BENT PARTITIIONS

Nurdagül Anbar (joint work with Tekgül Kalaycı and Wilfried Meidl)

Sabancı University, İstanbul

September 2021, BFA

p: a prime number

 \mathbb{V}_n : An *n*-dimensional vector space over \mathbb{F}_p (like \mathbb{F}_p^n , \mathbb{F}_{p^n} or $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$) \mathbb{Z}_{p^k} : the cyclic group of order p^k

Main Interest: Bent functions $f : \mathbb{V}_n \to \mathbb{V}_k$ or $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$

Definition: $f : \mathbb{V}_n \to \mathbb{V}_k$ (resp., $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$) is called *bent* if for any character χ of $\mathbb{V}_n \times \mathbb{V}_k$ (resp., $\mathbb{V}_n \times \mathbb{Z}_{p^k}$) that is non-trivial on \mathbb{V}_k (resp., \mathbb{Z}_{p^k}) we have

$$\left|\sum_{x\in\mathbb{V}_n}\chi(x,f(x))\right| = p^{n/2}.$$

p: a prime number

 \mathbb{V}_n : An *n*-dimensional vector space over \mathbb{F}_p (like \mathbb{F}_p^n , \mathbb{F}_{p^n} or $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$) \mathbb{Z}_{p^k} : the cyclic group of order p^k

Main Interest: Bent functions $f : \mathbb{V}_n \to \mathbb{V}_k$ or $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$

Definition: $f : \mathbb{V}_n \to \mathbb{V}_k$ (resp., $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$) is called *bent* if for any character χ of $\mathbb{V}_n \times \mathbb{V}_k$ (resp., $\mathbb{V}_n \times \mathbb{Z}_{p^k}$) that is non-trivial on \mathbb{V}_k (resp., \mathbb{Z}_{p^k}) we have

$$\left|\sum_{x\in\mathbb{V}_n}\chi(x,f(x))\right| = p^{n/2}.$$

p: a prime number

 \mathbb{V}_n : An *n*-dimensional vector space over \mathbb{F}_p (like \mathbb{F}_p^n , \mathbb{F}_{p^n} or $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$) \mathbb{Z}_{p^k} : the cyclic group of order p^k

Main Interest: Bent functions $f : \mathbb{V}_n \to \mathbb{V}_k$ or $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$

Definition: $f : \mathbb{V}_n \to \mathbb{V}_k$ (resp., $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$) is called *bent* if for any character χ of $\mathbb{V}_n \times \mathbb{V}_k$ (resp., $\mathbb{V}_n \times \mathbb{Z}_{p^k}$) that is non-trivial on \mathbb{V}_k (resp., \mathbb{Z}_{p^k}) we have

$$|\sum_{x\in\mathbb{V}_n}\chi(x,f(x))| = p^{n/2}.$$

 $\epsilon_{p^j} \colon \text{primitive } p^j \text{-th root of unity in } \mathbb{C}$, i.e., $\epsilon_{p^j} = e^{2\pi i/p^j}$ For $f: \mathbb{V}_n \to \mathbb{V}_k$ and $(a,b) \in \mathbb{V}_n \times \mathbb{V}_k$, define

$$\mathcal{W}_f(a,b) = \sum_{x \in \mathbb{V}_n} \epsilon_p^{\langle a,x \rangle_n + \langle b,f(x) \rangle_k},$$

where \langle , \rangle_n and \langle , \rangle_k are non-degenerate inner products of \mathbb{V}_k and \mathbb{V}_n , respectively.

For $f: \mathbb{V}_n \to \mathbb{Z}_{p^k}$ and $(a, b) \in \mathbb{V}_n \times \mathbb{Z}_{p^k}$, define

$$\mathcal{H}_f(a,b) = \sum_{x \in \mathbb{V}_n} \epsilon_p^{\langle a,x \rangle_n} \epsilon_{p^k}^{bf(x)},$$

 $f: \mathbb{V}_n \to \mathbb{V}_k \text{ (resp., } f: \mathbb{V}_n \to \mathbb{Z}_{p^k} \text{) is } \frac{bent}{if} |\mathcal{W}_f(a, b)| = p^{n/2} \text{ (resp., } |\mathcal{H}_f(a, b)| = p^{n/2} \text{ (resp., } b \in \mathbb{Z}_{p^k} \text{).}$

Remark: In general, $\mathbb{V}_n = \mathbb{F}_p^n$, \mathbb{F}_{p^n} or $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$, n = 2m, and $\langle x, y \rangle = x \cdot y$, $\langle x, y \rangle = \operatorname{Tr}_n(xy)$ or $\langle (x, y), (z, w) \rangle = \operatorname{Tr}_m(xz + yw)$, respectively.

