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Abstract

We adapt an existing lower bound on the Hamming distance between
APN functions to the case of planar functions. We compute the exact
value of the lower bound for AB and planar functions, and derive an upper
bound on the total number of AB and planar functions, respectively, over
a given finite field. We use this to conclude that the proportion of AB,
resp. planar functions over Fpn converges to 0 as n approaches infinity.

1 Introduction

Let Fpn be the finite field with pn elements, where p is a prime and n is an
arbitrary natural number. An (n,m)-function is any function from Fpn to
Fpm . Any (n, n)-function can be uniquely represented as a univariate polynomial

over Fpn of the form F (x) =
∑pn−1

i=0 aix
i, where ai ∈ Fpn for 0 ≤ i ≤ pn − 1;

this polynomial is called the univariate representation of the function, and
is uniquely defined. The algebraic degree of F is defined as the largest p-
weight of any i in 0 ≤ i ≤ pn − 1 with ai 6= 0, where the p-weight wp(i)
of a natural number i is defined to be the sum of the coefficients in the base
p expansion of i. Functions of algebraic degree 1, resp. 2 are called affine,
resp. quadratic. An affine function F (x) satisfying F (0) = 0 is called linear.
Linear and affine functions behave in the way that their names would suggest,
e.g. F (x) +F (y)−F (z) = F (x+ y− z) for any affine (n, n)-function F and any
x, y, z ∈ Fpn .

Set DaF (x) = F (x + a) − F (x) for any (n, n)-function and any a ∈ Fpn .
For any a, b ∈ Fpn , let δF (a, b) denote the number of solutions x ∈ Fpn to
the equation DaF (x) = b. The maximum value of δF (a, b) through all a 6= 0
and all b is denoted by δF and is called the differential uniformity of F .
From a cryptographic perspective, δF is an important parameter for security
considerations as it measures the resistance provided by F against differential
cryptanalysis [1]; the lower the differential uniformity, the better. If a function
F attains the optimal value δF = 1, it is called perfect nonlinear (PN) or
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planar. Thus an (n, n)-function is PN if and only if DaF (x) is a permutation
for all a 6= 0. PN functions can only exist over fields of odd characteristic as,
in characteristic 2, DaF (x) = DaF (x + a) for all a ∈ Fpn . The lowest possible
value of δF for F : F2n → F2n is therefore 2, and the functions achieving this
optimal value are called almost perfect nonlinear (APN).

Another powerful cryptanalytic attack is linear cryptanalysis [7]; the prop-
erty measuring the resistance provided by an (n,m)-function against this kind of
attack is called nonlinearity. Recall that the Hamming distance dH(F,G) be-
tween two (n,m)-functions F and G is dH(F,G) = #{x ∈ Fpn : F (x) 6= G(x)}.
Fix p = 2. The nonlinearity of an (n, 1)-function f is defined as the minimum
Hamming distance between f and any affine (n, 1)-function. The nonlinear-
ity NL(F ) of an (n,m)-function F is then the minimum nonlinearity of any
component function of F , i.e. any (n, 1)-function of the form x 7→ Tr(bF (x)),
where Tr : F2n → F2 is the absolute trace function. The nonlinearity should be
as high as possible, and we know that any (n,m)-function F satisfies NL(F ) ≤
2n−1−2n/2−1 (the so-called universal bound). This bound can be achieved with
equality only if m ≤ n/2 [8], and the class of functions attaining it are called
bent. For (n, n)-functions F , we know NL(F ) ≤ 2n−1− 2(n−1)/2 (the so-called
SCV bound) [6, 9]. The class of functions attaining this upper bound are called
almost bent (AB). Clearly, AB functions exist only when n is odd. Any AB
function is APN, and any quadratic APN function over a field of odd extension
degree is AB [5].

The classification of APN and PN functions is considered through equiv-
alence relations that preserve the differential uniformity; typically, these are
CCZ-equivalence and EA-equivalence. In the case of quadratic planar func-
tions, we also have isotopic equivalence. We omit the definitions here for the
sake of brevity, and refer the reader to [2, 4] for more background on equivalence
relations.

