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Abstract

In this work, we will extend the results of Calderini (2021) on the differential uniformity
of some piecewise functions to the case of the c-differential uniformity, recently introduced
by Ellingsen et al. (2020). From this generalization, we are also able to improve the upper
bound obtained by Stanica (2021) for the case of a Gold APN function in even characteristic
modified on a subfield.

1 Introduction

Let p be a prime number and n be a positive integer n. We let Fpn be the finite field with pn

elements, and F?
pn = Fpn \ {0} be its multiplicative group.

We call a function from Fpn (or Fn
p ) to Fp a p-ary function on n variables. For positive

integers n and m, any map F : Fpn → Fpm (or, Fn
p → Fm

p ) is called a vectorial p-ary function,
or an (n,m)-function. When m = n, F can be uniquely represented as a univariate polynomial
over Fpn of the form F (x) =

∑pn−1
i=0 aix

i, ai ∈ Fpn , whose algebraic degree is then the largest
weight in the p-ary expansion of i (that is, the sum of the digits of the exponents i with ai 6= 0).

Motivated by [3], who extended the differential attack on some ciphers by using a new
type of differential, in [6], the authors introduced a new differential and Difference Distribution
Table, in any characteristic, along with the corresponding perfect/almost perfect c-nonlinear
functions (this was also developed independently in [2] where the authors introduce the concept
of quasi planarity) and other notions. In [1, 6, 8, 9] various characterizations of the c-differential
uniformity were found, and some of the known perfect and almost perfect nonlinear functions
were investigated and constructions were proposed.
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For a p-ary (n,m)-function F : Fpn → Fpm , and c ∈ Fpm , the (multiplicative) c-derivative of
F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn .

For an (n, n)-function F , and a, b ∈ Fpn , we let the entries of the c-Difference Distribution
Table (c-DDT) be defined by c∆F (a, b) = #{x ∈ Fpn : F (x + a) − cF (x) = b}. We call the
quantity

δF,c = max {c∆F (a, b) : a, b ∈ Fpn , and a 6= 0 if c = 1}

the c-differential uniformity of F . If δF,c = δ, then we say that F is differentially (c, δ)-uniform
(or that F has c-uniformity δ). If δ = 1, then F is called a perfect c-nonlinear (PcN) function
(certainly, for c = 1, they only exist for odd characteristic p; however, as proven in [6], there exist
PcN functions for p = 2, for all c 6= 1). If δ = 2, then F is called an almost perfect c-nonlinear
(APcN) function.

It is easy to see that if F is an (n, n)-function, that is, F : Fpn → Fpn , then F is PcN if and
only if cDaF is a permutation polynomial. For c = 1, we recover the classical derivative, PN,
APN, differential uniformity and DDT. In the last years, several constructions of low differen-
tially uniform permutations have been introduced by modifying some functions on a subfield
(see, for instance, [4, 7, 11, 12]).

In this work we will extend some of the results given in [4] to the case of the c-differential
uniformity. From this generalization we are also able to improve the upper bound obtained in
[10] for the case of a Gold APN function in even characteristic.

2 Some low c-differential uniform functions and upper bounds
on the differential uniformity of piecewise functions

Here, we shall give a general result concerning an upper bound for the c-differential uniformity
of a piecewise function, thus generalizing a result of [4].

Before considering the case of the c-differential uniformity, we will give a property for some
functions having δF,1 = 4 when p = 2. Indeed, recently in [5], Carlet noticed that for an APN
function F ∈ F2s [x] defined on an extension F2ms , with m odd, we have that the equation
F (x+ a) + F (x) = b does not admit solutions x /∈ F2s , whenever a ∈ F?

2s and b ∈ F2s .
This result can be extended to the case of differentially 4-uniform functions as follows.

Proposition 1. Let n = sm, with m odd, and let F ∈ F2s [x] be a 4-uniform function over F2n.
Then, F (x+ a) + F (x) = b does not admit solution x ∈ F2n \ F2s, whenever a, b ∈ F2s.

From Proposition 1 we have that all the results given in [4] for the differentially 4-uniform
case of the Gold and Bracken-Leander functions can be extended to other functions, such as the
differentially 4-uniform case of the Kasami function. Indeed, the assumption on the solutions of
the derivatives of the modified function is needed for applying Theorem 4.1 in [4]. In particular,
we have the following result.

Theorem 2. Let n = sm with s even such that s/2 and m are odd. Let k be such that gcd(k, n) =
2 and f(x) = A1 ◦ Inv ◦ A2(x), where Inv(x) = x−1 and A1, A2 are affine permutations over
F2s. Then

F (x) = f(x) + (f(x) + x2
2k−2k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
2k−2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n and the nonlinearity of F is at least 2n−1 −
2

s
2
+1 − 2

n
2 . Moreover, if s > 2 then the algebraic degree of F is n− 1.
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Here, we shall give a general result concerning an upper bound for the c-differential uniformity
of a piecewise function, thus generalizing a result of [4]. In particular, Theorem 4.1 in [4] can
be extended to the case of p-ary functions and c 6= 1. In the following result, we do not request
any condition on the solutions of the derivatives of our functions.

Theorem 3. Let p is a prime, n > 2 be an integer, s be a divisor of n, 1 6= c ∈ Fpn fixed, and
F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f(x) if x ∈ Fps

g(x) if x /∈ Fps ,

where f is an (s, s)-function of c′-differential uniformity δf,c′ (for all c′) and g ∈ Fps [x] is an
(n, n)-function of c′-differential uniformity δg,c′ (for all c′). Then, the c-differential uniformity
of F is

δF,c ≤

{
δf,0 + δg,0, if c = 0,

max {δf,c1 + δg,c, δg,c + 2psδg,0} , if c 6= 0,

where c =
∑m

i=1 cigi, with ci ∈ Fps and {g1 = 1, g2, . . . , gm} is a basis of the extension Fpn over
Fps.