 $\epsilon_{p^j} \colon \text{primitive } p^j \text{-th root of unity in } \mathbb{C}$, i.e., $\epsilon_{p^j} = e^{2\pi i/p^j}$ For $f: \mathbb{V}_n \to \mathbb{V}_k$ and $(a,b) \in \mathbb{V}_n \times \mathbb{V}_k$, define

$$\mathcal{W}_f(a,b) = \sum_{x \in \mathbb{V}_n} \epsilon_p^{\langle a,x \rangle_n + \langle b,f(x) \rangle_k},$$

where \langle , \rangle_n and \langle , \rangle_k are non-degenerate inner products of \mathbb{V}_k and \mathbb{V}_n , respectively.

For $f: \mathbb{V}_n \to \mathbb{Z}_{p^k}$ and $(a, b) \in \mathbb{V}_n \times \mathbb{Z}_{p^k}$, define

$$\mathcal{H}_f(a,b) = \sum_{x \in \mathbb{V}_n} \epsilon_p^{\langle a,x \rangle_n} \epsilon_{p^k}^{bf(x)},$$

 $f: \mathbb{V}_n \to \mathbb{V}_k \text{ (resp., } f: \mathbb{V}_n \to \mathbb{Z}_{p^k} \text{) is } \underline{bent} \text{ if } |\mathcal{W}_f(a, b)| = p^{n/2} \text{ (resp., } |\mathcal{H}_f(a, b)| = p^{n/2} \text{ (resp., } b \in \mathbb{Z}_{p^k} \text{).}$

Remark: In general, $\mathbb{V}_n = \mathbb{F}_p^n$, \mathbb{F}_{p^n} or $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$, n = 2m, and $\langle x, y \rangle = x \cdot y$, $\langle x, y \rangle = \operatorname{Tr}_n(xy)$ or $\langle (x, y), (z, w) \rangle = \operatorname{Tr}_m(xz + yw)$, respectively.

SPREAD CONSTRUCTION

Definition: A partial spread S of \mathbb{V}_n , n = 2m, is a set of *m*-dimensional subspaces of \mathbb{V}_n that intersects trivially. If $|S| = p^m + 1$, then S is called a spread.

Example: Desarguesian Spread Let $\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$. For $s \in \mathbb{F}_{p^m}$, set $U_s = \{(x, sx) \mid x \in \mathbb{F}_{p^m}\}$ and $U = \{(0, y) \mid y \in \mathbb{F}_{p^m}\}.$ Then $S = \{U, U_s \mid s \in \mathbb{F}_{p^m}\}$ is a spread.

Construction of bent functions with a spread:

Let $S = \{U_0, U_1, \ldots, U_{p^m}\}$ be a spread of \mathbb{V}_n , n = 2m, and let B be an abelian group of order p^k for some $1 \leq k \leq m$. We obtain a bent function from \mathbb{V}_n to B as follows.

- For every $c \in B$, the non-zero elements of exactly p^{m-k} of U_j , $1 \leq j \leq p^m$ are mapped to c.
- ② The elements of U_0 are mapped to a fixed $c_0 \in B$.

SPREAD CONSTRUCTION

Definition: A partial spread S of \mathbb{V}_n , n = 2m, is a set of *m*-dimensional subspaces of \mathbb{V}_n that intersects trivially. If $|S| = p^m + 1$, then S is called a *spread*.

Example: Desarguesian Spread Let $\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$. For $s \in \mathbb{F}_{p^m}$, set $U_s = \{(x, sx) \mid x \in \mathbb{F}_{p^m}\}$ and $U = \{(0, y) \mid y \in \mathbb{F}_{p^m}\}.$ Then $\mathcal{S} = \{U, U_s \mid s \in \mathbb{F}_{p^m}\}$ is a spread.

Construction of bent functions with a spread:

Let $S = \{U_0, U_1, \ldots, U_{p^m}\}$ be a spread of \mathbb{V}_n , n = 2m, and let B be an abelian group of order p^k for some $1 \leq k \leq m$. We obtain a bent function from \mathbb{V}_n to B as follows.

- For every $c \in B$, the non-zero elements of exactly p^{m-k} of U_j , $1 \leq j \leq p^m$ are mapped to c.
- ② The elements of U_0 are mapped to a fixed $c_0 \in B$.

SPREAD CONSTRUCTION

Definition: A partial spread S of \mathbb{V}_n , n = 2m, is a set of *m*-dimensional subspaces of \mathbb{V}_n that intersects trivially. If $|S| = p^m + 1$, then S is called a spread.

