
The (generalized) boomerang uniformity of some

classes of functions over finite fields

Sartaj Ul Hasan*, Mohit Pal*, and Pantelimon Stănică**
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Abstract

We give a general result that associates the entries of the c-boomerang connectivity table
of an arbitrary function to double Weil sums over finite fields. We then use our general result
to compute simple expressions for the entries of the (classical) boomerang connectivity table
of the binary Gold function. Moreover, we investigate the c-boomerang uniformity of perfect
nonlinear Dembowski-Ostrom polynomials, perfect c-nonlinear functions and almost perfect
c-nonlinear functions.

1 Introduction

In 1999, Wagner [14] proposed the boomerang attack on block ciphers. The theoretical tool
(Boomerang Connectivity Table (BCT) of a permutation F ) to analyze this attack was intro-
duced at Eurocrypt 2018 by Cid et al. [4]. Recently, thereafter, Boura and Canteaut [2] further
studied BCT and defined a new parameter called boomerang uniformity, the maximum value
in the BCT. Based upon a recent c-differential concept, one of us [12] generalized the concept
of BCT and boomerang uniformity using this new differential. Here, we analyze some further
classes for their c-boomerang uniformity.

As usual, let p be a prime and n be a positive integer. We denote by Fq the finite field with
q = pn elements and by F∗q , the multiplicative cyclic group of nonzero elements of Fq. Since they
are used in the design of substitution boxes (S-boxes) of block ciphers, permutation polynomials
have been the object of intense investigation. The security of S-boxes depends on its resistance
against the known attacks, such as the differential attack, boomerang attack, to name just a few.
To measure the resistance against the differential attack, the concept of differential uniformity
was introduced in the following way.

Let F be an (n, n)-function, F : Fq → Fq. For any a, b ∈ Fq, let ∆F (a, b) = #{x ∈ Fq |
F (x+ a)− F (x) = b}. Then ∆F (a, b) is called the (a, b)-th entry of the Difference Distribution
Table (DDT) of F (x) and the value δF = max{∆F (a, b) | a, b ∈ Fq, a 6= 0}, is called the
differential uniformity of F . When δF = 1, we call F to be perfect nonlinear (PN) function
and if δF = 2, F is called almost perfect nonlinear (APN) function. The S-boxes with low
differential uniformity provide the optimal resistance against the differential attack. In [5], the
notion of c-differentials was introduced (see also [1] for a particular quasi-planar case c = −1):
the (multiplicative) c-derivative of F with respect to a ∈ Fq is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fq.

The entries of the c-Difference Distribution Table (c-DDT) are

c∆F (a, b) = #{x ∈ Fq : F (x+ a)− cF (x) = b},

and
δF,c = max {c∆F (a, b) | a, b ∈ Fq, and a 6= 0 if c = 1} ,



is the c-differential uniformity (cDU) of F . It is interesting to note that the standard cipher [8],
Kuznyechik, has the cDU of its inverse equal to 120. Perhaps an attack can be mounted using
that observation.

We now go back to introducing the Boomerang Connectivity Table, as well as the boomerang
uniformity. For a permutation F : Fq → Fq and a, b ∈ Fq, we let BF (a, b) = #{x ∈ Fq |
F−1(F (x+ a) + b)− F−1(F (x) + b) = a} be the (a, b)-th entry of the Boomerang Connectivity
Table (BCT) and the value βF = max {BF (a, b) | a, b ∈ F∗q} be the boomerang uniformity
of F . Later, Li et. al [9] gave an equivalent definition to compute BCT, which does not involve
the compositional inverse of the function F , allowing one to define/compute the BCT and the
boomerang uniformity of non-permutation functions. Recently, the third-named author [12]
generalized these two concepts. If one restricts to permutations, the notion simply looks at the
probability of the propagations cF (x) + b and c−1F (x + a) + b, being the same constant a, as
the propagation of the input, under the inverse S-box.

Definition 1.1 Let F be a function from Fq to itself and c ∈ F∗q. Then the entries of the c-BCT
at (a, b) ∈ Fq×Fq, denoted by cBF (a, b) is the number of solutions in Fq×Fq of the (c-boomerang)
system {

F (x)− cF (y) = b

F (x+ a)− c−1F (y + a) = b.
(1)

The c-boomerang uniformity of F is defined as βF,c = max {cBF (a, b) | a, b ∈ F∗q}.

We note that for power map F (x) = xd, it is sufficient to consider a = 1 in (1), and c-boomerang
uniformity of F is βF,c = max {cBF (1, b) | b ∈ F∗q}.

Boura and Canteaut [2] showed that the BCT table is preserved under the affine equivalence
but not under the extended affine equivalence (and consequently under the CCZ-equivalence).
It is quite natural to ask a similar question in the context of c-BCT. It is straightforward to
see that in the case of even characteristic, c-BCT and c−1-BCT entries of an (n, n)-function
F : F2n → F2n are the same under the transformations x 7→ x + a and y 7→ y + a, since the
c-boomerang system{

F (x) + cF (y) = b

F (x+ a) + c−1F (y + a) = b
=⇒

{
F (x) + c−1F (y) = b

F (x+ a) + cF (y + a) = b.

