x2) 3 (x3, x4) 3



The first selected pair is (x1, x3) with frequency 4. So, the first step of the implementation
is t0 = x1 ⊕ x3. Then the matrix is updated as follows.

1 1 1 0 0 0
0 0 0 0 1 1
1 0 1 1 1 0
0 0 1 0 0 1
1 0 0 0 0 1
0 0 1 0 1 1


and the updated frequency table is

Pair Frequency Pair Frequency
(x0, x1) 1 (x1, t0) 0
(x0, x2) 2 (x2, x3) 1
(x0, x3) 1 (x2, x4) 2
(x0, x4) 1 (x2, t0) 2
(x0, t0) 1 (x3, x4) 1
(x1, x2) 1 (x3, t0) 0
(x1, x3) 0 (x4, t0) 2
(x1, x4) 0 - -

There is a tie for the the pairs (x0, x2), (x2, x4), (x2, t0), and (x4, t0). For this example
the next pair is selected randomly among these pairs as (x0, x2), and the next step of the
implementation becomes t1 = x0 ⊕ x2. Continuing this way, the implementation of the
layer is found as:

t0 = x1 ⊕ x3

t1 = x0 ⊕ x2

t2 = x4 ⊕ t0

t3 = x1 ⊕ t1

t4 = x3 ⊕ x4

t5 = t1 ⊕ t4

t6 = x2 ⊕ t0

t7 = x0 ⊕ t0

t8 = x2 ⊕ t2

The output (y0, y1, y2, y3, y4, y5) is obtained as (t3, t2, t5, t6, t7, t8).

3 Application of Paar’s Heuristic to Nonlinear Boolean Func-
tions

Although Paar’s heuristic is proposed to find implementations for linear layers, it can
also be applied to nonlinear Boolean functions, with a slight modification. An n-variable
Boolean function with m monomials can be represented by a m× n binary matrix, where
each row corresponds to a monomial in the ANF of the function. For example, the follow-
ing row (1 1 0 1 0 1) represents the monomial x0x1x3x5 for a 6-variable Boolean function.
Instead of modulo 2 addition of each terms in the row, we are now interested in mod-
ulo 2 multiplication of each term. This method, in general, would not be efficient (in



terms of number of multiplications), especially for Boolean functions with large number
of monomials, as the heuristic computes each monomials independently.

Next we propose a variation of the heuristic that decomposes Boolean functions into
homogeneous Boolean functions and exploit affine equivalence relations to find efficient
circuits.

Let f ∈ Bn, with degree d. The proposed heuristic to find efficient circuit for f is as
follows:

1. Decompose f into d homogeneous Boolean functions,

f = a+ f1 ⊕ f2 ⊕ . . .⊕ fd,

where fi is the sum of monomials of f with degree i, and a corresponds to the
constant term.

2. Apply a number of affine equivalence transformations to the highest-degree homo-
geneous function, (i.e., fd) to construct f ′

d with smaller number of monomials with
degree d. Note that if d = n, no affine transformation would decrease the number
of monomials, as there is only one monomial with degree n. If f ′

d includes monomi-
als with degree smaller than d, those monomials are added to the corresponding fi
depending on their degree.

3. Apply modified Paar’s heuristic to find an implementation for the degree d terms
of f ′

d. (Note that in modified Paar’s heuristic each iteration corresponds to modulo
2 multiplication, instead of modulo 2 addition.) Apply the inverse affine transfor-
mation to the circuit to construct an implementation for the degree d monomials of
f .

4. Repeat the procedure to find an implementation for f ′
d−1 where f ′

d−1 is the XOR of
fd and the new degree d− 1 monomials generated during Step 2.

5. The procedure is repeated until implementations for each homogoeneous function is
obtained and these sub-circuits are compined to find an implementation for f .

The combined implementations can further be improved by eliminating the common
operations done in each independent implementations of the homogeneous functions.