Example: Desarguesian Spread Let $\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$. For $s \in \mathbb{F}_{p^m}$, set $U_s = \{(x, sx) \mid x \in \mathbb{F}_{p^m}\}$ and $U = \{(0, y) \mid y \in \mathbb{F}_{p^m}\}$. Then $\mathcal{S} = \{U, U_s \mid s \in \mathbb{F}_{p^m}\}$ is a spread.

Construction of bent functions with a spread:

Let $S = \{U_0, U_1, \ldots, U_{p^m}\}$ be a spread of \mathbb{V}_n , n = 2m, and let B be an abelian group of order p^k for some $1 \le k \le m$. We obtain a bent function from \mathbb{V}_n to B as follows.

- For every $c \in B$, the non-zero elements of exactly p^{m-k} of U_j , $1 \leq j \leq p^m$ are mapped to c.
- 2 The elements of U_0 are mapped to a fixed $c_0 \in B$.

Spread-like partition of $\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$

Let $m, k \in \mathbb{Z}^+$ such that k|m and $gcd(p^m - 1, p^k + p - 1) = 1$. Set $e = p^m - p^k - p$ and d such that $de \equiv 1 \mod p^m - 1$. For $s \in \mathbb{F}_{p^m}$, set

$$U_s = \{(x, sx^e) \mid x \in \mathbb{F}_{p^m}\}$$
 and $U = \{(0, x) \mid x \in \mathbb{F}_{p^m}\}.$

Similarly,

$$V_s = \{ (x^d s, x) \mid x \in \mathbb{F}_{p^m} \}$$
 and $V = \{ (x, 0) \mid x \in \mathbb{F}_{p^m} \}.$

For γ of $\mathbb{F}_{p^k},$ define

$$\mathcal{A}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{p^m} \\ \mathrm{Tr}_k^m(s) = \gamma}} U_s^* \quad \text{and} \quad \mathcal{B}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{p^m} \\ \mathrm{Tr}_k^m(s) = \gamma}} V_s^*,$$

where $U_s^* = U_s \setminus \{(0,0)\}$ and $V_s^* = V_s \setminus \{(0,0)\}$. Then

 $\Gamma_1 = \{ U, \mathcal{A}(\gamma) \mid \gamma \in \mathbb{F}_{p^k} \} \text{ and } \Gamma_2 = \{ V, \mathcal{B}(\gamma) \mid \gamma \in \mathbb{F}_{p^k} \},$

are two partitions of $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$ into $p^k + 1$ subsets.

SPREAD-LIKE CONSTRUCTION

THEOREM (PIRSIC-MEIDL (p = 2), A.-MEIDL (p odd))

I. Let f be a function from $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$ to \mathbb{F}_p , for which every $c \in \mathbb{F}_p$ has the union of exactly p^{k-1} of the sets $\mathcal{A}(\gamma)$ (resp., $\mathcal{B}(\gamma)$) in its preimage set. Further suppose that f is constant c_0 on U (resp., V) for some $c_0 \in \mathbb{F}_p$. Then f is a bent function.

II. Let $f : \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{Z}_{p^k}$ such that every $c \in \mathbb{Z}_{p^k}$ has exactly one of the sets $\mathcal{A}(\gamma)$ (resp., $\mathcal{B}(\gamma)$) in its preimage set, and $f(x) = c_0$ for all $x \in U$ (resp., $x \in V$), for some $c_0 \in \mathbb{Z}_{p^k}$. Then f is a bent function.

Remark: The duals of the bent functions in I. of Γ_1 are in Γ_2 and vice versa.

SPREAD-LIKE CONSTRUCTION

THEOREM (PIRSIC-MEIDL (p = 2), A.-MEIDL (p ODD))

I. Let f be a function from $\mathbb{F}_{p^m} \times \mathbb{F}_{p^m}$ to \mathbb{F}_p , for which every $c \in \mathbb{F}_p$ has the union of exactly p^{k-1} of the sets $\mathcal{A}(\gamma)$ (resp., $\mathcal{B}(\gamma)$) in its preimage set. Further suppose that f is constant c_0 on U (resp., V) for some $c_0 \in \mathbb{F}_p$. Then f is a bent function.

II. Let $f : \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{Z}_{p^k}$ such that every $c \in \mathbb{Z}_{p^k}$ has exactly one of the sets $\mathcal{A}(\gamma)$ (resp., $\mathcal{B}(\gamma)$) in its preimage set, and $f(x) = c_0$ for all $x \in U$ (resp., $x \in V$), for some $c_0 \in \mathbb{Z}_{p^k}$. Then f is a bent function.

Remark: The duals of the bent functions in I. of Γ_1 are in Γ_2 and vice versa.

