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1 Introduction

Carlitz [1] showed that all permutation polynomials over Fq, where q > 2 is a power of a prime, are
generated by the special permutation polynomials xq−2 (the inversion) and ax + b (affine functions,
where 0 6= a, b ∈ Fq). The smallest number of inversions in such a decomposition is called the Carlitz
rank.

Here, we ask whether the inverse in F2n (the finite field of dimension n over the two-element prime
field F2) can be written as a composition of quadratics (and suggest an extension allowing quadratics and
cubics). That is, we ask if there are integers r ≥ 1 and a1 ≥ 0, . . . , ar ≥ 0 such that −1 ≡

∏r
i=1(2

ai + 1)
(mod 2n − 1). Nikova, Nikov, Rijmen [8] proposed an algorithm to find such a decomposition. Via
Carlitz [1], they were able to use the algorithm and show that for n ≤ 16 any permutation can be
decomposed in quadratic permutations, when n is not multiple of 4 and in cubic permutations, when n
is multiple of 4. Petrides [9], in addition to a theoretical result, which we will discuss below, improved
the complexity of the algorithm and presented a computational table of shortest decompositions for
n ≤ 32, allowing also cubic permutations in addition to quadratics. Here, we extend Petrides’ result,
as well as we propose a number theoretical approach, which allows us to cover easily all (surely, odd)
exponents up to 100, at least, with weight 2 factorizations (in the full paper we will cover up to n a
few hundred). Our method is based on some hard number theoretical conjectures we propose, which
allow us some inferences in our algorithmic approach. The algorithm easily extends the table of Nikova,
Nikov, Rijmen [8] and Petrides [9] that covered the mentioned factorizations up to n = 32.

2 Our results

Let ν2 be the 2-valuation, that is, the largest power of 2 dividing the argument. We start with a
proposition, extending one of Petrides’ results [9], which stated that if n is an odd integer and n−1

2ν2(n−1) ≡
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2k (mod 2n − 1), for some k, then,
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This implies, via Carlitz [1], that for all odd integers (coined good integers, with the counterparts
named bad integers in [6]) satisfying the congruence n−1

2ν2(n−1) ≡ 2k (mod 2n − 1), one can decompose
any permutation polynomial in F2n into affine and quadratic power permutations.

The smallest odd positive integer that is not good is n = 7. We note however that in that case
27−2 = 2(26−1) = 2(22−1)(24 +22 +1) = 2(2+1)(24 +22 +1), and so, any permutation in F27 can be
decomposed into affine, quadratic and cubic permutations. We are ready to generalize this observation.

Theorem 1. Let n be an odd integer satisfying n−1
2ν2(n−1) ≡ 2k3s (mod 2n − 1), for some non-negative

integers r, s. Then, the inverse power permutation in F2n has a decomposition into affine, quadratic
and cubic power permutations of length k + s+ ν2(n− 1).

Proof. We use the difference of cubes factorization, a3 − b3 = (a− b)(a2 + ab+ b2), and write

2n − 2 = 2

(
2

n−1

2ν2(n−1) − 1

) ν2(n−1)∏
j=1

(
2
n−1

2j + 1
)
≡ 2

(
22
k3s − 1

) ν2(n−1)∏
j=1

(
2
n−1

2j + 1
)

= 2
(

22
k3s−1 − 1

)(
22
k+13s−1

+ 22
k3s−1

+ 1
) ν2(n−1)∏

j=1

(
2
n−1

2j + 1
)

· · · · · · · · · · · ·

= 2
(

22
k − 1

) s−1∏
j=0

(
22
k+13j + 22

k3j + 1
) ν2(n−1)∏

j=1

(
2
n−1

2j + 1
)

≡ 2
k−1∏
j=0

(
22
j

+ 1
) s−1∏
j=0

(
22
k+13j + 22

k3j + 1
) ν2(n−1)∏

j=1

(
2
n−1

2j + 1
)
.

The claim is shown.

Example 1. It is natural to investigate the counting function B(x) of superbad integers (that is,
integers n such that n−1

2ν2(n−1) 6≡ 2k3s (mod 2n − 1)), with B(x) = {n ≤ x : n is superbad}, or the

complement A(x) = {n ≤ x : n−1
2ν2(n−1) ≡ 2k3s (mod 2n − 1)}. As an example, |B(50)| = 16, more

precisely, B(50) = {1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 19, 25, 28, 33, 37, 49} (Petrides [9] noted that 25 integers
up to 50 are bad, so our extension surely prunes the integers better).

Let p ≥ 3 be prime, N := Np = 2p− 1. It is known that if q | Np, then q ≡ 1 (mod p). We ask if we
can say anything about the number of distinct prime factors ω(Np) of Np. Recall that, via Mihailescu’s
theorem (which solves Catalan’s conjecture from 1844) [5], we know that 2p − 1 is not a (nontrivial)
prime power, if p ≥ 3. In general, we propose the following conjecture.

