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Preliminaries

I Fpn is the finite field with pn elements.
I Vectorial p-ary (n,m)-functions: f : Fpn → Fpm

I (n, n)-function f can be represented uniquely as univariate polynomial
of degree at most pn − 1

pn−1∑
i=0

aix
i .

I the algebraic degree of f is the largest p-weight of the exponent i ,
such that ai 6= 0.



Differential uniformity

I Let f : Fpn → Fpn . The function Daf (x) = f (x + a)− f (x) is called
the derivative of f in the direction a.

I Let ∆f (a, b) = #{x : Daf (x) = b}. The differential uniformity f
is defined as

δf = max
a∈F?

pn ,b∈Fpn
∆f (a, b).

I Let δ = δf , f is said differentially δ-uniform.



Optimal functions

I f is called Perfect Nonlinear (PN) iff δ = 1. (No PN functions in
even characteristic)

I f is called Almost Perfect Nonlinear (APN) iff δ = 2.
APN functions have the smallest possible differential uniformity for p = 2.
Indeed, if x is a solution to f (x + a)− f (x) = b, so it is x + a.



4-uniform bijections

Table: Primarily-constructed differentially 4-uniform over F2n (n even) with the
best known nonlinearity

Name F(x) deg Conditions

Gold x2i+1 2 n = 2k , k odd gcd(i , n) = 2

Kasami x22i−2i+1 i+1 n = 2k , k odd gcd(i , n) = 2

Inverse x2n−2 n − 1 n = 2k , k ≥ 1

Bracken-Leander x22k+2k+1 3 n = 4k , k odd

n = 3m, m even, m/2 odd,

Bracken-Tan-Tan ζx2i+1 + ζ2m
x2−m+2m+i

2 gcd(n, i) = 2, 3|m + i

and ζ is a primitive element of F2n



Modifying the inverse function on a subfield

In the recent years, several classes of differentially 4-uniform permutations
have been constructed by modifying the inverse function. Some of these
are based on modifying the inverse function on a subfield.

Theorem (Sin, K. Kim, R. Kim, Han 2020)
Let n = sm with s even and m odd. Let f (x) be a differentially 4-uniform
function over F2s . Then,

F (x) = f (x) + (f (x) + g(x))(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

x−1 if x /∈ F2s

is differentially 4-uniform over F2n .



Modifying other functions on a subfield

Proposition (C. 2021)
Let n = sm. Let f be an APN function over F2s and g ∈ F2s [x ] an APN
function over F2n . Then, the function

F (x) = f (x) + (f (x) + g(x))(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

g(x) if x /∈ F2s

is a differentially 4-uniform mapping.



Theorem (C. 2021)
Let n = sm for some positive integers s and m. Let f and g be two
polynomials with coefficients in F2s , that is f , g ∈ F2s [x ], and g permuting
F2n . Suppose that:
(H) for any a ∈ F?

2s and b ∈ F2s the equation g(x) + g(x + a) = b has no
solution in F2n \ F2s .

Then, the function

F (x) = f (x) + (f (x) + g(x))(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

g(x) if x /∈ F2s

is such that

∆F (a, b) ≤

{
max{δf , δg} if a ∈ F2s

δg + 2 if a /∈ F2s .



Gold and Bracken-Leander functions case

Corollary
Let n = sm with s even such that s/2 and m are odd. Let k be such that
gcd(k , n) = 2 and f ∈ F2s [x ] with f ∼Aff x−1. Then

F (x) = f (x) + (f (x) + x2k+1)(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

x2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n . Moreover, if s > 2 then
the algebraic degree of F is n − 1.



Gold and Bracken-Leander functions case

Corollary
Let n = 4k = sm with k , m odd and s even. Let f ∈ F2s [x ] with
f ∼Aff x−1. Then

F (x) = f (x) + (f (x) + x22k+2k+1)(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

x22k+2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n . Moreover, if s > 4 then
deg(F ) = n − 1.



Other Low uniform functions
When (H) is satisfied

Theorem (Carlet (2021))
Let n = sm, with m odd, and let f ∈ F2s [x ] be an APN function over F2n .
Then, f (x + a) + f (x) = b does not admit solutions x ∈ F2n \ F2s ,
whenever a, b ∈ F2s , a 6= 0.

Theorem (Bartoli, C., Riera, Stănică)
Let n = sm, where s and m are integers, and let f ∈ F2s [x ] be a
differentially 2k-uniform function over F2n . If m is not divisible by any
integer 2 ≤ t ≤ k , then f (x + a) + f (x) = b does not admit solutions
x ∈ F2n \ F2s , whenever a, b ∈ F2s , a 6= 0.



Other low uniform functions

Theorem (Bartoli, C., Riera, Stănică)
Let n = sm, with s even such that s/2 and m are odd. Let k be such that
gcd(k , n) = 2 and let f ∈ F2s [x ] with f ∼Aff x−1. Then

F (x) = f (x) + (f (x) + x22k−2k+1)(x2s
+ x)2n−1 =

{
f (x) if x ∈ F2s

x22k−2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n . Moreover, if s > 2 then
the algebraic degree of F is n − 1. Moreover, the nonlinearity of F is at
least 2n−1 − 2

s
2+1 − 2

n
2 .



c-differential uniformity

Introduced by Ellingsen, Felke, Riera, Stănică, Tkachenko (2020)
I Let f : Fpn → Fpn . The function cDaf (x) = f (x + a)− cf (x) is called

the c-derivative of f in the direction a.
I Let c∆f (a, b) = #{x : cDaf (x) = b}. The c-differential

uniformity f is defined as

δf ,c = max
a∈Fpn ,b∈ff pn

c ∆f (a, b).