Remark: Spread-like partitions are different from spreads.

Proposition: (Dillon (p = 2), A.-Meidl (p odd)) Let n = 2m an even integer, and let $f : \mathbb{V}_n \to \mathbb{F}_p$ be a spread bent function. Then f has (algebraic) degree $\deg(f) = (p - 1)m$.

Example: Let k|m, $gcd(p^m - 1, p^k + p - 1) = 1$ and $e = p^k + p - 1$. Let $f(x, y) : \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{F}_p$ defined by $f(x, y) = \operatorname{Tr}_m(\alpha x^{-e}y)$, for a non-zero $\alpha \in \mathbb{F}_p^k$. Then f is a bent function obtained from $\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}$. Moreover, the degree of f is (p-1)(m-1).

Remark: Spread-like partitions are different from spreads.

Proposition: (Dillon (p = 2), A.-Meidl (p odd)) Let n = 2m an even integer, and let $f : \mathbb{V}_n \to \mathbb{F}_p$ be a spread bent function. Then f has (algebraic) degree $\deg(f) = (p-1)m$.

Example: Let k|m, $gcd(p^m - 1, p^k + p - 1) = 1$ and $e = p^k + p - 1$. Let $f(x, y) : \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{F}_p$ defined by $f(x, y) = \operatorname{Tr}_m(\alpha x^{-e}y)$, for a non-zero $\alpha \in \mathbb{F}_p^k$. Then f is a bent function obtained from $\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}$. Moreover, the degree of f is (p-1)(m-1).

Remark: Spread-like partitions are different from spreads.

Proposition: (Dillon (p = 2), A.-Meidl (p odd)) Let n = 2m an even integer, and let $f : \mathbb{V}_n \to \mathbb{F}_p$ be a spread bent function. Then f has (algebraic) degree $\deg(f) = (p - 1)m$.

Example: Let k|m, $gcd(p^m - 1, p^k + p - 1) = 1$ and $e = p^k + p - 1$. Let $f(x, y) : \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \to \mathbb{F}_p$ defined by $f(x, y) = \operatorname{Tr}_m(\alpha x^{-e}y)$, for a non-zero $\alpha \in \mathbb{F}_p^k$. Then f is a bent function obtained from $\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}$. Moreover, the degree of f is (p-1)(m-1).

Definition: Let $\Omega = \{U, A_1, \dots, A_K\}$ be a partition of \mathbb{V}_n . Suppose that every function with the following properties is bent:

- I Every $c \in \mathbb{F}_p$ has exactly K/p of the sets A_1, \ldots, A_K in its preimage set, and
- II $f(x) = c_0$ for all $x \in U$ and some fixed $c_0 \in \mathbb{F}_p$.

Then we call Ω a *bent partition* of \mathbb{V}_n .

Example:

• Spread and spread-like partitions are bent partitions.

2 Similarly constructed $\Gamma_1 = \{U, \mathcal{A}(\gamma) \mid \gamma \in \mathbb{F}_{p^k}\}$ with the following values. (By MAGMA)

•
$$m = 4, k = 2 \pmod{(2^m - 1, 2^k + 1)} = 5$$
 and $e = 1$ or $e = 7$

• $m = 8, k = 2 \pmod{2^m - 1, 2^k + 1} = 5$ and e = 23

Question: Are there other classes of bent partitions?

Definition: Let $\Omega = \{U, A_1, \dots, A_K\}$ be a partition of \mathbb{V}_n . Suppose that every function with the following properties is bent:

- I Every $c \in \mathbb{F}_p$ has exactly K/p of the sets A_1, \ldots, A_K in its preimage set, and
- II $f(x) = c_0$ for all $x \in U$ and some fixed $c_0 \in \mathbb{F}_p$.

Then we call Ω a *bent partition* of \mathbb{V}_n .

Example:

- **9** Spread and spread-like partitions are bent partitions.
- ② Similarly constructed Γ₁ = {U, A(γ) | γ ∈ ℝ_{p^k}} with the following values. (By MAGMA)

•
$$m = 4, k = 2 \pmod{(2^m - 1, 2^k + 1)} = 5$$
 and $e = 1$ or $e = 7$

• $m = 8, k = 2 \pmod{(2^m - 1, 2^k + 1)} = 5$ and e = 23

Question: Are there other classes of bent partitions?

Definition: Let $\Omega = \{U, A_1, \dots, A_K\}$ be a partition of \mathbb{V}_n . Suppose that every function with the following properties is bent:

- I Every $c \in \mathbb{F}_p$ has exactly K/p of the sets A_1, \ldots, A_K in its preimage set, and
- II $f(x) = c_0$ for all $x \in U$ and some fixed $c_0 \in \mathbb{F}_p$.