A lower bound on the Hamming distance between a given APN function
F : F2n → F2n and any other APN function over F2n is given in [3] in terms of
the multiset

ΠF = {#πF (b, s) : b, s ∈ F2n},

where πF (b, s) = {a ∈ F2n : (∃x ∈ F2n)F (a + x) + F (x) + F (a + s) = b}. It
is shown that ΠF is invariant under CCZ-equivalence, and that if we denote
by mF the minimum value occurring in ΠF , then for any APN function G we
have dH(F,G) ≥

⌈
mF

3

⌉
+ 1. The value is easy to find computationally given

a concrete function F , but it appears difficult to determine it theoretically, or
to give any meaningful bounds on its value. It is observed that ΠF can take
many distinct values across the known APN functions (e.g. 6669 distinct values
among the 8180 CCZ-inequivalent APN functions over F28 from [10, 11]) which
makes it a useful invariant for deciding the CCZ-equivalence of APN functions.
In particular, mF can take many distinct values. A theoretical computation of
mF for F (x) = x3 is given in [3], but even in this simple case the derivation
is somewhat technical. Showing that mF > 0 for any APN function F is an
open problem, and is directly related to the question of the existence of APN
functions over F2n of algebraic degree n.

In this paper, we compute the exact value of mF for all AB and planar
functions. We also adapt some of the results of [3], including the lower bound
on the Hamming distance, to the case of planar functions. Further, we compute
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an upper bound on the total number of AB and planar functions over Fpn , and
observe that the proportion of such functions goes to 0 as n approaches infinity.
Due to space limitations, almost all proofs are omitted.

2 AB functions

We use Theorem 18, p. 276 of [4], and the fact that any AB function is plateaued
with single amplitude (Proposition 157, p. 372 of [4]). This is sufficient to
compute the exact value of the lower bound for any AB function.

Theorem 1. Let F : F2n → F2n be plateaued with single amplitude and APN.
Then, for any s ∈ F2n , we have ΠF = {(2n−1− 1)× (22n− 2n), 2n× 2n}, where
x× y indicates that the value x occurs y times in the multiset.

In the spirit of the sphere-packing bound, we can now prove the following
bound on the number of AB functions.

Corollary 1. Let n be a natural number. Then there are at most

(2n)2
n∑d−1

i=0

(
2n

i

)
(2n − 1)i

AB (n, n)-functions, where d = 2n−1+2
3 . In particular, the proportion of (n, n)-

AB functions to all (n, n)-functions goes to 0 as n approaches infinity.

3 Planar functions

First, we observe that a fairly straightforward and natural adaptation of the
proof of Proposition 2 of [3] leads to a similar result for planar functions.

Proposition 1. Let F : Fpn → Fpn and let u1, u2, . . . , uK be distinct points from
Fpn for some prime p and some natural numbers n,K. Let U = {u1, u2, . . . , uk}
and a + U = {a + u : u ∈ U}. Furthermore, if ui ∈ U and a + ui ∈ U , then
let p(i) be the index such that a+ ui = ap(i). Finally, let v1, v2, . . . vK ∈ Fpn be
arbitrary, and let G : Fpn → Fpn be defined as

G(x) = F (x) +

K∑
i=1

1ui
(x)vi,

where 1ui
(x) is the indicator function of ui which evaluates to 0 of x 6= ui and

evaluates to 1 if x = ui. Then G is planar if and only if all of the following
conditions are satisfied for any 0 6= a ∈ Fpn :

(i) DaF is injective on Fpn \ (U ∪ a+ U);

(ii) DaF (ui)−DaF (uj) 6= vp(i)−vi−vp(j)−vj for any ui 6= uj with a+ui ∈ U
and a+ uj ∈ U ;

(iii) DaF (ui) −DaF (uj) 6= vp(i) − vi − vj for any ui, uj such that ui + a ∈ U
and uj + a /∈ U ;

(iv) DaF (ui)−DaF (uj) 6= −vi−vj for any ui 6= uj such that ui+a, uj+a /∈ U ;
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(v) DaF (ui)−DaF (x) 6= vp(i)− vi for any ui, x such that ui ∈ U , a+ui ∈ U ,
x, a+ x /∈ U ;

(vi) DaF (ui) − DaF (x) 6= −vi for any ui, x such that ui ∈ U , ui + a /∈ U ,
x, a+ x /∈ U .

