Low c-differential uniformity for functions modified on subfields

Marco Calderini
Joint work with: D. Bartoli, C. Riera, P. Stănică

University of Bergen

BFA 2021, Rosendal

Preliminaries

- $ightharpoonup \mathbb{F}_{p^n}$ is the finite field with p^n elements.
- ▶ Vectorial *p*-ary (n, m)-functions: $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^m}$
- (n, n)-function f can be represented uniquely as univariate polynomial of degree at most p^n-1

$$\sum_{i=0}^{p^n-1} a_i x^i.$$

▶ the algebraic degree of f is the largest p-weight of the exponent i, such that $a_i \neq 0$.

Differential uniformity

- ▶ Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. The function $D_a f(x) = f(x+a) f(x)$ is called the **derivative** of f in the direction a.
- Let $\Delta_f(a,b) = \#\{x : D_a f(x) = b\}$. The differential uniformity f is defined as

$$\delta_f = \max_{\mathbf{a} \in \mathbb{F}_{p^n}^{\star}, \mathbf{b} \in \mathbb{F}_{p^n}} \Delta_f(\mathbf{a}, \mathbf{b}).$$

Let $\delta = \delta_f$, f is said differentially δ -uniform.

Optimal functions

- ▶ f is called **Perfect Nonlinear** (PN) iff $\delta = 1$. (No PN functions in even characteristic)
- f is called Almost Perfect Nonlinear (APN) iff $\delta = 2$.

APN functions have the smallest possible differential uniformity for p=2. Indeed, if x is a solution to f(x+a)-f(x)=b, so it is x+a.

4-uniform bijections

Table: Primarily-constructed differentially 4-uniform over \mathbb{F}_{2^n} (n even) with the best known nonlinearity

Name	F(x)	deg	Conditions
Gold	$x^{2^{i}+1}$	2	n=2k, k odd $gcd(i,n)=2$
Kasami	$x^{2^{2i}-2^i+1}$	i+1	n=2k, k odd $gcd(i,n)=2$
Inverse	$x^{2^{n}-2}$	n-1	$n=2k, \ k\geq 1$
Bracken-Leander	$x^{2^{2k}+2^k+1}$	3	n=4k, k odd
			n=3m, m even, $m/2$ odd,
Bracken-Tan-Tan	$\zeta x^{2^{i}+1} + \zeta^{2^{m}} x^{2^{-m}+2^{m+i}}$	2	$\gcd(n,i)=2,3 m+i$
			and ζ is a primitive element of \mathbb{F}_{2^n}

Modifying the inverse function on a subfield

In the recent years, several classes of differentially 4-uniform permutations have been constructed by modifying the inverse function. Some of these are based on modifying the inverse function on a subfield.

Theorem (Sin, K. Kim, R. Kim, Han 2020)

Let n = sm with s even and m odd. Let f(x) be a differentially 4-uniform function over \mathbb{F}_{2^s} . Then,

$$F(x) = f(x) + (f(x) + g(x))(x^{2^{s}} + x)^{2^{n} - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^{s}} \\ x^{-1} & \text{if } x \notin \mathbb{F}_{2^{s}} \end{cases}$$

is differentially 4-uniform over \mathbb{F}_{2^n} .

Modifying other functions on a subfield

Proposition (C. 2021)

Let n=sm. Let f be an APN function over \mathbb{F}_{2^s} and $g\in \mathbb{F}_{2^s}[x]$ an APN function over \mathbb{F}_{2^n} . Then, the function

$$F(x) = f(x) + (f(x) + g(x))(x^{2^s} + x)^{2^n - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^s} \\ g(x) & \text{if } x \notin \mathbb{F}_{2^s} \end{cases}$$

is a differentially 4-uniform mapping.

Theorem (C. 2021)

Let n=sm for some positive integers s and m. Let f and g be two polynomials with coefficients in \mathbb{F}_{2^s} , that is $f,g\in\mathbb{F}_{2^s}[x]$, and g permuting \mathbb{F}_{2^n} . Suppose that:

(H) for any $a \in \mathbb{F}_{2^s}^{\star}$ and $b \in \mathbb{F}_{2^s}$ the equation g(x) + g(x + a) = b has no solution in $\mathbb{F}_{2^n} \setminus \mathbb{F}_{2^s}$.

