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Abstract

A Boolean function with good cryptographic properties over a set of vectors with constant
Hamming weight is significant for stream ciphers like FLIP [MJSC16]. This paper presents a
construction for weightwise almost perfectly balanced (WAPB) Boolean functions with good
nonlinearity and good weightwise nonlinearities. We have presented the comparison of nonlin-
earity and weightwise nonlinearities with other available WAPB Boolean functions, which shows
that this class of WAPB functions has the highest nonlinearities.
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1 Introduction

An n-variable Boolean function f is a mapping from the n-dimensional vector space IFn
2 to IF2, where

IF2 is a finite field with two elements {0, 1}. Depending upon the underlying algebraic structure, the ‘+’
symbol is used for the addition operation in both IF2 and R. In stream ciphers, Boolean functions are used
as a filter function for generating pseudorandom sequences; in some block ciphers, these functions are used
to generate round keys. In these classical ciphers, the inputs to the function reach the whole space IFn

2 ,
whereas for reducing multiplicative depth in lightweight ciphers, the inputs can be restricted to some subsets
of IFn

2 . The inputs to the filter function that has been used in the FLIP cipher introduced in [MJSC16] are
restricted to the vectors of Hamming weight n

2 . The analysis of different cryptographic criteria of Boolean
functions over restricted domains arises after the work of Carlet, Méaux, and Rotella in [CMR17]. Therefore
to avoid the biased output, one of the important cryptographic criteria for a Boolean function is balancedness
over the defined domain. Moreover, it is desirable to construct Boolean functions over the set of vectors
En,k = {x ∈ IFn

2 : wH(x) = k} for 1 ≤ k ≤ n − 1 with good cryptographic properties to avoid attacks.
In [CMR17], Carlet et. al introduced the concepts of weightwise perfectly balanced (WPB) and weightwise
almost perfectly balanced (WAPB) functions, which are balanced over En,k for all k and its cryptographic
criteria like nonlinearity and algebraic immunity over En,k .
There are several proposed methods for constructing WAPB and WPB (see [DLR16, CMR17, LM19, MZD19,
TL19, LS20, MS21, MSL21, GM22, GS22, ZS22, ZS23, DM23]) in which the nonlinearity over En,k of the
defined functions have been discussed. Still, there is a noticeable gap in the upper bound of nonlinearity pro-
posed in [CMR17] over En,k (i.e., weightwise nonlinearity) and the known constructions. In our construction,
we have attempted to reduce the gap in weightwise nonlinearity and also nonlinearity over IFn

2 .
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2 Preliminaries

Let Bn be the set of all n-variable Boolean functions. Let us denote [i, j] = {i, i+1, . . . , j} for two integers i, j
with i ≤ j. For any v = (v1, v2, . . . , vn) ∈ IFn

2 , the Hamming weight of v is defined as wt(v) = |{i ∈ [1, n] : vi =
1}|. The support of a Boolean function f ∈ Bn is sup(f) = {v ∈ IFn

2 : f(v) = 1} and Hamming weight of f is
wt(f) = |sup(f)|. Let us denote En,k = {v ∈ IFn

2 : wt(v) = k} for every k ∈ [0, n]. The support and Hamming
weight of f restricted to En,k are denoted as supk(f) = {v ∈ En,k : f(v) = 1} and wtk(f) = |supk(f)|
respectively. The Hamming distance between two functions f, g ∈ Bn is given as d(f, g) = |{v ∈ IFn

2 : f(v) ̸=
g(v)}| = wt(f + g) and the Hamming distance between two functions f, g restricted to En,k is given as
dk(f, g) = |{v ∈ En,k : f(v) ̸= g(v)}| = wtk(f + g). The truth table representation of a Boolean function
f ∈ Bn is a 2n-dimensional vector representation, i.e., f = {f(0, 0, . . . , 0), f(0, 0, . . . , 1), . . . , f(1, 1, . . . , 1)}.
The algebraic normal form (ANF) representation is defined as f(x) =