Then we call Ω a *bent partition* of \mathbb{V}_n .

Example:

- **9** Spread and spread-like partitions are bent partitions.
- ② Similarly constructed Γ₁ = {U, A(γ) | γ ∈ ℝ_{p^k}} with the following values. (By MAGMA)

•
$$m = 4, k = 2 \pmod{(2^m - 1, 2^k + 1)} = 5$$
 and $e = 1$ or $e = 7$

• $m = 8, k = 2 \pmod{(2^m - 1, 2^k + 1)} = 5$ and e = 23

Question: Are there other classes of bent partitions?

Properties of bent partitions: (A.-Meidl, 2021)

Let $\Omega = \{U, A_1, \dots, A_K\}$ be a bent partition of \mathbb{V}_n . Then we have the following.

- **0**p divides K.
- **2** n is an even integer.
- **3** U is an affine subgroup of \mathbb{V}_n of order $p^{n/2}$.

BENT FUNCTIONS FROM BENT PARTITIONS

Let $\Omega = \{U, A_1, \dots, A_K\}$ be a bent partition of \mathbb{V}_n . We consider $K = p^k$.

THEOREM (A.-MEILD, 2021)

- I. Every function $f : \mathbb{V}_n \to \mathbb{V}_k$ such that every element $c \in \mathbb{V}_k$ has the elements of exactly one of the sets A_j , $1 \leq j \leq K$, in its preimage, and U is mapped to $c_0 \in \mathbb{V}_k$, is bent.
- II. Every function $f : \mathbb{V}_n \to \mathbb{Z}_{p^k}$ such that f(x) = j if $x \in A_j$ and f(x) = 0 (w.l.o.g.) if $x \in U$, is bent.

Recall:

$$\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}, \ k|m, \ \gcd(p^m - 1, p^k + p - 1) = 1 \ \text{and} \ e = p^m - p^k - p.$$

$$\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}, \text{ where } \mathcal{A}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{p^m} \\ \operatorname{Tr}_k^m(s) = \gamma}} U_s^{s}$$

with $U_s = \{(x, sx^e) \mid x \in \mathbb{F}_{p^m}\}$ and $U = \{(0, x) \mid x \in \mathbb{F}_{p^m}\}.$

Let $k_1 < k_2$ be two divisors of m with $gcd(p^m - 1, p^{k_i} + p - 1) = 1$ and $e_i = p^{k_i} + p - 1$ for i = 1, 2. Denote by $\Gamma_1^{(i)} = \{U, \mathcal{A}_i(\gamma) \mid \gamma \in \mathbb{F}_{p^k}\}$ the bent partition corresponding to k_i and define

 $\mathcal{F}_i := \{ f : \mathbb{F}_{p^n} \mapsto \mathbb{F}_p : f \text{ is a bent function obtained from } \Gamma_1^{(i)} \}.$

Proposition: (A.-Kalaycı-Meidl, 2021) Let $d = \gcd(m, k_2 - k_1)$. If $p^m(p-1) > p^{m/2}(p^d - 2)(p^{k_1} - 1)$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Recall:

$$\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}, \ k|m, \ \gcd(p^m - 1, p^k + p - 1) = 1 \ \text{and} \ e = p^m - p^k - p.$$

$$\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}, \text{ where } \mathcal{A}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{p^m} \\ \operatorname{Tr}_k^m(s) = \gamma}} U_s$$

with
$$U_s = \{(x, sx^e) \mid x \in \mathbb{F}_{p^m}\}$$
 and $U = \{(0, x) \mid x \in \mathbb{F}_{p^m}\}.$

Let $k_1 < k_2$ be two divisors of m with $gcd(p^m - 1, p^{k_i} + p - 1) = 1$ and $e_i = p^{k_i} + p - 1$ for i = 1, 2. Denote by $\Gamma_1^{(i)} = \{U, \mathcal{A}_i(\gamma) \mid \gamma \in \mathbb{F}_{p^k}\}$ the bent partition corresponding to k_i and define

 $\mathcal{F}_i := \{ f : \mathbb{F}_{p^n} \mapsto \mathbb{F}_p : f \text{ is a bent function obtained from } \Gamma_1^{(i)} \}.$

Proposition: (A.-Kalaycı-Meidl, 2021) Let $d = \gcd(m, k_2 - k_1)$. If $p^m(p-1) > p^{m/2}(p^d - 2)(p^{k_1} - 1)$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Recall:

$$\mathbb{V}_n = \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}, \, k | m, \, \gcd(p^m - 1, p^k + p - 1) = 1 \text{ and } e = p^m - p^k - p.$$

$$\Gamma_1 = \{U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{p^k}\}, \text{ where } \mathcal{A}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{p^m} \\ \operatorname{Tr}_k^m(s) = \gamma}} U_s$$

with
$$U_s = \{(x, sx^e) \mid x \in \mathbb{F}_{p^m}\}$$
 and $U = \{(0, x) \mid x \in \mathbb{F}_{p^m}\}.$

