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Overview

I Circuit optimization problem
I Multiplicative complexity
I Low MC circuits for cubic Boolean functions



Boolean Circuits

A Boolean circuit with n inputs and m outputs is a
directed acyclic graph (DAG), where

I the inputs and the gates are nodes,
I the edges correspond to Boolean-valued wires,
I fanin/fanout of a node is the number of wires

going in/out the node,
I the nodes with fanin zero are called input nodes
I a node with fanout zero is an output node
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Boolean Function Complexity
Problem: Given a basis of Boolean gates, construct a circuit that computes a function
that is optimal w.r.t. some criteria, such as

I Size: The number of gates in the circuit.
I Depth: The length of the longest path from an input gate to the output gate.

Almost all Boolean functions are complex.

Target metric depends on the application.

I Circuits with small number of gates use less energy and occupy smaller area, and are
desired for lightweight cryptography applications running on constrained devices.

I Circuits with small number of AND gates are desired for secure multi-party
computation, zero-knowledge proofs and side channel protection.

I Circuits with small AND-depth are desired for homomorphic encryption schemes.



Multiplicative Complexity (MC)

Minimum number of nonlinear gates needed to implement f by a Boolean circuit
I Min. # of AND gates needed over the basis (AND, XOR, NOT).
I Almost all f ∈ Bn have MC at least 2n/2 − n− 1 with high probability.
I No specific n-variable function had been proven to have MC larger than n.
I MC of a function with degree d is at least d− 1 (degree bound).
I The number of n-variable Boolean fucntions with MC k is at most 2k2−k+2kn+n+1

I MC is affine invariant.
I Boolean functions f, g ∈ Bn are affine equivalent if there exists a transformation of the

form f(x) = g(Ax+ a) + b · x+ c, where A ∈ GL(n, 2); a, b ∈ Fn
2 , and c ∈ F2.

I The set of affine equivalent functions constitute an equivalence class denoted by [f ],
where f is an arbitrary function from the class.

I Affine equivalent Boolean functions have the same MC.



MC of Boolean Functions
Exhaustively construct all Boolean topologies with 1,2, 3, . . . AND gates, and evaluate the
topologies until a function from [f ] is generated.

I Topology: Abstraction of a Boolean circuit that shows the relations between AND
gates

Boolean circuit Topology
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Constructing Topologies [CTP18]

Topologies with 1 AND gate
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Topologies with 2 AND gates

∧ ∧ and
∧

∧

Topologies with 3 AND gates

∧ ∧ ∧
∧ ∧

∧

∧ ∧

∧
∧ ∧

∧

∧ ∧
∧

∧
∧

∧

∧
∧

∧

∧
∧

∧

Number of topologies with 4 AND gates is 84.



Finding the MC of Boolean functions

Different ways of determining the MC of a Boolean function
I Show that it is affine equivalent to a function whose MC is known.
I Find a circuit that satisfies a lower bound (degree bound).
I Iteratively construct all circuits with increasing #ANDs until the function is generated.

Solved up to 6-variables
I C∧(f) ≤ n− 1 for f ∈ Bn, n ≤ 5 (Turan, Peralta, 2014)
I C∧(f) ≤ 6 for f ∈ B6 (Çalık et al., 2018)

Known methods are infeasible for n > 6, due to the large number of affine equivalence
classes and Boolean circuits.



Boolean functions with MC 1 and 2

Boolean functions with MC 1 [FP02]
I Functions with MC 1 are affine equivalent to x1x2.
I The number of n-variable Boolean functions with MC 1 is 2

(2n

3
)
.

Boolean functions with MC 2 [FTT17]
I Functions with MC 2 are affine equivalent to one of the functions from the set
{x1x2x3, x1x2x3 + x1x4, x1x2 + x3x4}.

I The number of n-variable Boolean functions with MC 2 is

2n(2n − 1)(2n − 2)(2n − 4)
( 2

21 + 2n − 8
12 + 2n − 8

360

)
.



MC of Quadratic Boolean Functions

I The equivalance classes for n-bit quadratic Boolean functions are
I x1x2 (with MC 1)
I x1x2 + x3x4(with MC 2)
I x1x2 + x3x4 + x5x6 (with MC 3)
I . . .
I x1x2 + x3x4 + . . .+ xn−1xn (even n) (with MC bn

2 c)
I x1x2 + x3x4 + . . .+ xn−2xn−1 (odd n) (with MC bn

2 c)

I MC of a quadratic Boolean function is at most bn2 c.



Dimension of a Boolean function
The following functions are all affine equivalent and have MC=1:

x1x2

x1 + x2x3

(x1 + x2)(x3 + x4) = x1x3 + x1x4 + x2x3 + x2x4

It is easier to work on smaller number of variables.