∑
u∈IFn

2
aux

u, where au ∈ IF2 and

xu = xu1
1 xu2

2 · · ·xun
n for x = (x1, x2, . . . , xn). The algebraic degree of the Boolean function f ∈ Bn is defined

as deg(f) = max{wt(u) : u ∈ IFn
2 , au ̸= 0}. Any f ∈ Bn, with deg(f) ≤ 1, is said to be an affine Boolean

function, and the set of all affine Boolean functions in Bn is denoted by An. A Boolean function f ∈ Bn is
balanced, if wt(f) = 2n−1. The nonlinearity of f ∈ Bn, denoted as nl(f), is the minimum Hamming distance
of f to any affine function. That is, nl(f) = ming∈An

d(f, g). Similarly, all these cryptographic criteria are
also defined for the n-variable Boolean function when the inputs are restricted to En,k.

Definition 2.1. [CMR17] A Boolean function f ∈ Bn is said to be weightwise almost perfectly balanced

(WAPB) if, for every k ∈ [0, n], wtk(f) =
(nk)
2 if

(
n
k

)
is even and wtk(f) =

(nk)±1

2 if
(
n
k

)
is odd.

Definition 2.2. [CMR17] A Boolean function f ∈ Bn is said to be weightwise perfectly balanced (WPB) if

the restriction of f to En,k, is balanced for all k ∈ [1, n− 1], i.e.,
(
n
k

)
is even and wtk(f) =

(nk)
2 .

Therefore, a WPB function fn ∈ Bn exists if n = 2m and a WAPB function f ∈ Bn is called WPB
Boolean function for n = 2m for a nonnegative integer m. A WPB Boolean function f ∈ Bn is balanced, if

f(0, 0, . . . , 0) ̸= f(1, 1, . . . , 1). Hence, there are 2

n−1∏
k=1

( (
n
k

)(
n
k

)
/2

)
balanced WPB Boolean functions.

Definition 2.3. [CMR17] The nonlinearity of f ∈ Bn over En,k, denoted as nlk(f), is the Ham-
ming distance of f to the set of all affine functions An when evaluated over En,k. That is, nlk(f) =
ming∈An

dk(f, g) = ming∈An
wtk(f + g).

Let △ be the symbol represents the symmetric difference between two sets.

Proposition 2.4. [MS21] For a positive integer n = 2m, let fn ∈ Bn with support

sup(fn) =

{
{(x, 1) ∈ IF2

2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, y) : x, y ∈ IF
n
2
2 , wt(x) is odd}△{(z, z) : z ∈ sup(fn

2
)} if n > 2.

Then fn is a WPB Boolean function.

Proposition 2.5. [DM23] For n ≥ 2, let fn ∈ Bn with support

sup(fn) =


{(x, 1) ∈ IF2

2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, 0) ∈ IFn
2 : x ∈ sup(fn−1)} ∪ {(x, 1) ∈ IFn

2 : x /∈ sup(fn−1)} if n > 2 and odd,

{(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)}, if n > 2 and even.

Then fn is a WAPB Boolean function.

The construction proposed in Proposition 2.5 is a generalization of the construction proposed in Propo-
sition 2.4 to get a WAPB Boolean function. The construction proposed in Proposition 2.5 is important for
our study as we will provide a construction that improves its nonlinearity.
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Theorem 2.6. [DM23] Let fn ∈ Bn (n > 2), defined as in Proposition 2.5. Then nl(fn) = 2nl(fn−1) if n
is odd and nl(fn) ≤ wt(fn

2
) if n is even.

For n even, the nonlinearity of fn is very low as X1 = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd} is the

support of a linear function

n
2∑

i=1

xi and the cardinality of X2 = {(z, z) ∈ IFn
2 : z ∈ sup(fn

2
)} is wt(fn

2
).

