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Abstract

Construction and analysis of bent functions (i.e., Boolean functions with two-valued
spectrum {±2

n
2 }) and plateaued functions (i.e., Boolean functions with three-valued spec-

trum {0,±2
n+s
2 }) have been active research fields for the last several decades and a large

number of results have emerged. Nevertheless, only a few studies consider the design of
Boolean functions with four-valued and five-valued spectra. In this paper, by modifying
the Maiorana-McFarland class of bent functions, we present a construction of even-variable
Boolean functions with four-valued spectrum {0,±2

n
2 , 2

n
2 +1} or {0,±2

n
2 ,−2

n
2 +1} and five-

valued spectrum {0,±2
n
2 ,±2

n
2 +1}. These functions have any possible algebraic degree rang-

ing from 3 to theoretical upper bound n
2 + 1 and nonlinearity 2n−1 − 2

n
2 , which is as good

as that of semi-bent functions. The spectral distribution of these functions is analyzed as
well. Moreover, we investigate a special case of the construction, which is shown to consist
of Boolean functions lacking non-trivial linear structures and having five-valued spectra and
algebraic degree n

2 +1, which is as high as it can possibly be for n-variable Boolean functions
that have Walsh spectrum {0,±2

n
2 ,±2

n
2 +1}.

1 Introduction

The Walsh spectrum has a central role in studying Boolean functions [2], and many cryptographic
properties can be characterized with it, such as nonlinearity, balancedness, algebraic degree
and correlation immunity. Researches show that Boolean functions with four-valued and five-
valued spectra may possess good cryptographic properties, such as balancedness, resiliency,
high nonlinearity and algebraic degree [7,8,10]. Nevertheless, there only exist a few methods to
construct Boolean functions with four-valued and five-valued spectra, including constructions
via some trace representations [1,10,12], and constructions on the basis of bent functions [8,9].
Recently in [6, 7], several characterizations and constructions of Boolean functions with five-
valued spectra were presented in the spectral domain, which provide a new sight into this family
of functions.

Unlike previous perspectives, this paper proposes a method to construct Boolean functions
with four-valued and five-valued spectra by modifying the Maiorana-McFarland class of bent
functions. Let n = 2m ≥ 4, x′ = (x1, · · · , xm−1) ∈ Fm−1

2 ,y′ = (y1, · · · , ym−1) ∈ Fm−1
2 , x =

(x′, xm) ∈ Fm
2 , and y = (y′, ym) ∈ Fm

2 . The proposed functions are defined as the form

f(x,y) = x ·
(
π(y′), ymt(y

′)
)
⊕ g(y′), (1)

where π is a permutation over Fm−1
2 , and t and g are arbitrary (m−1)-variable Boolean functions.

It is not hard to see that, if t is the constant zero function, then
(
π(y′), 0

)
is a two-to-one mapping

∗The work was supported by National Natural Science Foundation of China (No. U19B2021), Natural Sci-
ence Basic Research Program of Shaanxi (No. 2021JQ-192), the Fundamental Research Funds for the Central
Universities and the Innovation Fund of Xidian University.



over Fm
2 , and further f is a semi-bent function by [3, Lemma 1]; if t is the constant one function,

then
(
π(y′), ym

)
is a permutation over Fm

2 , and further f is a bent function in the Maiorana-
McFarland class. Inspired by the cases t = 0 and t = 1, we investigate the property of f
with deg(t) ≥ 1, and prove f to have Walsh spectrum containing at most five values (Theorem
3.1). The Walsh spectral distribution of f is determined as well (Theorem 3.2). We further
explain that these functions have four-valued spectrum {0,±2m, 2m+1} or {0,±2m,−2m+1}, or
five-valued spectrum {0,±2m,±2m+1} (Corollary 3.3). The nonlinearity of these functions is
2n−1 − 2m, which is as good as semi-bent functions. Besides, we show that the algebraic degree
of f can reach any value ranging from 3 to n

2 + 1, which is as high as possible for Boolean
functions whose Walsh spectrum consists of 0,±2m, and at least one of ±2m+1 (Corollary 3.5).
Moreover, we study a special subclass of f with π = id, t(y′) = y1y2 · · · ym−1, g(y′) = 0, and
prove that it has five-valued spectrum and algebraic degree n

2 + 1, and lack non-trivial linear
structures (Theorem 4.1). Finally, we modify it to be balanced with other properties preserved
(Corollary 4.2).