Definition. Let Lf be the number of input variables that appear in the algebraic normal
form (ANF) of a Boolean function f . The dimension of f is the smallest number of
variables that appear in the ANF among the functions that are affine equivalent to f :

dim(f) = min
g∈[f ]

Lg.

Example. dim(x1x3 + x1x4 + x2x3 + x2x4) = dim(x1x2) = 2



A New MC Lower Bound based on Dimension

Theorem
For f ∈ Bn, C∧(f) ≥ ddim(f)/2e.
Sketch of the proof.

1. Let C∧(f) = k, consider a circuit implementing f with k AND gates.
2. The topology with k AND gates has 2k linear function inputs.
3. The rank of 2k linear functions can be at most 2k.
4. Any set of 2k linear functions on n > 2k variables can be affine transformed to

functions having at most 2k variables.
5. Therefore, dim(f) ≤ 2k, which implies C∧(f) ≥ ddim(f)/2e.

Example. Let f = Σ8
4 = x1x2x3x4 + . . .+ x5x6x7x8. According to the degree bound,

C∧(f) ≥ 3. By dimension bound, C∧(f) ≥ 8/2 = 4.



Multiplicative Complexity of Cubic Boolean Functions
The following results follow from earlier studies [CTP19, CTP18, TP14, FTT17]

I Let f ∈ Bn be a Boolean function with MC 2. Then f is affine equivalent to exactly
one of the following two functions: x1x2x3 and x1x2x3 + x1x4.

I Let f be an n-variable cubic Boolean function with dimension 5 and MC 3. Then f is
affine equivalent to exactly one of the following four functions x1x3x4 + x1x2x5,
x1x2x3 + x4x5, x3x4 + x1x3x4 + x1x2x5 and x1x2x3 + x2x4 + x1x5.

I Let f be an n-variable cubic Boolean function with dimension 6 and MC 3. Then f is
affine equivalent to exactly one of the following three functions
x3x4 + x1x3x4 + x1x2x5 + x1x6, x1x3x4 + x1x2x5 + x1x6 and x1x2x3 + x4x5 + x1x6.



Construction Circuits for Cubic Boolean Functions

1. Decompose n-bit cubic Boolean function f such that

f = xnf1 + f2

where f1 is a quadratic function defined on (x1, . . . , xn−1) and f2 is a function of
degree at most three defined on (x1, . . . , xn−1).

2. Optimally implement f1 (with at most bn−1
2 c AND gates).

3. If f2 is cubic, apply this method recursively. If not cubic, optimally implement f2 (with
at most bn−1

2 c AND gates)
4. Given the implementations of f1 and f2, implement f using one additional AND gate.



Upper bounds on the MC of Cubic Boolean Functions

The method provides an upper bound on the MC of n-variable cubic Boolean functions,
denoted MaxMC(Bc

n), using the following relation

MaxMC(Bc
n) ≤ MaxMC(Bc

n−1) + bn− 1
2 c+ 1. (1)

We experimentally showed that MC of cubic Boolean function for n = 7 is at most 8.

MaxMC(Bc
n) ≤ 1

2(bn− 1
2 c2 + bn− 1

2 c+ (bn2 c − 1)bn2 c+ 2(n− 8)). (2)



Upper bounds

Table: Upper bounds on the MC of n-variable Boolean functions

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cubic functions - 2 2 4 5 8 12 16 20 25 30 36 41 48 54

All functions 1 2 3 4 6 13 26 41 57 88 120 183 247 374 502



Upper bounds
The # of functions in Bn with MC ≤ k is bounded above by 2k2+2kn+n+2.
|Bc

n| = (2(n
3) − 1)2(n

2)+n+1.
Let τ = MaxMC(Bc

n), we have

(2(n
3) − 1)2(n

2)+n+1 ≤ 2τ2+2τn+n+2(
n

3

)
+
(
n

2

)
+ n ≤ τ2 + 2τn+ n+ 2

n3 − n ≤ 6τ2 + 12τn+ 12
√

6
6 (n3 + 6n2 − n− 12)

1
2 − n ≤ τ, (3)

which shows that MaxMC(Bc
n) is Ω(n3/2). Thus

Ω(n3/2) ≤ MaxMC(Bc
n) ≤ O(n2). (4)

Closing this gap is an interesting open problem.



Conclusion

I Studied the MC of cubic Boolean functions
I Enumerated the exhaustive list of equivalence functions with MC ≤ 4.
I Presented a method to implement cubic Boolean functions that decomposes the

function into an expression of functions defined on smaller number of variables.
I Provided an upper bounds on the MC of cubic Boolean functions, significantly better

than the upper bounds for random Boolean functions.



More Information

I NIST Circuit Complexity Project Webpage:
https://csrc.nist.gov/Projects/Circuit-Complexity

I GitHubLink:
https://github.com/usnistgov/Circuits/

I Contact email:
circuit complexity@nist.gov
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