Then, the function

$$F(x) = f(x) + (f(x) + g(x))(x^{2^s} + x)^{2^n - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^s} \\ g(x) & \text{if } x \notin \mathbb{F}_{2^s} \end{cases}$$

is such that

$$\Delta_F(a,b) \leq egin{cases} \max\{\delta_f,\delta_g\} & \textit{if } a \in \mathbb{F}_{2^s} \ \delta_g + 2 & \textit{if } a
otin \mathbb{F}_{2^s}. \end{cases}$$

Gold and Bracken-Leander functions case

Corollary

Let n=sm with s even such that s/2 and m are odd. Let k be such that $\gcd(k,n)=2$ and $f\in\mathbb{F}_{2^s}[x]$ with $f\sim_{Aff} x^{-1}$. Then

$$F(x) = f(x) + (f(x) + x^{2^{k}+1})(x^{2^{s}} + x)^{2^{n}-1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^{s}} \\ x^{2^{k}+1} & \text{if } x \notin \mathbb{F}_{2^{s}} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} . Moreover, if s>2 then the algebraic degree of F is n-1.

Gold and Bracken-Leander functions case

Corollary

Let n=4k=sm with k, m odd and s even. Let $f\in \mathbb{F}_{2^s}[x]$ with $f\sim_{Aff} x^{-1}$. Then

$$F(x) = f(x) + (f(x) + x^{2^{2k} + 2^k + 1})(x^{2^s} + x)^{2^n - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^s} \\ x^{2^{2^k} + 2^k + 1} & \text{if } x \notin \mathbb{F}_{2^s} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} . Moreover, if s > 4 then $\deg(F) = n - 1$.

Other Low uniform functions

When (H) is satisfied

Theorem (Carlet (2021))

Let n=sm, with m odd, and let $f \in \mathbb{F}_{2^s}[x]$ be an APN function over \mathbb{F}_{2^n} . Then, f(x+a)+f(x)=b does not admit solutions $x \in \mathbb{F}_{2^n} \setminus \mathbb{F}_{2^s}$, whenever $a,b \in \mathbb{F}_{2^s}$, $a \neq 0$.

Theorem (Bartoli, C., Riera, Stănică)

Let n=sm, where s and m are integers, and let $f\in \mathbb{F}_{2^s}[x]$ be a differentially 2k-uniform function over \mathbb{F}_{2^n} . If m is not divisible by any integer $2\leq t\leq k$, then f(x+a)+f(x)=b does not admit solutions $x\in \mathbb{F}_{2^n}\setminus \mathbb{F}_{2^s}$, whenever $a,b\in \mathbb{F}_{2^s}, a\neq 0$.

Other low uniform functions

Theorem (Bartoli, C., Riera, Stănică)

Let n = sm, with s even such that s/2 and m are odd. Let k be such that $\gcd(k,n)=2$ and let $f\in \mathbb{F}_{2^s}[x]$ with $f\sim_{Aff} x^{-1}$. Then

$$F(x) = f(x) + (f(x) + x^{2^{2k} - 2^k + 1})(x^{2^s} + x)^{2^n - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^s} \\ x^{2^{2k} - 2^k + 1} & \text{if } x \notin \mathbb{F}_{2^s} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} . Moreover, if s>2 then the algebraic degree of F is n-1. Moreover, the nonlinearity of F is at least $2^{n-1}-2^{\frac{s}{2}+1}-2^{\frac{n}{2}}$.

c-differential uniformity

Introduced by Ellingsen, Felke, Riera, Stănică, Tkachenko (2020)

- ▶ Let $f: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$. The function ${}_cD_af(x) = f(x+a) cf(x)$ is called the c-derivative of f in the direction a.
- Let $_c\Delta_f(a,b)=\#\{x: {_cD_a}f(x)=b\}$. The c-differential uniformity f is defined as

$$\delta_{f,c} = \max_{a \in \mathbb{F}_{p^n}, b \in ffp^n} {}_{c}\Delta_f(a,b).$$

 $\delta = \delta_{f,c}$, f is said c-differentially δ -uniform.

c-differential uniformity (cont.)