Let $k_1 < k_2$ be two divisors of m with $gcd(p^m - 1, p^{k_i} + p - 1) = 1$ and $e_i = p^{k_i} + p - 1$ for i = 1, 2. Denote by $\Gamma_1^{(i)} = \{U, \mathcal{A}_i(\gamma) \mid \gamma \in \mathbb{F}_{p^k}\}$ the bent partition corresponding to k_i and define

 $\mathcal{F}_i := \{ f : \mathbb{F}_{p^n} \mapsto \mathbb{F}_p : f \text{ is a bent function obtained from } \Gamma_1^{(i)} \}.$

Proposition: (A.-Kalaycı-Meidl, 2021) Let $d = \gcd(m, k_2 - k_1)$. If $p^m(p-1) > p^{m/2}(p^d-2)(p^{k_1}-1)$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. Idea of the proof: Let $\mathcal{A}_2(\gamma) \in \Gamma_1^{(2)}$ and

$$|S| > p^{k_1 - 1}, \text{ where } S = \{ \mathcal{A}_1(\beta) \in \Gamma_1^{(1)} : \mathcal{A}_1(\beta) \cap \mathcal{A}_2(\gamma) \neq \emptyset \}.$$

Suppose that $f \in \mathcal{F}_1 \cap \mathcal{F}_2 \neq \emptyset$. If $f \mid_{\mathcal{A}_2(\gamma)} = c$ then $f \mid_{\mathcal{A}_1(\beta)} = c$ for all $\mathcal{A}_1(\beta) \in S$, a contradiction to f being bent function.

For $s \in \mathbb{F}_{p^m}^*$, $U_s^{(i)} = \{(x, sx^{e_i}) : x \in \mathbb{F}_{p^m}\}$ for i = 1, 2. We consider $\mathcal{A}_2(\gamma) \supseteq U_1^{(2)}$. $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff (x, sx^{e_1}) = (x, x^{e_2})$ for some $x \in \mathbb{F}_{p^m}^*$, i.e.,

$$s = x^{p^{k_1}(p^{k_2-k_1}-1)}$$

Hence, $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff s = y^{p^d-1}$ for some $y \in \mathbb{F}_{p^m}^*$, where $d = \gcd(m, k_2 - k_1)$.

Idea of the proof: Let $\mathcal{A}_2(\gamma) \in \Gamma_1^{(2)}$ and

$$|S| > p^{k_1-1}$$
, where $S = \{\mathcal{A}_1(\beta) \in \Gamma_1^{(1)} : \mathcal{A}_1(\beta) \cap \mathcal{A}_2(\gamma) \neq \emptyset\}.$

Suppose that $f \in \mathcal{F}_1 \cap \mathcal{F}_2 \neq \emptyset$. If $f \mid_{\mathcal{A}_2(\gamma)} = c$ then $f \mid_{\mathcal{A}_1(\beta)} = c$ for all $\mathcal{A}_1(\beta) \in S$, a contradiction to f being bent function.

For $s \in \mathbb{F}_{p^m}^*$, $U_s^{(i)} = \{(x, sx^{e_i}) : x \in \mathbb{F}_{p^m}\}$ for i = 1, 2. We consider $\mathcal{A}_2(\gamma) \supseteq U_1^{(2)}$. $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff (x, sx^{e_1}) = (x, x^{e_2})$ for some $x \in \mathbb{F}_{p^m}^*$, i.e.,

$$s = x^{p^{k_1}(p^{k_2-k_1}-1)}$$

Hence, $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff s = y^{p^d - 1}$ for some $y \in \mathbb{F}_{p^m}^*$, where $d = \gcd(m, k_2 - k_1)$.

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.