Further, for n even and k odd, supk(fn) = sup(fn)∩En,k = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}∩En,k =

supk(
∑n

2
i=1 xi) and hence nlk(fn) = 0. Therefore, in our technique, we attempt to permute the coordinates

of the vectors of weight k in X1 to improve the nonlinearity by avoiding the linear patterns and preserving
the weightwise balancedness.

3 A class of WAPB Boolean functions with good nonlinearity

In this case, nlk(fn) = 0 as described above. Here, we will present a class of WAPB Boolean functions by
modifying sup(fn) presented in Proposition 2.5. We observed that the nonlinearity becomes weak because
the sup(fn) when n is even is close to a linear function. In our technique, we attempt to increase the
nonlinearity by permuting the coordinates of some vectors in sup(fn) when n is even.

Therefore, it is assumed that n > 2 and is even in this section. Hence, when n is even, as Proposition 2.5,

sup(fn) = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd}△{(z, z) ∈ IFn

2 : z ∈ sup(fn
2
)}. Then

supk(fn) =


{(x, y) ∈ IFn

2 : x, y ∈ IF
n
2
2 , wt(x) is odd, wt(x) + wt(y) = k}

△{(z, z) ∈ IFn
2 : z ∈ sup k

2
(fn

2
)} if k is even

{(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} if k is odd

Now we will consider both cases of k (i.e., odd or even) and will propose to permute the coordinates of some
vectors in supk(fn).

3.1 When k is odd

In this case, supk(fn) = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} = supk(

∑n
2
i=1 xi) as we

discussed at the end of Section 2. The linear function l =
∑n

2
i=1 xi is independent of y. We attempt to break

the independence and linearity on the cordinates in y using the support of a nonlinear function a ∈ Bn
2
.

That is, for every x ∈ IF
n
2
2 satisfying l (i.e., wt(x) is odd), we keep (x, y) if y ∈ sup(a) otherwise we replace

(x, y) by (y, x). If a is a highly nonlinear function, then the component y is expected to be far from the
linear functions and results a high nonlinearity in f .

Here, if wt((x, y)) = k then wt((y, x)) = k. Further, if (x, y) ∈ supk(fn) then wt(y) is even as wt(x) is
odd. So, (y, x) ̸∈ supk(fn) if (x, y) ∈ supk(fn). Therefore, replacement of (x, y) ∈ supk(fn) by (y, x) does
not change the weight of the resultant function in the domain En,k.

Lemma 3.1. Let a ∈ Bn
2
. A function f ∈ Bn such that for every k ∈ [0, n] and odd,

supk(f
a) = {(x, y) ∈ IFn

2 : x, y ∈ IF
n
2
2 , wt(x) is odd, y ∈ sup(a), wt(y) = k − wt(x)}

∪{(y, x) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd, y ̸∈ sup(a), wt(y) = k − wt(x)}. (1)

Then wtk(f
a) = 1

2

(
n
k

)
.

3.2 When k is even

In this case, supk(fn) = {(x, y) ∈ IFn
2 : x, y ∈ IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k}△{(z, z) ∈ IFn

2 :

z ∈ sup k
2
(fn

2
)}. Let us denote the set L = {(x, y) ∈ IFn

2 : x, y ∈ IF
n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} and

M = {(z, z) ∈ IFn
2 : z ∈ sup k

2
(fn

2
)}. In this case, the replacement of (x, y) ∈ supk(fn) by (y, x) is not straight
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forward as in Subsection 3.1. If (x, y) ∈ L then wt(y) is odd as wt(x) is odd. As a result, (y, x) could be
present in L. Therefore, replacement of (x, y) ∈ supk(fn) by (y, x) can possibly duplicate an existing vector
in L, which reduces the weight of the resultant function. Therefore, we attempt to swap two bits xi and yi
in stead of swapping x and y as in the following lemma. For given (x, y) ∈ IFn

2 where x = (x1, . . . , xn
2
), y =

(y1, . . . , yn
2
) ∈ IF

n
2
2 , denote (xi, yi) = (x1, . . . , xi−1, yi, xi+1, . . . , xn

2
, y1, . . . , yi−1, xi, yi+1, . . . , yn

2
). That is,

(xi, yi) is obtained by swapping the i-th bits of x and y.