Further, we argue in the full paper that the c-BCT is not preserved under the (output applied)
affine equivalence, however, if the affine transformation is applied to the input, that is, G(x) =
(F ◦L)(x), then the c-BCT spectrum is preserved, as was the case for the c-differential uniformity.

After the definitions and preliminary results from Section 2, we state in Section 3 a general
result that associates the entries of the c-boomerang connectivity table of an arbitrary function
to double Weil sums over finite fields. We use it to obtain explicit expressions for the classical
BCT entries of the binary Gold function in Section 3. Section 4 deals with the PN Dembowski-
Ostrom polynomials, as well as some PcN/APcN functions over Fq, for c = ±1.

2 Preliminaries

In this section, we shall first recall some results concerning Weil sums. The canonical additive

character is a (additive group) homomorphism χ1 : Fq → C, χ1(x) = exp
(
2πiTr(x)

p

)
, where

C is the field of complex numbers and Tr : Fq → Fp is the absolute trace defined by Tr(x) =

x + xp + xp
2

+ · · · + xp
n−1

(to emphasize the dimension, we sometimes write this as Trn1 ). We

define the relative trace Tre : Fpn → Fpe , e|n, by Tre(x) = x+ xp
e

+ xp
2e

+ · · ·+ xp
e(ne −1)

. Note
that all additive characters of Fq can be expressed in terms of χ1 [10, Theorem 5.7]. For each
0 ≤ k ≤ q − 2, the k-th multiplicative character is a (multiplicative group) homomorphism

ψk : Fq → C, ψk
(
g`
)

= exp
(
2πik`
q−1

)
for ` = 0, . . . , q − 2. It is well-known that the group of



multiplicative characters of Fq is a cyclic group of order q − 1 with identity element ψ0 [10,
Corollary 5.9].

In the theory of finite fields, exponential sums are important tools in the study of number
of solutions of equations over finite fields. As a special case, the Gauss’ sums are defined as

follows G(ψ, χ) =
∑
x∈F∗

q

ψ(x)χ(x), where χ and ψ are additive and multiplicative characters

of Fq, respectively. A Weil sum is yet another important character sum defined as follows∑
x∈Fq

χ(F (x)), where χ is an additive character of Fq and F (x) is a polynomial in Fq[x]. To
explicitly evaluate Weil sums is often quite difficult and some results are known only for a few
families of polynomials. Recall the following lemmas.

Lemma 2.1 [10, Theorem 6.37] Let Fq be a finite field. For b ∈ F∗q, the number N of the

solutions of the diagonal equation a1x1
d1 + a2x2

d2 + · · ·+ akxk
dk = b in Fkq satisfies

|N − qk−1| ≤ [(e1 − 1) · · · (ek − 1)− (1− q−1/2)M(e1, e2, . . . , ek)]q
(k−1)/2, (2)

where ei = gcd(di, q − 1) and M(e1, e2, . . . , ek) is the number of k-tuples (j1, j2, . . . , jk) ∈ Zk
such that 1 ≤ ji ≤ ei − 1 and j1

e1
+ j1

e1
+ · · ·+ jk

ek
∈ Z for 1 ≤ i ≤ k.

An upper bound for the c-boomerang uniformity of the power map xd can be easily obtained

from [13, Theorem 1] and is given by βF,c ≤
δF,c+δF,c−1

pn + p2n − 2. Notice that, a bound on
the c-boomerang uniformity of the power maps can also be obtained from Lemma 2.1, which is
q+ (e−1)(e−2)

√
q+ e−1, where e = gcd(d, q−1). This bound is better than the one obtained

from Lemma 2.1 if gcd(d, n) is small, but it is weaker if gcd(d, n) is rather large.

3 The c-BCT entries and double Weil sums

One of us showed in [13] a general theorem expressing the entries in the c-BCT (c 6= 0) of power
function xd in terms of double Weil sums. Here, we shall slightly extend that result.

Theorem 3.1 Let F (x) be an arbitrary function on Fq and c ∈ F∗q. Then, for fixed a, b ∈ F∗q,
the c-BCT entry cBF (a, b) at (a, b) is given by

1

q

∑
w∈Fq

(c∆F (w, b) +c−1 ∆F (w, b))

− 1 +
1

q2

∑
α,β∈F∗

q

χ1(−b(α+ β))Sα,β S−αc,−βc−1 ,

with

Sα,β =
∑
x∈Fq

χ1 (αF (x) + βF (x+ a))

=
1

(q − 1)2

q−2∑
j,k=0

G(ψ̄j , χ1)G(ψ̄k, χ1)
∑
x∈Fq

ψ1

(
(αF (x))j(βF (x+ a))k

)
.