 $\implies |S| \text{ is the number of cosets } y^{p^d-1} + \mathcal{Z}, \text{ where } \\ \mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$

Consider the Kummer curve $\mathcal{X} : Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}$. Hasse-Weil bound $\Longrightarrow N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D}.$$

$$p^m(p - 1) > p^{m/2}(p^d - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where

$$\mathcal{Z} = \{ x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m} \}.$$

Consider the Kummer curve $\mathcal{X}: Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}$. Hasse-Weil bound $\Longrightarrow N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D}.$$

$$p^m(p - 1) > p^{m/2}(p^d - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$

Consider the Kummer curve $\mathcal{X}: Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}.$

Hasse-Weil bound $\implies N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D},$$

$$p^m(p - 1) > p^{m/2}(p^d - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$

Consider the Kummer curve $\mathcal{X}: Y^{p^{n-1}} = X^{p^{n-1}} - X + e, \ e \in \mathbb{F}_{p^m}$. Hasse-Weil bound $\Longrightarrow N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D}.$$

$$p^m(p - 1) > p^{m/2}(p^d - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$

Consider the Kummer curve $\mathcal{X} : Y^{p^a-1} = X^{p^{\kappa_1}} - X + e, \ e \in \mathbb{F}_{p^m}$. Hasse-Weil bound $\Longrightarrow N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

$$(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$$

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D}.$$

$$p^m(p - 1) > p^{m/2}(p^d - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}.$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$
Consider the Kummer curve $\mathcal{X} : Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}.$

Hasse-Weil bound $\implies N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$

$$\implies |S| \ge \frac{p^{m} - 1}{(p^{d} - 1)D}.$$

$$p^{m}(p - 1) > p^{m/2}(p^{d} - 2)(p^{k_{1}} - 1) \implies |S| > p^{k_{1} - 1}$$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\implies |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$
Consider the Kummer curve $\mathcal{X} : Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}.$

Hasse-Weil bound $\implies N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

 $(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$ \implies There are at most $D := (p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1))/p^{k_1}(p^d - 1)$ elements u^{p^d-1} lying in $e + \mathcal{Z}$.

$$\implies |S| \ge \frac{p^m - 1}{(p^d - 1)D}.$$

 $p^{m}(p-1) > p^{m/2}(p^{d}-2)(p^{k_{1}}-1) \Longrightarrow |S| > p^{k_{1}-1}$

For
$$s_i = y_i^{p^d-1}$$
, $\operatorname{Tr}_{k_1}^m(s_1) = \operatorname{Tr}_{k_1}^m(s_2)$ if and only if
 $y_2^{p^d-1} = x^{p^{k_1}} - x + y_1^{p^d-1}$ for some $x \in \mathbb{F}_{p^m}$.
 $\Longrightarrow |S|$ is the number of cosets $y^{p^d-1} + \mathcal{Z}$, where
 $\mathcal{Z} = \{x^{p^{k_1}} - x : x \in \mathbb{F}_{p^m}\}.$
Consider the Kummer curve $\mathcal{X} : Y^{p^d-1} = X^{p^{k_1}} - X + e, \ e \in \mathbb{F}_{p^m}.$

Hasse-Weil bound $\implies N(\mathcal{X}) \leq p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1)$, where $N(\mathcal{X})$ is the number of affine rational points.

$$(x,y) \in \mathcal{X} \iff (x+c,\zeta y) \in \mathcal{X} \text{ for } c \in \mathbb{F}_{p^{k_1}} \text{ and } \zeta^{p^d-1} = 1.$$

 \implies There are at most $D := (p^m + p^{m/2}(p^d - 2)(p^{k_1} - 1))/p^{k_1}(p^d - 1)$
elements y^{p^d-1} lying in $e + \mathcal{Z}$.

.

$$\implies |S| \ge \frac{p^{m} - 1}{(p^{d} - 1)D}.$$

$$p^{m}(p - 1) > p^{m/2}(p^{d} - 2)(p^{k_1} - 1) \implies |S| > p^{k_1 - 1}$$

Corollary: If $k_2 < m$ or $k_2 = m$ and $k_1 \leq m/4$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Open Cases: $(k_1, k_2) = (m/2, m)$ and $(k_1, k_2) = (m/3, m)$ **Lemma:** If $(k_1, k_2) = (m/2, m)$ then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. *Proof.* Recall: $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff s = y^{p^{m/2}-1}$ for some $y \in \mathbb{F}_{p^m}^*$. $\implies |S| = |\{\beta = \operatorname{Tr}_{m/2}^m(s) : s = y^{p^{m/2}-1} \text{ for some } y \in \mathbb{F}_{p^m}^*\}|$ Note that $\operatorname{Tr}_{m/2}^m(s) = s + s^{-1}$, i.e.,

$$\operatorname{Tr}_{m/2}^m(s_i) = \operatorname{Tr}_{m/2}^m(s) \Longleftrightarrow s_i + \frac{1}{s_i} = s + \frac{1}{s}.$$

 $\implies s_i \text{ is a root of } T^2 - (1/s + s)T + 1.$

 $\implies \text{There are at most two elements having the same relative trace.} \\ \implies |S| \ge 1/2 |\{y^{p^{m/2}-1} : y \in \mathbb{F}_{p^m}^*\}| = (p^{m/2}+1)/2 > p^{m/2-1}.$