Lemma 3.2. Let fn ∈ Bn be the function defined in Proposition 2.5. For every k ∈ [0, n] and even, let
Wk = {(x, y) ∈ supk(fn)|wt(x) is odd, and there is an i ∈ [1, n

2 ] such that xj = yj for 1 ≤ j ≤ i −
1 and yi = 1, xi = 0} and
W ′

k = {(xi, yi)|(x, y) ∈ Wk and i ∈ [1, n
2 ] such that xj = yj for 1 ≤ j ≤ i− 1 and yi = 1, xi = 0 i.e., the i

obtained for(x, y) in Wk}.
A function gn ∈ Bn such that supk(gn) = (supk(fn) \Wk) ∪W ′

k for every k ∈ [0, n] and even.
Then wtk(gn) = wtk(fn) if k is even.

Like in Lemma 3.1, now we will use the support of another Boolean function (possibly, a highly nonlinear)
to swap xi and yi in some of (xi, yi) ∈ W ′

k as defined in Lemma 3.2.

Lemma 3.3. Let b ∈ Bn
2
. Let gn ∈ Bn as defined in Lemma 3.2 with Wk and W ′

k. A function hb
n ∈ Bn

such that for every k ∈ [0, n] and even,
supk(h

b
n) = {(x, y) ∈ supk(gn) : (x, y) ̸∈ W ′

k} ∪ {(x, y) : (x, y) ∈ W ′
k and y ∈ sup(b)} ∪ {(y, x) : (x, y) ∈

W ′
k and y ̸∈ sup(b)}.

Then wtk(h
b
n) = wtk(gn).

3.3 A class of WAPB Boolean functions

Now we will apply Lemma 3.1 and Lemma 3.3 to construct a WAPB Boolean function with improved
nonlinearity.

Theorem 3.4. Let a, b ∈ Bn
2
. Let fn ∈ Bn be the function defined in Proposition 2.5. Let Fn ∈ Bn with

support supk(Fn) =

{
supk(h

b
n) if k is even

supk(f
a
n) if k is odd,

where fa
n , h

b
n are as defined in Lemma 3.1 and Lemma 3.3 respectively. Then Fn is a WAPB Boolean

function.

The following is a recursive construction of a WAPB Boolean function.

Construction 3.5. For n ≥ 2, let Fn ∈ Bn with support

sup(Fn) =


{(x, 1) ∈ IF2

2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, 0) ∈ IFn
2 : x ∈ sup(Fn−1)} ∪ {(x, 1) ∈ IFn

2 : x /∈ sup(Fn−1)} if n > 2 and odd,

Sn△{(z, z) ∈ IFn
2 : z ∈ sup(Fn

2
)} if n > 2 and even.

Here Sn = ∪n
k=0supk(Fn) and supk(Fn) =

{
supk(h

b
n) if n > 2 and even and k is even

supk(h
a
n) if n > 2 and even and k is odd.

3.4 Experimental results on nonlinearity

In this section, we have presented experimental results on the nonlinearity (nl(Fn)) and weightwise nonlin-
earity (nlk(Fn)) of Fn. We have chosen a, b ∈ Bn

2
, a highly nonlinear function

a(y) = b(y) =

{
y1y2 + · · ·+ yn

2 −1yn
2

if n
2 is even

y1y2 + · · ·+ yn
2 −2yn

2 −1 + yn
2

if n
2 is odd.