The extended abstract is organized as follows. Section 2 introduces some basic knowledge
of the Boolean function and the Walsh spectrum. Section 3 investigates the Walsh spectral
characterization, algebraic degree and nonlinearity of f defined in (1). Section 4 studies a
special case of the construction in (1), which produces Boolean functions with five-valued spectra,
theoretical maximum algebraic degree and without non-trivial linear structures.

2 Preliminaries

A Boolean function on n variables is a mapping from Fn
2 to F2. Let Bn be the set of all n-variable

Boolean functions. For f ∈ Bn, it can be expressed as the algebraic normal form (ANF)

f(x1, · · · , xn) =
⊕

u=(u1,··· ,un)∈Fn
2

λu

n∏
i=1

xui
i ,

where λu ∈ F2. f is called balanced if |{x ∈ Fn
2 | f(x) = 1}| = 2n−1. The algebraic degree of f

is defined as deg(f) = max{wH(u) | λu 6= 0}, where wH(u) =
∑n

i=1 ui is the Hamming weight
of u.

The Walsh-Hadamard transform of f ∈ Bn is defined as

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x,ω ∈ Fn
2 .

Obviously, Wf (0n) = 0 if and only if f is balanced, where 0n is the zero vector in Fn
2 . The

sequence of all Walsh-Hadamard transforms with inputs in lexicographic order is called the
Walsh spectrum, i.e.,

[Wf (0, · · · , 0, 0),Wf (0, · · · , 0, 1), · · · ,Wf (1, · · · , 1, 1)] .

The nonlinearity of f ∈ Bn, denoted by Nf , which measures the minimum distance between f
and all affine functions, has the following relation with the Walsh-Hadamard transform:

Nf = 2n−1 − 1

2
max
ω∈Fn

2

|Wf (ω)|. (2)

A Boolean function f ∈ Bn is called bent if Wf (ω) = ±2
n
2 for all ω ∈ Fn

2 , where n is even. A

Boolean function f ∈ Bn is called s-plateaued if its Walsh spectrum takes three values 0,±2
n+s
2 ,

where s ≥ 1 for odd n while s ≥ 2 for even n, and s has the same parity as n. In particular,
1-plateaued odd-variable functions and 2-plateaued even-variable functions are called semi-bent.

The autocorrelation function of f ∈ Bn is defined as

∆f (α) =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕α),α ∈ Fn
2 .



The vector α is called a linear structure of f if ∆f (α) = ±2n. Obviously, ∆f (0n) = 2n always
holds and 0n is called the trivial linear structure of f . A Boolean function with any non-trivial
linear structure has very bad performance when applied in cryptosystems [4, 5].

3 Construction of Boolean functions with four-valued and five-
valued spectra

In this section, let u′ = (u1, · · · , um−1) ∈ Fm−1
2 ,v′ = (v1, · · · , vm−1) ∈ Fm−1

2 , u = (u′, um) ∈ Fm
2 ,

and v = (v′, vm) ∈ Fm
2 . Recall the function f defined in (1), its spectrum is given in the following

theorem.

Theorem 3.1 The spectrum of f in (1) contains at most five possible values, all of which lie
in {0,±2m,±2m+1}.

The spectral distribution of f in (1) is given in the following theorem.

Theorem 3.2 Let f be defined in (1) with deg(t) ≥ 1, and Γi express the number of i’s in the
Walsh spectrum of f , where i ∈ {0,±2m,±2m+1}. Then

Γ0 = 3|N |+ 3|M |,
Γ2m = 3 · 2n−2 − 2|S| − 3|N | − |M |,
Γ−2m = 2n−2 + 2|S| − |N | − 3|M |,
Γ2m+1 = |N |,
Γ−2m+1 = |M |,

where

M = {(u′,v′) ∈ Fn−2
2 | t(u′) = 0,u′ · v′ ⊕ g(u′) = 1},

N = {(u′,v′) ∈ Fn−2
2 | t(u′) = 0,u′ · v′ ⊕ g(u′) = 0},

S = {(u′,v′) ∈ Fn−2
2 | u′ · v′ ⊕ g(u′) = 1}.

By Theorem 3.1 and Theorem 3.2, we show that f defined in (1) has a four-valued or five-
valued spectrum in the following corollary.

