Dillon's observation and APN functions $f: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^n$

Hiroaki Taniguchi*

*Department of Education, Yamato University

Abstract

Let \mathbb{F}_2 be the binary field and $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ an APN function with n>2. In p 381 of [1], we encounter the following statement: "J. Dillon (private communication) observed that the property of Proposition 161 implies that, for every nonzero $c \in \mathbb{F}_{2^n}$, the equation F(x)+F(y)+F(z)+F(x+y+z)=c must have a solution". This statement means that every APN function $f:\mathbb{F}_2^n \to \mathbb{F}_2^n$ must satisfy the condition $\{f(x+y+z)+f(x)+f(y)+f(z)\mid x,y,z\in\mathbb{F}_2^n\}=\mathbb{F}_2^n$. After the above observation, we will call the Dillon's observation is satisfied for an APN function $f:\mathbb{F}_2^n \to \mathbb{F}_2^m$ if we have $\{f(x+y+z)+f(x)+f(y)+f(z)\mid x,y,z\in\mathbb{F}_2^n\}=\mathbb{F}_2^m$.

In this talk, we firstly note the following simple expression for the Dillon's observation. **Corollary 1.** For an APN function $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the Dillon's observation is satisfied if and only if $\pi \circ f$ are not APN functions for any \mathbb{F}_2 -linear surjection $\pi: \mathbb{F}_2^m \to \mathbb{F}_2^{m-1}$.

and only if $\pi \circ f$ are not APN functions for any \mathbb{F}_2 -linear surjection $\pi: \mathbb{F}_2^m \to \mathbb{F}_2^{m-1}$. Next we give examples of APN functions $f: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^n$ $(n \geq 6)$ which satisfy the Dillon's observation $\{f(x+y+z)+f(x)+f(y)+f(z)\mid x,y,z\in \mathbb{F}_2^{n-1}\}=\mathbb{F}_2^n$. These examples are obtained as $f|_{T_0}:T_0\to K$ with $K:=\mathbb{F}_{2^n}$ and $T_0:=\{x\in K\mid Tr(x)=0\}$ where $Tr:K\to\mathbb{F}_2$ is the absolute trace of K, and $f:K\to K$ are quadratic APN functions and monomial APN functions.

References

[1] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, Cambridge (2020).