Using the general result above, we shall now give explicit expressions for the c-BCT entries of
the binary Gold function x2

k+1 over F2n , for all c 6= 0. Recall that the c-boomerang uniformity
of a power function F (x) = xd over F2n is given by max {cBF (1, b) | b ∈ F∗2n}, where cBF (1, b)
is the number of solutions in Fq × Fq, q = 2n, of the following system{

xd + cyd = b

(x+ 1)d + c−1(y + 1)d = b.
(3)

As in [13], for b 6= 0 and fixed c 6= 0, the number of solutions (x, y) ∈ F2
q of (3) is

cBF (1, b) =
1

q2

∑
x,y∈Fq

∑
α∈Fq

χ1

(
α
(
xd + cyd + b

)) ∑
β∈Fq

χ1

(
β
(

(x+ 1)d + c−1(y + 1)d + b
))



=
1

q2

∑
α,β∈Fq

χ1 (b (α+ β))Sα,βScα,c−1β, where Sα,β =
∑
x∈Fq

χ1

(
αxd + β(x+ 1)d

)
.

Therefore, the problem of computing the c-BCT entry cBF (1, b) is reduced to the computation
of the product of the Weil sums Sα,β and Scα,c−1β. When d = 2k + 1, the Gold case, we further
simplify the expression for Sα,β as follows:

Sα,β =
∑
x∈Fq

χ1

(
αx2

k+1 + β(x+ 1)2
k+1
)

= χ1(β)
∑
x∈Fq

χ1((α+ β)x2
k+1) χ1((β

2n−k
x)2

k
+ βx)

= χ1(β)
∑
x∈Fq

χ1((α+ β)x2
k+1 + (β2

n−k
+ β)x) = χ1(β)

∑
x∈Fq

χ1(Ax
2k+1 +Bx),

where A = α + β and B = β2
n−k

+ β. When c = 1, we further simplify cBF (1, b) and establish
a relation between differential uniformity and boomerang uniformity of the Gold function. Ny-
berg [11, Proposition 3] showed that the differential uniformity of the Gold function x 7→ x2

k+1

over F2n is 2e, where e = gcd(k, n). Also, from [4], we know that the boomerang uniformity
of the APN function equals 2. Boura and Canteaut [2, Proposition 8] proved that when n/e is
odd and n ≡ 2 (mod 4), then the differential as well as the boomerang uniformity of the Gold

function x 7→ x2
k+1 is 4. The following theorem we showed in [6] generalizes the two previously

mentioned results, and gives the boomerang uniformity of the Gold function for any parameters,
when n

e is odd.

Theorem 3.2 Let F (x) = x2
k+1, 1 ≤ k < n, be a function on Fq, q = 2n, n ≥ 2. Let

c = 1 and n/e be odd, where e = gcd(k, n). Then the c-BCT entry 1BF (1, b) of F at (1, b) is

1BF (1, b) = 0, 2e, if Tre

(
b
1
2

)
= 0, respectively, Tre

(
b
1
2

)
6= 0.

We can also find a bound for the c-BU for p and n/d odd, for some c.

Theorem 3.3 Let c ∈ Fpd\{0, 1,−1} and n/d be odd. Then the c-BU of the Gold function

xp
`+1 over Fq is βF,c ≤ q.

We can use Theorem 3.1 to compute the c-BCT entries of a general linearized polynomial
L(x). For any fixed c 6= 0, we let

Uc = {α, β ∈ F∗q | L̃(α+ β) = 0 = L̃(−cα− c−1β)},

where L̃(x) =

n−1∑
i=0

(aix)p
n−i

be the companion polynomial of L(x).

Theorem 3.4 Let L(x) =
∑n−1

i=0 aix
pi be a linearized polynomial over the finite field Fq and

c ∈ F∗q. For a, b ∈ F∗q, the c-BCT entry cBL(a, b) is given by

1

q

∑
w∈Fq

(c∆L(w, b) + c−1∆L(w, b))− 1 +
∑

α,β∈Uc

χ1(−b(α+ β))χ1

(
L(a)β(1− c−1)

)
.

Consequently, the c-BU of L is cBL(a, b) ≤ c∆L + c−1∆L + |Uc| − 1. Moreover, this value occurs
at every (a, b), b 6= L(a)(1 − c−1) such that Uc is embedded in the line of slope b

L(a)(1−c−1)−b ,

passing through the origin (in the (α, β)-plane).

4 Further results and comments

In the full paper, we show that the c-boomerang uniformity of Dembowski-Ostrom (DO) poly-
nomials over the finite field Fq, namely F (x) =

∑
i,j αijx

pi+pj , is zero, if they happen to be



perfect nonlinear, thus showing that the result of [4, Lemma 1], that is, for p = 2 and all (a, b),
∆F (a, b) ≤ BF (a, b), a result that will not hold in odd characteristic.

Though not phrased this way in the paper, the authors of [7, Proposition 3.4] showed that
the (−1)-differential uniformity of a PN DO polynomial is 2. Here, we further show that the
(−1)-boomerang uniformity of a PN DO polynomial is 2. It is known that the boomerang
uniformity (for c = 1) of APN functions matches their differential uniformity. Here, we show
that if c = −1, then the cBU of a PcN is zero and the one of an even APcN is 2.

Certainly, the c-boomerang uniformity is yet another differential characteristic, in addition
to being an interesting mathematical concept, and, we believe, it deserves attention.
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[12] P. Stănică, Investigations on c-boomerang uniformity and perfect nonlinearity, https://

arxiv.org/abs/2004.11859, 2020.
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