This function is a bent function when n is even and concatenation of two bent functions when n is
odd. Further, these two functions are easy to compute which is helpful for implementation in light weight
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n nl nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11 nl12 nl13 nl14

n∑
k=0

nlk

8 96 4 16 20 16 4 0 0 - - - - - - 60

9 192 6 22 45 45 22 6 0 0 - - - - - 146

10 416 9 36 69 94 73 12 9 0 0 - - - - 302

11 832 11 50 113 163 173 117 34 11 0 0 - - - 672

12 1596 12 36 146 264 286 264 148 36 14 0 0 - - 1206

13 3192 15 69 219 507 660 660 495 240 69 17 0 0 - 2951

14 6904 19 102 336 764 1083 1484 1079 654 299 30 18 0 0 5868

15 13808 22 147 474 1155 2013 2735 2670 1965 1154 465 75 22 0 12897

16 28152 24 64 564 1216 2547 5036 4610 5036 2919 1216 516 64 24 23836

Table 1: Listing of nl(Fn), nlk(Fn) and
∑n

k=0 nlk(Fn) for 8 ≤ n ≤ 16.

cryptography. Table 1 presents the nonlinearity and weightwise nonlinearity of the functions Fn for n =
8, 9, . . . , 16, which are generated using Construction 3.5.

We have presented a comparison of weightwise nonlinearities of Fn with the upper bound presented
in [CMR17] in Table 2. Further, no upper bound is available for the nonlinearity of WAPB Boolean functions.
Therefore, we have presented a comparison of the nonlinearity of Fn with the upper bound of the nonlinearity
of n variable Boolean functions [dH97].

n function nl nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11
∑n

k=0 nlk

8
UB 120 11 24 30 24 11 - - - - - 100
F8 96 4 16 20 16 4 - - - - - 60

9
UB 244 15 37 57 57 37 15 - - - - 218
F9 192 6 22 45 45 22 6 - - - - 146

10
UB 496 19 54 97 118 97 54 19 - - - 498
F10 416 9 36 69 94 73 12 9 - - - 302

11
UB 1000 23 76 155 220 220 155 76 23 - - 948
F11 832 11 50 113 163 173 117 34 11 - - 672

12
UB 2016 28 102 236 381 446 381 236 102 28 - 1940
F12 1596 12 36 146 264 286 264 148 36 14 - 1206

13
UB 4050 34 134 344 625 837 837 625 344 134 34 3948
F13 3192 15 69 219 507 660 660 495 240 69 17 2951

Table 2: Comparison of nlk(Fn) with the upper bound(UB) presented in [CMR17]

We compare the nonlinearities of our result with some recent constructions for n = 8 in Table 3. The
sum of the weightwise nonlinearity of our construction is highest for n = 8 among the available constructions.

4 Conclusions and Future work

We have presented constructing a class of WAPB Boolean functions in n variables from the idea of construc-
tions presented in [MS21, DM23]. The experimental results on nonlinearity and weightwise nonlinearities
show a good improvement and are the highest among the available constructions. For future work, we are
studying the cryptographic properties of this class of WAPB functions and attempting to further improve
the nonlinearities and weightwise nonlinearities by modifying this class of functions.
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WPB/ WAPB functions nl2 nl3 nl4 nl5 nl6
∑8

k=0 nlk
Upper Bound [CMR17] 11 24 30 24 11 100

Carlet, Méaux, Rotella [CMR17] 2 12 19 12 2 47

Li and Su [LS20, g2q+2 Equation(9)] 2 12 19 12 2 47

Mesnager and Su [MS21, fm Equation(13)] 2 0 3 0 2 7

Mesnager and Su [MS21, gm Equation(22)] 2 14 19 14 2 51

Mesnager, Su and Li [MSL21, fm Equation(2)] 2 8 8 8 2 28

Mesnager, Su and Li [MSL21, fm Equation(3)] 6 8 26 8 6 54

Zhang and Su [ZS23, gm Equation(11)] 2 12 19 12 6 51

Fn[Construction 3.5] 4 16 20 16 4 60

Table 3: Comparison of nlk of 8-variable WPB constructions.
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