This leads to the following planar function variant of Corollary 1 from [3].
We define Dc

aF (x) = DaF (x)− F (a+ c) for all a, c ∈ Fpn .

Corollary 2. Let F and G be as in the statement of Proposition 1 with vi 6= 0
for 1 ≤ i ≤ K. If F and G are planar, then for any i in 1 ≤ i ≤ K, no more
than 3K shifted derivatives Dui

a F may map to vi − F (ui).

There is also planar function version of Corollary 2 of [3]. For b, c ∈ Fpn ,
define πF (b, c) = {a ∈ Fpn : (∃x ∈ Fpn)Dc

aF (x) = b}. Set ΠF = {#πF (b, c) :
b, c ∈ Fpn} and Πc

F = {#πF (b) : b ∈ Fpn}.

Corollary 3. Let F be planar and let mF be the minimum value of an element
in ΠF . Then

dH(F,G) ≥ dmF /3e (1)

for any planar function G over Fpn.

Furthermore, not only can the cardinalities #πF (b, c) be computed very
easily for any planar function, but they can be shown to characterize planar
functions.

Proposition 2. Let F be a function over Fpn . Then F is planar if and only if

#πF (b, c) =

{
pn b = 0,

pn − 1 b 6= 0
(2)

for any b, c ∈ Fpn .

Proof. By definition, we have πF (b, c) = #{a ∈ Fpn : (∃x ∈ Fpn)DaF (x) =
F (a + c) + b}. Suppose that F is planar. For a fixed a and c, the right-hand
side F (a + c) + b is constant; and since DaF is a permutation for any a 6= 0,
there exists precisely one x ∈ Fpn for which DaF (x) = F (a + c) + b. If a = 0,
the left-hand side DaF (x) is equal to 0, and so D0F maps to F (c) + b if and
only if b = −F (c).

Conversely, suppose that (2) holds for F . Let 0 6= a ∈ Fpn be some fixed
direction; we want to show that DaF permutes Fpn , which is equivalent to
showing that DaF is surjective. To this end, let b ∈ Fpn be arbitrary, and let
b′ = b − F (a) = b − F (a + c) for c = 0. If b′ = −F (0), then by (2), there
must exist x ∈ Fpn for which D0

aF (x) = DaF (x) − F (a) = b′ = b − F (a), i.e.
DaF (x) = b. If b′ 6= −F (0), then D0

aF cannot map to b′ for a = 0, and by
(2) D0

aF does map to b′ for any a 6= 0, including the one that we fixed. Once
again, we have some x ∈ Fpn for which DaF (x) = F (a) + b′ = b, and so DaF is
a surjection for any a 6= 0.

Thus, mF = pn − 1 for any planar F . Consequently, the minimum distance
between any two planar functions is at least d(F,G) ≥ dp

n−1
3 e, which, e.g. for

p = 3 simplifies to d(F,G) ≥ 3n−1. This allows us to obtain an upper bound on
the number of planar functions over Fpn .
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Corollary 4. Let p, n be natural numbers with p prime. Then the number of

planar functions over Fpn is at most (pn)p
n∑d

k=0 (pn

d )(pn−1)d
, for d = dp

n−1
3 e. Con-

sequently, the fraction of planar functions over Fpn to all functions over Fpn

converges to 0 for any prime p as n approaches infinity.

Using a version of Algorithm 1 from [3], this bound can be shown to be tight
computationally for the planar function x2 over F32 and F33 .
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