- $\delta_{f,c} = 1 \ f$ is called **Perfect c-Nonlinear** (PcN)
- $\delta_{f,c} = 2 \ f$ is called **Almost Perfect c-Nonlinear** (APcN)

PcN functions have been also independently introduced by Bartoli and Timpanella with the name of β -planar functions.

Results on c-DU:

- power functions with low c-differential uniformity
- ► APcN and PcN functions constructed from the AGW criterion
- lacktriangle Characterization of quadratic APcN and PcN functions $(c \in \mathbb{F}_p \setminus \{1\})$
- ▶ non existence results for exceptional APcN and PcN functions
- behaviour of c-DU under EA-equivalence
- c-boomerang uniformity
- **.**..

c-differential uniformity of piece-wise functions

Theorem (Stănică 2020)

Let n = sm. Given the Gold function $g(x) = x^{2^k+1}$ with gcd(n, k) = 1, then, for any fixed $\alpha \in \mathbb{F}_{2^s}^*$,

$$G(x) = \begin{cases} x^{2^k+1} + \alpha & \text{if } x \in \mathbb{F}_{2^s} \\ x^{2^k+1} & \text{if } x \notin \mathbb{F}_{2^s}, \end{cases}$$

is such that $\delta_{G,c} \leq 9$, for any $c \in \mathbb{F}_{2^n} \setminus \{1\}$.

Theorem (Bartoli, C., Riera, Stănică)

Let p is a prime, n > 2 be an integer, s be a divisor of n, $1 \neq c \in \mathbb{F}_{p^n}$ fixed, and $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be a p-ary (n, n)-function defined by

$$F(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{p^s} \\ g(x) & \text{if } x \notin \mathbb{F}_{p^s}, \end{cases}$$

where f is an (s,s)-function of c'-differential uniformity $\delta_{f,c'}$ (for all c') and $g \in \mathbb{F}_{p^n}[x]$ is an (n,n)-function of c'-differential uniformity $\delta_{g,c'}$ (for all c'). Then, the c-differential uniformity of F is

$$\delta_{F,c} \leq \begin{cases} & \delta_{f,0} + \delta_{g,0}, \text{ if } c = 0, \\ & \max\left\{\delta_{f,c_1} + \delta_{g,c}, \delta_{g,c} + 2p^s \delta_{g,0}\right\}, \text{ if } c \neq 0, \end{cases}$$

where $c = \sum_{i=1}^m c_i g_i$, with $c_i \in \mathbb{F}_{p^s}$ and $\{g_1 = 1, g_2, \dots, g_m\}$ is a basis of the extension \mathbb{F}_{p^n} over \mathbb{F}_{p^s} .

Remark

If $g \in \mathbb{F}_{p^s}[x]$, we have that for $c \neq 0$,

$$\delta_{\textit{F},\textit{c}} \leq \max\left\{\delta_{\textit{f},\textit{c}_{1}} + \delta_{\textit{g},\textit{c}}, \delta_{\textit{g},\textit{c}} + 2\delta_{\textit{g},\textit{c}^{p^{s}-1}}\right\}.$$

For $g(x) = x^{2^k+1}$, with gcd(k, n) = 1, we have $\delta_{g,c} \leq 3$ for all $c \in \mathbb{F}_{2^n}$. Therefore:

Theorem+Remark
$$\Rightarrow G(x) = x^{2^k+1} + \alpha + \alpha (x^{2^s} + x)^{2^n-1}$$
 is such that $\delta_{G,c} \leq 9$.