I δ = δf ,c , f is said c-differentially δ-uniform.



c-differential uniformity (cont.)

I δf ,c = 1 f is called Perfect c-Nonlinear (PcN)
I δf ,c = 2 f is called Almost Perfect c-Nonlinear (APcN)

PcN functions have been also independently introduced by Bartoli and
Timpanella with the name of β-planar functions.



Results on c-DU:

I power functions with low c-differential uniformity
I APcN and PcN functions constructed from the AGW criterion
I Characterization of quadratic APcN and PcN functions (c ∈ Fp \ {1})
I non existence results for exceptional APcN and PcN functions
I behaviour of c-DU under EA-equivalence
I c-boomerang uniformity
I ...



c-differential uniformity of piece-wise functions

Theorem (Stănică 2020)
Let n = sm. Given the Gold function g(x) = x2k+1 with gcd(n, k) = 1,
then, for any fixed α ∈ F?

2s ,

G (x) =

{
x2k+1 + α if x ∈ F2s

x2k+1 if x /∈ F2s ,

is such that δG ,c ≤ 9, for any c ∈ F2n \ {1}.



Theorem (Bartoli, C., Riera, Stănică)
Let p is a prime, n > 2 be an integer, s be a divisor of n, 1 6= c ∈ Fpn

fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f (x) if x ∈ Fps

g(x) if x /∈ Fps ,

where f is an (s, s)-function of c ′-differential uniformity δf ,c ′ (for all c ′)
and g ∈ Fpn [x ] is an (n, n)-function of c ′-differential uniformity δg ,c ′ (for
all c ′). Then, the c-differential uniformity of F is

δF ,c ≤

{
δf ,0 + δg ,0, if c = 0,
max {δf ,c1 + δg ,c , δg ,c + 2psδg ,0} , if c 6= 0,

where c =
∑m

i=1 cigi , with ci ∈ Fps and {g1 = 1, g2, . . . , gm} is a basis of
the extension Fpn over Fps .



Remark
If g ∈ Fps [x ], we have that for c 6= 0,

δF ,c ≤ max
{
δf ,c1 + δg ,c , δg ,c + 2δg ,cps−1

}
.

For g(x) = x2k+1, with gcd(k , n) = 1, we have δg ,c ≤ 3 for all c ∈ F2n .
Therefore:

Theorem+Remark⇒ G (x) = x2k+1+α+α(x2s
+x)2n−1 is such that δG ,c ≤ 9.



Theorem (Bartoli, C., Riera, Stănică)
Let p be a prime, n > 2 be an integer, s be a divisor of n, 1 6= c ∈ Fps

fixed, and F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f (x) if x ∈ Fps

g(x) if x /∈ Fps ,

where f is an (s, s)-function of c-differential uniformity δf ,c and g ∈ Fps [x ]
is an (n, n)-function of c-differential uniformity, δg ,c . Suppose that:

(H1) for any a ∈ F?
ps and b ∈ Fps the equation g(x + a)− g(x) = b has no

solution in Fpn \ Fps .
(H2) for any a ∈ Fps and b ∈ Fps the equation g(x + a)− cg(x) = b has

no solution in Fpn \ Fps .
Then,

c∆F (a, b) ≤

{
max{δf ,c , δg ,c} if a ∈ Fps

δg ,c + 2 · δg ,0 if a /∈ Fps ,



Remark
We can note that if we remove condition (H2), we would obtain that

c∆F (a, b) ≤

{
δf ,c + δg ,c if a ∈ Fps

δg ,c + 2 · δg ,0 if a /∈ Fps .

Moreover, if g permutes Fpn then we have also that δg ,0 = 1.



Functions satisfying (H2)

Theorem (Bartoli, C., Riera, Stănică)
Let n = sm, where s and m are integers. Let c ∈ Fps \ {1} and let
f ∈ Fps [x ] be a c-differentially k-uniform function over Fpn . If m is not
divisible by any integer 2 ≤ t ≤ k , then f (x + a)− cf (x) = b does not
admit solutions x ∈ Fpn \ Fps , whenever a, b ∈ Fps .



Theorem (Bartoli, C., Riera, Stănică)
Let n = sm, with n/s odd. For a Gold-like function g(x) = x2k+1, with
gcd(n, k) = t such that F2t ⊂ F2s , and n/t odd. Then, for any fixed
α ∈ F?

2s ,

G (x) =

{
x2k+1 + α if x ∈ F2s

x2k+1 if x /∈ F2s ,

is such that δG ,c ≤ 3, for any c ∈ F2t \ {1}.



Theorem (Bartoli, C., Riera, Stănică)
Let n = sm, with n odd. Given the Gold function g(x) = x2k+1 with
gcd(n, k) = 1, then, for any fixed α ∈ F?

2s ,

G (x) =

{
x2k+1 + α if x ∈ F2s

x2k+1 if x /∈ F2s ,

is such that δG ,c ≤ 6, for any c ∈ F2s \ {1}.
Moreover, if 3 - m we have δG ,c ≤ 5.



Thanks for your attention!