THEOREM (A.-KALAYCI-MEIDL, 2021) If $k_1 \neq k_2$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Corollary: If $k_2 < m$ or $k_2 = m$ and $k_1 \le m/4$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. Open Cases: $(k_1, k_2) = (m/2, m)$ and $(k_1, k_2) = (m/3, m)$ Lemma: If $(k_1, k_2) = (m/2, m)$ then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. Proof. Recall: $U_s^{(1)*} \cap U_1^{(2)*} \ne \emptyset \iff s = y^{p^{m/2}-1}$ for some $y \in \mathbb{F}_{p^m}^*$. $\implies |S| = |\{\beta = \operatorname{Tr}_{m/2}^m(s) : s = y^{p^{m/2}-1} \text{ for some } y \in \mathbb{F}_{p^m}^*\}|$ Note that $\operatorname{Tr}_{m/2}^m(s) = s + s^{-1}$, i.e.,

$$\operatorname{Tr}_{m/2}^m(s_i) = \operatorname{Tr}_{m/2}^m(s) \Longleftrightarrow s_i + \frac{1}{s_i} = s + \frac{1}{s}.$$

 $\implies s_i \text{ is a root of } T^2 - (1/s + s)T + 1.$

⇒ There are at most two elements having the same relative trace. ⇒ $|S| \ge 1/2 |\{y^{p^{m/2}-1} : y \in \mathbb{F}_{p^m}^*\}| = (p^{m/2}+1)/2 > p^{m/2-1}.$

THEOREM (A.-KALAYCI-MEIDL, 2021) If $k_1 \neq k_2$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Corollary: If $k_2 < m$ or $k_2 = m$ and $k_1 \leq m/4$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. **Open Cases:** $(k_1, k_2) = (m/2, m)$ and $(k_1, k_2) = (m/3, m)$ **Lemma:** If $(k_1, k_2) = (m/2, m)$ then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. *Proof.* Recall: $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff s = y^{p^{m/2}-1}$ for some $y \in \mathbb{F}_{p^m}^*$. $\implies |S| = |\{\beta = \operatorname{Tr}_{m/2}^m(s) : s = y^{p^{m/2}-1} \text{ for some } y \in \mathbb{F}_{p^m}^*\}|$ Note that $\operatorname{Tr}_{m/2}^m(s) = s + s^{-1}$, i.e.,

$$\operatorname{Tr}_{m/2}^{m}(s_i) = \operatorname{Tr}_{m/2}^{m}(s) \Longleftrightarrow s_i + \frac{1}{s_i} = s + \frac{1}{s}.$$

 \implies s_i is a root of $T^2 - (1/s + s)T + 1$.

 $\implies \text{There are at most two elements having the same relative trace.} \\ \implies |S| \ge 1/2 |\{y^{p^{m/2}-1} : y \in \mathbb{F}_{p^m}^*\}| = (p^{m/2}+1)/2 > p^{m/2-1}.$

Theorem (A.-Kalayci-Meidl, 2021)

If $k_1 \neq k_2$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

Corollary: If $k_2 < m$ or $k_2 = m$ and $k_1 \leq m/4$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. **Open Cases:** $(k_1, k_2) = (m/2, m)$ and $(k_1, k_2) = (m/3, m)$ **Lemma:** If $(k_1, k_2) = (m/2, m)$ then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$. *Proof.* Recall: $U_s^{(1)^*} \cap U_1^{(2)^*} \neq \emptyset \iff s = y^{p^{m/2}-1}$ for some $y \in \mathbb{F}_{p^m}^*$. $\implies |S| = |\{\beta = \operatorname{Tr}_{m/2}^m(s) : s = y^{p^{m/2}-1} \text{ for some } y \in \mathbb{F}_{p^m}^*\}|$ Note that $\operatorname{Tr}_{m/2}^m(s) = s + s^{-1}$, i.e.,

$$\operatorname{Tr}_{m/2}^{m}(s_i) = \operatorname{Tr}_{m/2}^{m}(s) \Longleftrightarrow s_i + \frac{1}{s_i} = s + \frac{1}{s}.$$

 \implies s_i is a root of $T^2 - (1/s + s)T + 1$.

 $\implies \text{There are at most two elements having the same relative trace.} \\ \implies |S| \ge 1/2 |\{y^{p^{m/2}-1} : y \in \mathbb{F}_{p^m}^*\}| = (p^{m/2}+1)/2 > p^{m/2-1}.$

THEOREM (A.-KALAYCI-MEIDL, 2021)

If $k_1 \neq k_2$, then $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$.

We wish you healthy days!