Theorem (Bartoli, C., Riera, Stănică)

Let p be a prime, n > 2 be an integer, s be a divisor of n, $1 \neq c \in \mathbb{F}_{p^s}$ fixed, and $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be a p-ary (n, n)-function defined by

$$F(x) = egin{cases} f(x) & \textit{if } x \in \mathbb{F}_{p^s} \ g(x) & \textit{if } x
otin \mathbb{F}_{p^s}, \end{cases}$$

where f is an (s,s)-function of c-differential uniformity $\delta_{f,c}$ and $g \in \mathbb{F}_{p^s}[x]$ is an (n,n)-function of c-differential uniformity, $\delta_{g,c}$. Suppose that:

- (H1) for any $a \in \mathbb{F}_{p^s}^{\star}$ and $b \in \mathbb{F}_{p^s}$ the equation g(x+a) g(x) = b has no solution in $\mathbb{F}_{p^n} \setminus \mathbb{F}_{p^s}$.
- (H2) for any $a \in \mathbb{F}_{p^s}$ and $b \in \mathbb{F}_{p^s}$ the equation g(x+a) cg(x) = b has no solution in $\mathbb{F}_{p^n} \setminus \mathbb{F}_{p^s}$.

Then,

$$_{c}\Delta_{F}(a,b) \leq egin{cases} \max\{\delta_{f,c},\delta_{g,c}\} & \textit{if } a \in \mathbb{F}_{p^{s}} \\ \delta_{g,c}+2\cdot\delta_{g,0} & \textit{if } a
otin \mathbb{F}_{p^{s}}, \end{cases}$$

Remark

We can note that if we remove condition (H2), we would obtain that

$$_{c}\Delta_{F}(a,b) \leq egin{cases} \delta_{f,c} + \delta_{g,c} & \textit{if } a \in \mathbb{F}_{p^{s}} \ \delta_{g,c} + 2 \cdot \delta_{g,0} & \textit{if } a
otin \mathbb{F}_{p^{s}}. \end{cases}$$

Moreover, if g permutes \mathbb{F}_{p^n} then we have also that $\delta_{g,0}=1$.

Functions satisfying (H2)

Theorem (Bartoli, C., Riera, Stănică)

Let n=sm, where s and m are integers. Let $c\in \mathbb{F}_{p^s}\setminus\{1\}$ and let $f\in \mathbb{F}_{p^s}[x]$ be a c-differentially k-uniform function over \mathbb{F}_{p^n} . If m is not divisible by any integer $2\leq t\leq k$, then f(x+a)-cf(x)=b does not admit solutions $x\in \mathbb{F}_{p^n}\setminus \mathbb{F}_{p^s}$, whenever $a,b\in \mathbb{F}_{p^s}$.

Theorem (Bartoli, C., Riera, Stănică)

Let n = sm, with n/s odd. For a Gold-like function $g(x) = x^{2^k+1}$, with gcd(n, k) = t such that $\mathbb{F}_{2^t} \subset \mathbb{F}_{2^s}$, and n/t odd. Then, for any fixed $\alpha \in \mathbb{F}_{2^s}^*$,

$$G(x) = \begin{cases} x^{2^k+1} + \alpha & \text{if } x \in \mathbb{F}_{2^s} \\ x^{2^k+1} & \text{if } x \notin \mathbb{F}_{2^s}, \end{cases}$$

is such that $\delta_{G,c} \leq 3$, for any $c \in \mathbb{F}_{2^t} \setminus \{1\}$.

Theorem (Bartoli, C., Riera, Stănică)

Let n = sm, with n odd. Given the Gold function $g(x) = x^{2^k+1}$ with gcd(n,k) = 1, then, for any fixed $\alpha \in \mathbb{F}_{2^s}^*$,

$$G(x) = \begin{cases} x^{2^k+1} + \alpha & \text{if } x \in \mathbb{F}_{2^s} \\ x^{2^k+1} & \text{if } x \notin \mathbb{F}_{2^s}, \end{cases}$$

is such that $\delta_{G,c} \leq 6$, for any $c \in \mathbb{F}_{2^s} \setminus \{1\}$. Moreover, if $3 \nmid m$ we have $\delta_{G,c} \leq 5$.

Thanks for your attention!