Corollary 3.3 With the notations in Theorem 3.2,

1) if |M | = 0, then f has a four-valued spectrum {0,±2m, 2m+1}, and Γ2m = Γ−2m ;

2) if |N | = 0, then f has a four-valued spectrum {0,±2m,−2m+1}, and Γ2m = Γ−2m ;

3) if |M | 6= 0, |N | 6= 0, then f has a five-valued spectrum {0,±2m,±2m+1}, and either Γ2m =
Γ−2m or Γ2m+1 = Γ−2m+1 .

By Corollary 3.3, it is obvious that maxω∈Fn
2
|Wf (ω)| = 2m+1. Thus, from (2), we have

Nf = 2n−1 − 2m, which is as good as the nonlinearity of semi-bent functions.

Proposition 3.4 Let g ∈ Bn with n = 2m ≥ 4. If the Walsh spectrum of g only contains
0,±2m and at least one of ±2m+1, then 3 ≤ deg(g) ≤ m+ 1.

The algebraic degree of f in (1) is given in the following corollary.

Corollary 3.5 Let f be defined in (1) with deg(t) ≥ 1 and π = (π1, · · · , πm−1), where πi ∈
Bm−1 for all 1 ≤ i ≤ m− 1. Then

deg(f) = max{ max
1≤i≤m−1

deg(πi) + 1,deg(t) + 2,deg(g)}.

Since deg(t) ≥ 1, by using different π, t and g, it is obvious that deg(f) can reach any value in
range of 3 to theoretical upper bound m+ 1 by Proposition 3.4.



Remark 3.6 Considering the expression of M and N in Theorem 3.2, we know{
|M | 6= 0 ⇐⇒ (t(x′)⊕ 1) (x′ · y′ ⊕ g(x′)) 6= 0,

|N | 6= 0 ⇐⇒ (t(x′)⊕ 1) (x′ · y′ ⊕ g(x′)⊕ 1) 6= 0.
(3)

On the other hand, it is proved in [11, Corollary 1] that the (2m − 2)-variable Maiorana-
McFarland class of bent functions x′ ·y′⊕g(x′) have algebraic immunity no more than dm−12 e+2,
where algebraic immunity of a function f ∈ Bn is defined as the number min{deg(g)|g ∈ Bn, g 6=
0, fg = 0 or (f⊕1)g = 0}. Thus, we know f and f⊕1 have the same algebraic immunity. There-
fore, by (3), if the function t is chosen with algebraic degree strictly greater than dm−12 e+2, then
neither |N | nor |M | equals 0. That is to say, plenty of Boolean functions with five-valued spectra
can be obtained by using t with deg(t) > dm−12 e + 2. Especially, for m ≥ 7, if deg(t) = m − 1,
then f in (1) is a function with five-valued spectrum and maximum algebraic degree m+ 1.

4 Boolean functions with five-valued spectra, theoretical max-
imum algebraic degree and without non-trivial linear struc-
tures

Let π = id, t(y′) = y1y2 · · · ym−1 and g(y′) = 0. Then f in (1) reads

f(x1, · · · , xm, y1, · · · , ym) =
m−1⊕
i=1

xiyi ⊕ xm
m∏
i=1

yi. (4)

Theorem 4.1 Let m ≥ 3 be a positive integer. The function f defined in (4) has a five-
valued spectrum and theoretical maximum algebraic degree (m+ 1), and lack non-trivial linear
structures. Moreover, its Wlash spectral distribution is given by

Γ0 = 3 · (2n−2 − 2m−1),

Γ2m = Γ−2m = 2m,

Γ2m+1 = 2n−3,

Γ−2m+1 = 2n−3 − 2m−1,

(5)

where Γi expresses the number of i’s in the Walsh spectrum of f .

One may notice that f in (4) is unbalanced since Wf (0n) 6= 0 can be easily verified. In
next corollary, by adding affine terms to f , we modify it to be balanced with other properties
preserved.

Corollary 4.2 Let m ≥ 3 be a positive integer and f defined in (4). Then f1(x,y) = f(x,y)⊕
ym and f2(x,y) = f(x,y)⊕y1⊕

⊕m
i=2(xi⊕yi) are balanced functions with five-valued spectrum

{0,±2m,±2m+1} and algebraic degree (m + 1), and without non-trivial linear structures. And
their Walsh spectral distributions are given by (5) as well.
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