4 Discussion

In this study, we proposed a modification of the Paar’s heuristic to find efficient implemen-
tations for Boolean functions (in particular to reduce the number of nonlinear gates). In
general, Paar’s heuristic provides better solutions when the representation matrix has low
weight, which may not be true for nonlinear Boolean functions. Decomposing the Boolean
function into homogeneous Boolean functions, and applying affine transformations to the
specific degree terms makes it easier to reduce the number of target monomials, since
smaller degree terms are handled in the next iterations of the algorithm.

References

[1] Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR
Gates and Applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,



Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP, vol-
ume 5126 of Lecture Notes in Computer Science, pages 486–498. Springer, 2008.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
pages 309–325. ACM, 2012.

[3] Joan Boyar, Ivan Damg̊ard, and René Peralta. Short Non-Interactive Cryptographic
Proofs. J. Cryptology, 13(4):449–472, 2000.

[4] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor
Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A Cipher with
Low ANDdepth and Few ANDs per Bit. In CRYPTO (1), volume 10991 of Lecture
Notes in Computer Science, pages 662–692. Springer, 2018.

[5] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 430–454. Springer, 2015.

[6] Joan Boyar, René Peralta, and Denis Pochuev. On the Multiplicative Complexity of
Boolean Functions over the Basis (∧, ⊕, 1). Theor. Comput. Sci., 235(1):43–57, 2000.

[7] Magnus Gausdal Find. On the Complexity of Computing Two Nonlinearity Measures.
In Computer Science - Theory and Applications - 9th International Computer Science
Symposium in Russia, CSR 2014, Moscow, Russia, June 7-11, 2014. Proceedings,
pages 167–175, 2014.

[8] C. P. Schnorr. The Multiplicative Complexity of Boolean Functions. In Teo Mora,
editor, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC
1988), volume 357 of LNCS, pages 45–58, Berlin, Heidelberg, 1989. Springer Berlin
Heidelberg.

[9] Meltem Turan Sönmez and René Peralta. The Multiplicative Complexity of Boolean
Functions on Four and Five Variables, pages 21–33. Springer International Publish-
ing, Cham, 2015.

[10] Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta. The Multiplicative Com-
plexity of 6-variable Boolean Functions. Cryptogr. Commun., 11(1):93–107, 2019.

[11] Roland Mirwald and Claus-Peter Schnorr. The Multiplicative Complexity of
Quadratic Boolean Forms. Theor. Comput. Sci., 102(2):307–328, 1992.

[12] Meltem Sonmez Turan and Rene Peralta. On the Multiplicative Complexity of Cubic
Boolean Functions. The 6th International Workshop on Boolean Functions and their
Applications (BFA), 2021.

[13] Lúıs T. A. N. Brandão, Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta.
Upper Bounds on the Multiplicative Complexity of Symmetric Boolean Functions.
Cryptogr. Commun., 11(6):1339–1362, 2019.



[14] Magnus Gausdal Find, Daniel Smith-Tone, and Meltem Sönmez Turan. The Number
of Boolean Functions with Multiplicative Complexity 2. IJICoT, 4(4):222–236, 2017.

[15] Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta. Boolean Functions with
Multiplicative Complexity 3 and 4. Cryptogr. Commun., 12(5):935–946, 2020.

[16] Thomas Häner and Mathias Soeken. The multiplicative complexity of interval check-
ing, 2022.

[17] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with
applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[18] C. Paar. Optimized arithmetic for Reed-Solomon encoders. Proceedings of IEEE
International Symposium on Information Theory, pages 250–, 1997.

[19] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques for
smaller and faster AES sboxes. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(4):91–125, 2019.

[20] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest linear
programs. In Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in Infor-
mation and Computer Security - 14th International Workshop on Security, IWSEC
2019, Tokyo, Japan, August 28-30, 2019, Proceedings, volume 11689 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2019.

[21] Zejun Xiang, Xiangyoung Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang. Optimiz-
ing implementations of linear layers. IACR Transactions on Symmetric Cryptology,
2020(2):120–145, Jul. 2020.


	Introduction
	Preliminaries
	Boolean functions
	Boolean Circuits
	Paar's Heuristics

	Application of Paar's Heuristic to Nonlinear Boolean Functions
	Discussion