If we introduce some extra conditions on the solutions of the derivatives of the function g,
we can obtain another upper bound on the c-differential uniformity of the modified function.

Theorem 4. Let p be a prime, n > 2 be an integer, s be a divisor of n, 1 6= c ∈ Fps fixed, and
F : Fpn → Fpn be a p-ary (n, n)-function defined by

F (x) =

{
f(x) if x ∈ Fps

g(x) if x /∈ Fps ,

where f is an (s, s)-function of c-differential uniformity δf,c and g ∈ Fps [x] is an (n, n)-function
of c-differential uniformity, δg,c. Suppose that:

(H1) for any a ∈ F?
ps and b ∈ Fps the equation g(x+ a)− g(x) = b has no solution in Fpn \ Fps.

(H2) for any a ∈ Fps and b ∈ Fps the equation g(x+ a)− cg(x) = b has no solution in Fpn \Fps.

Then, the c-differential uniformity of F is

c∆F (a, b) ≤

{
max{δf,c, δg,c} if a ∈ Fps

δg,c + 2 · δg,0 if a /∈ Fps .

Remark 5. Removing condition (H2) in Theorem 4 would yield

c∆F (a, b) ≤

{
δf,c + δg,c if a ∈ Fps

δg,c + 2 · δg,0 if a /∈ Fps .

Moreover, if g permutes Fps then we have also that δg,0 = 1.

For a Gold-like function defined over F2n , we can observe the following.

Proposition 6. Let n = sm, with n/s odd. For a Gold-like function g(x) = x2
k+1 with

gcd(n, k) = t and F2t ⊂ F2s, we have that

g(x+ a) + g(x) = b

does not admit solutions in F2n \ F2s, whenever a ∈ F?
2s and b ∈ F2s.
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Theorem 7. Let n = sm, with n/s odd. For a Gold-like function g(x) = x2
k+1, with gcd(n, k) =

t, F2t ⊂ F2s, and n/t odd, we have that, for any fixed α ∈ F?
2s, G(x) = x2

k+1+α(x2
s
+x)2

n−1+α
is such that δG,c ≤ 3, for any c ∈ F2t \ {1}.

The c-differential uniformity of a Gold-like function g(x) = x2
k+1 has been characterized in

[9, Theorem 4]. In particular, for c 6= 1 we have δg,c ≤ 2gcd(k,n) +1. From this, and from Remark
5 we have the following result.

Theorem 8. Let n = sm, with n odd. For a Gold function g(x) = x2
k+1 with gcd(n, k) = 1,

we have that for any fixed α ∈ F?
2s, G(x) = x2

k+1 +α+α(x2
s

+x)2
n−1 is such that δG,c ≤ 6, for

any c ∈ F2s \ {1}.

Remark 9. Theorem 8 improves (when c is restricted to the subfield F2s) the upper bound
obtained in [10], where the author studied the modified Gold function, with no restriction on the
element c, and obtained that δG,c ≤ 9.

3 Concatenating functions with low c-differential uniformity

In this section we will show how it is possible to obtain a function over Fqn , with low c-differential
uniformity, concatenating n functions defined over Fq.

Let {β1, . . . , βn} be a basis of Fqn as vector space over Fq. Let A = (aij)i,j = (βq
j−1

i ) The
matrix A is non-singular, so we can define A−1 = (a′i,j)i,j . Let us denote by ek the column vector
whose entries are all zeros but one in position k, for 1 ≤ k ≤ n. We define the linear polynomial
Lk(x) =

∑n
i=1 a

′
i,kx

qi−1
= (x, xq, . . . , xq

n−1
) ·A−1 · ek.

Any element x ∈ Fqn can be written as x = β1x1 + · · · + βnxn, with xi ∈ Fq. Thus, we
have Lk(x) = xk. That is, Lk is the projection on the k-th component of x. So we obtain the
following result.

Theorem 10. Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq with c-differential
uniformity δ1, . . . , δn, respectively. Let β1, . . . , βn, Lk be defined as before. Then F (x) =∑n

k=1 βkfk(Lk(x)) has c-differential uniformity equal to
∏n

i=1 δi.

We can construct a PcN function over Fqn from n PcN functions over Fq.

Corollary 11. Let c ∈ Fq \ {1} and let f1, . . . , fn be n functions over Fq that are PcN. Then
F (x) =

∑n
k=1 βkfk(Lk(x)) is PcN.

References

[1] D. Bartoli, M. Calderini, On construction and (non)existence of c-(almost) perfect nonlinear
functions, Finite Fields Appl. 72 (2021), https://doi.org/10.1016/j.ffa.2021.101835.

[2] D. Bartoli, M. Timpanella, On a generalization of planar functions, J. Algebr. Comb. 52
(2020), 187–213.

[3] N. Borisov, M. Chew, R. Johnson, D. Wagner, Multiplicative Differentials, In: Daemen J.,
Rijmen V. (eds.), Fast Software Encryption, FSE 2002, LNCS 2365, pp. 17–33, Springer,
Berlin, Heidelberg, 2002.

[4] M. Calderini, Differentially low uniform permutations from known 4-uniform functions,
Des. Codes Cryptogr. 89 (2021), 33–52.

[5] C. Carlet, Revisiting some results on APN and algebraic immune functions, Advances in
Mathematics of Communications, 2021.

4

https://doi.org/10.1016/j.ffa.2021.101835


[6] P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, C-differentials, multiplicative
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