Conjecture 1. There exists p0 such that for p > p0, ω(Np) < 1.36 log p.

2



Similar type of heuristics regarding lower bounds for Ω(2n − 1) and ω(2n − 1) can be found in [3]
and [4]. Conjecture 1 is based on statistical arguments originating from sieve methods. It is shown in
[2, Exercise 04] that for fixed δ > 0 we have

#{n ≤ x : ω(n) ≥ (1 + δ) log log x} �δ
x

(log x)Q(δ)
,

where Q(δ) := (1 + δ) log((1 + δ)/e) + 1. We apply such heuristics to Np = 2p − 1. Note that if q | Np,

then 2p ≡ 1 (mod q). In particular,

(
2

q

)
= 1, so q ≡ ±1 (mod 8). Using a similar approach as in [2,

Exercise 04] we can infer that the probability that a number having only prime factors congruent to

±1 (mod 8) to have more than 1.36 log log n distinct prime factors is O
(

1
(logn)1.00008

)
. Applying this

to Np, we get O
(

1
(log(2p−1))1.0008

)
� 1

p1.0008
, and since the series

∑
p≥3

1
p1.0008

is convergent, we are led

to believe that there are at most finitely many prime numbers p such that ω(Np) ≥ 1.36 log p. Perhaps
infinitely often ω(Np) ≥ 2. For example, this is the case if p ≡ 3 (mod 4) is such that q = 2p + 1 is
prime. Indeed, then 2 is a quadratic residue modulo q so 2(q−1)/2 ≡ 1 (mod q), showing that q | Np.
Since Np is never a perfect power, in particular it cannot be a power of q, we get the desired conclusion
that ω(Np) ≥ 2. The next conjecture is proposed based upon some results of Murata and Pomerance,
under the Generalized Riemann Hypothesis (GRH).

Conjecture 2. There exists p0 such that if p > p0, then Np is squarefree.

So, assuming Conjecture 1 and 2, let Np := q1 · · · qk for some distinct primes q1, . . . , qk with k ≤
1.36 log p. We take numbers of the form 2a+1 with an odd a ∈ [5, p−2]. We want to compute

(
2a+1
2p−1

)
,

and use a method by Rotkiewicz [10]. Precisely, we write the Euclidean algorithm with even quotients
and signed remainders:

p = (2k1)a+ ε1r1, ε1 ∈ {±1}, 1 ≤ r1 ≤ a− 1

a = (2k2)r1 + ε2r2, ε2 ∈ {±1}, 1 ≤ r2 ≤ r1 − 1,

. . . = . . .

r`−2 = (2k`)r`−1 + ε`r`, ε` ∈ {±1}, r` = 1,

where ` := `(a, p) is minimal with r` = 1. We show in the full paper that
(
2a+1
2p−1

)
= (−1)`+1. We select

the subset A(p) of odd a in the interval [5, p− 2] such that ` ≡ 0 (mod 2). We assume that there are a
positive proportion of such, namely that there is a constant c1 > 0 such that for large p, there are > c1p

odd numbers a ∈ [5, p − 2] such that `(a, p) ≡ 0 (mod 2). So, we have
∏k
i=1

(
2a+1
qi

)
= −1 for a ∈

A(p). We next conjecture that for such a, the values are
((

2a+1
qi

)
, 1 ≤ i ≤ k

)
are uniformly distributed

among the 2k vectors (±1,±1, · · · ,±1)︸ ︷︷ ︸
k times

. That is, 2ai + 1 is a quadratic residue modulo pj for all j 6= i

but it is not a quadratic residue modulo qi. In the full paper we provide an argument why we expect
to find it and under the previous two conjectures the following should hold. The rest of our method is
unconditional and we summarize it in the next algorithm.

Algorithm 1 works for most primes (and odd integers), and we applied it for n ≤ 100. But there are

a few primes like 47 for which there is no aj ∈ [5, p − 2] such that
(
2aj+1
qi

)
= (−1)δij , with Kronecker

symbols as exponents. If that happens, the system may not be solvable (it has even determinant).
However, experimentally, we observed that if it fails, we can always get suitable ai’s such that the
corresponding matrix has odd determinant, and is therefore invertible. The factorization of 2n−2 with
weight 2 factors for odd 33 ≤ n ≤ 100 is given in Table 1.
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Algorithm 1:

1 for prime (or odd) p ≤ B (suitable bound) do
2 Factor 2p − 1 = q1 · · · qk, where qi is prime for 1 ≤ i ≤ k;
3 for j = 1 to k do

4 Find odd aj ∈ [5, p− 2] such that the Legendre symbol
(
2aj+1
qi

)
= (−1)δij where δij is

the Kronecker symbol.
5 end
6 Take a primitive root ρi modulo qi for 1 ≤ i ≤ k;

7 Find bij such that 2ai + 1 = ρ
bij
j (mod qj) for 1 ≤ i, j ≤ k;

8 Find largest αi such that 2αi is a divisior of qi − 1 for 1 ≤ i ≤ k;
9 Calculate α = max{αi : 1 ≤ i ≤ k};

10 Solve the system of linear equations
∑k

i=1 yibij = 2αj−1 for j = 1, 2, . . . , k. in Zα
11 end
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Table 1: Factorization of 2n − 2 (mod 2n − 1) for odd 33 ≤ n ≤ 99.

n = 33 (25 + 1)599478 · (213 + 1)299739 · (229 + 1)1798434

n = 35
(
(2 + 1)(217 + 1)

)967995
· (229 + 1)276570

n = 37 (25 + 1)77039772 · (213 + 1)19259943

n = 39
(
(211 + 1)(221 + 1)

)1592955

n = 41 (29 + 1)20111512782 · (213 + 1)3351918797

n = 43
(
(25 + 1)(217 + 1)(223 + 1)

)593211015

n = 45 (2 + 1)407925 · (213 + 1)349650 ·
(
(225 + 1)(233 + 1)(241 + 1)

)116550

n = 47 (211 + 1)1927501725 · (237 + 1)435242325 · (241 + 1)1616614350

n = 49 (29 + 1)34630287489 · (211 + 1)3393768173922

n = 51 (1 + 229)150009615

n = 53 (1 + 25)6512186850 · (1 + 215)3506562150 · (1 + 221)250468725

n = 55
(1 + 2)6588945 · (1 + 211)5856840 · (1 + 217)732105

·(1 + 225)1464210 · (1 + 233)10249470 · (1 + 247)732105

n = 57
(1 + 25)396029391534 · (1 + 217)1188088174602 · (1 + 221)594044087301

·(1 + 247)198014695767

n = 59 (1 + 27)3663925098759300 · (1 + 213)305327091563275

n = 61 (1 + 29)1152921504606846975

n = 63
(1 + 2)42958503 · (1 + 25)3735522 · (1 + 239)56032830·

(1 + 243)44826264 · (1 + 247)29884176

n = 65 (1 + 217)72647571779055 · (1 + 223)72647571779055 · (1 + 229)72647571779055

n = 67 (1 + 25)15295807610659665

n = 69
(1 + 211)36566619637113225 · (1 + 217)2437774642474215·

(1 + 253)19502197139793720 · (1 + 267)21939971782267935

n = 71 (1 + 211)3659326099961865 · (1 + 213)14637304399847460

n = 73 (1 + 231)1726845200475585 · (1 + 245)107064402429486270

n = 75
(1 + 2)36654975 · (1 + 239)17832150 · (1 + 241)9906750·

(1 + 243)7925400 · (1 + 253)57459150 · (1 + 255)15850800 · (1 + 263)43589700

n = 77
(1 + 225)290641821624556479 · (1 + 231)290641821624556479·

(1 + 241)290641821624556479 · (1 + 267)581283643249112958

n = 79 (1 + 29)12102186118644337359 · (1 + 215)12102186118644337359·

(1 + 241)12102186118644337359

n = 81
(1 + 2)106331083505919 · (1 + 225)155626336778778 · (1 + 237)105108887143782·

(1 + 239)155626336778778 · (1 + 243)4073987873790

n = 83 (1 + 211)7239076764159456135965

n = 85
(1 + 29)4760486403166879215 · (1 + 213)4760486403166879215·

(1 + 223)4760486403166879215

n = 87
(1 + 239)3371346107168004 · (1 + 241)280945508930667 · (1 + 253)2809455089306670·

(1 + 261)4214182633960005 · (1 + 271)1685673053584002 · (1 + 283)280945508930667

n = 89 (1 + 213)309485009821345068724781055

n = 91
(1 + 259)280368506850705 · (1 + 267)1682211041104230 · (1 + 271)280368506850705·

(1 + 273)280368506850705 · (1 + 281)3364422082208460

n = 93 (1 + 217)2305843010287435773

n = 95 (1 + 243)7354378117756963125 · (1 + 251)7354378117756963125

n = 97 (1 + 25)612535370185410489825162846 · (1 + 29)102089228364235081637527141

n = 99
(1 + 2)160190876329840719 · (1 + 223)160190876329840719 · (1 + 235)58251227756305716·

(1 + 257)29125613878152858 · (1 + 259)101939648573535003 · (1 + 275)58251227756305716
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