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Abstract. We classify planar monomials over fields of prime cubed order using Hermite’s
criteria. More specifically, we prove that the only exponents n for which xn is planar over
fields of order p3, p a prime, are the exponents n = pi + p j.

1. Introduction and theMain Result

Dembowski and Ostrom [6] introduced the notion of a planar function in 1968 when
studying projective planes of order n with a collineation group G × H, with |G| = |H| = n,
acting transitively on the affine points. Though their definition dealt with functions φ :
G → H, all known examples of planar functions exist over finite fields Fq of odd order
q = pe, p a prime, and where G = H = 〈Fq,+〉.

Let f ∈ Fq[x] be a polynomial and F?q denote the non-zero elements of Fq.
� f (x) is a permutation polynomial (PP) over Fq if f induces a bijection of Fq under

the evaluation map y 7→ f (y).
Permutation polynomials have been studied intensively over the past 40 years

and there are a number of surveys giving overviews of modern results, the most
recent of which we believe to be the survey of Hou [11].

� f is called planar if for every a ∈ F?q , the difference operator ∆ f (x, a) = f (x + a)−
f (x) is a PP over Fq. As was noted by Coulter and Matthews in [5], this condition
simplifies significantly if f (x) = xn. Specifically, xn is planar over Fq if and only
if the polynomial fn(x) = (x + 1)n − xn is a permutation polynomial.

Planar functions cannot exist over fields of characteristic 2 as every non-trivial difference
operator necessarily has a minimum of 2 pre-images for any image, as ∆ f (x, a) = ∆ f (x +

a, a) for all a. The best case scenario, where each non-trivial difference operator is strictly
2-1, is precisely the definition of an APN function, well-known for their optimal resistance
against differential cryptanalysis when used in S-boxes [14].

Planar functions over prime fields were classified in 1989-90, independently by Gluck
[8], Hiramine [10], and Rónyai and Szönyi [15]. This remains the only situation where a
complete classification has been achieved. Further classification results have been achieved
only for planar monomials. In 2006, Coulter [3] classified planar monomials over fields
of order p2, and they were subsequently classified over fields of order p4 by Coulter and
Lazebnik [4] in 2012. It should also be mentioned that Johnson [12] gave a classification
of planar monomials over prime fields in 1987, predating the full classifications mentioned
above. There is also a result of Zieve, who classified those monomials which are planar
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over infinitely many extensions of Fp in [16]. In this paper we classify planar monomials
over fields of order p3. Specifically, we prove

Theorem 1. Let q = p3 with p an odd prime. The monomial xn is planar over Fq if and
only if n ≡ pi + p j mod (q − 1) with 0 ≤ i, j < 3.

For fields of order p, p2 and p4 with p ≥ 5, the only planar monomials possible yield
the Desarguesian plane, Thus, our result is the first classification result on planar func-
tions which allows for a non-Desarguesian example: the planar monomial xp+1 constructs
Albert’s twisted field plane of order p3.

2. The Basics of our Approach

By the definition, to show xn is planar or not it is sufficient to consider whether fn(x) =

(x + 1)n − xn is a PP or not. As planarity is a property of functions we need only consider
n < q. In fact, we may insist on n ≤ q − 3 as it is a necessary condition of planarity that
gcd(n, q − 1) = 2, see [5], Proposition 2.4.

To prove our result, we use the same methods as those used in [3] and [4]. Specfically,
Hermite’s criteria is employed to exclude every n apart from those given in the theorem.

Lemma 1 (Hermite, [9]; Dickson, [7]). A polynomial f ∈ Fq[x], q = pe, is a permutation
polynomial over Fq if and only if

(i) f has exactly one root in Fq, and
(ii) the reduction of f t mod (xq − x), with 0 < t < q − 1 and t . 0 mod p, has degree

less than q − 1.

The t in this lemma is often referred to as a Hermite exponent. Effectively, to exclude
a potential n, one only needs to find a single Hermite exponent for which the second con-
dition fails. The criteria can often be unwieldy, and over time has come to be viewed as
relatively ineffective. However, it has enjoyed somewhat of a renaissance in recent times,
with several results being obtained using it, such as the aforementioned classifications of
planar monomials over fields of order p2 and p4, and the results of Chou and Hou [2].

There are several points about Hermite’s criteria and our specific problem which we
now expand on. For arbitrary 0 < t < q − 1, we may write fn(x)t mod (xq − x) as

f t
n mod (xq − x) =

t∑
i=0

(
t
i

)
(−1)t−i

[
(x + 1)ni mod (xq − x)

] [
xn(t−i) mod (xq − x)

]
, (1)

and first reduce each of the terms (x + 1)ni and xn(t−i) independently. Connsequently, unless
both terms have degree q−1, the only way in which we can obtain xq−1 terms in the reduced
form of fn(x)t is via the actual xq−1 term generated. This allows for much simplication in
our arguments.

The value of binomial coefficients, whether it be in (1) or in the expansion of (x+1)ni, is
also clearly something we must handle. Fortunately, we have the following classical result
of Lucas at our disposal.

Lemma 2 (Lucas, [13]). Let p be a prime and α ≥ β be positive integers with α and β
having base-p expansions α = (αt · · ·α0)p and β = (βt · · · β0)p, respectively. Then(

α

β

)
≡

t∏
i=0

(
αi

βi

)
mod p,

where we use the convention
(

n
k

)
= 0 if n < k.
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The theorem of Lucas encourages us to consider our exponent n in its base p expansion
form. Set n = (ae−1 · · · a0)p, with 0 ≤ ai < p for all i. There are several advantages in
considering the base p expansion of n, over and above the possibility of applying Lucas’
Theorem.

Firstly, xnp is planar over Fq if and only if xn is planar over Fq, and the reduction of xnp

modulo xq − x is xm, where m = (ae−2 · · · a0ae−1)p. Thus, we may cycle the base p digits of
n around and could, for instance, choose to place the largest ai in the most significant bit.

Secondly, if xn is planar over Fq, then it is necessarily planar over Fp. This follows
at once from observing fn ∈ Fp[x]. The classification of planar monomials over Fp now
forces n ≡ 2 mod (p − 1). This provides the necessary condition

a0 + a1 + · · · + ae−1 = S ≡ 2 mod (p − 1).

Since ai < p for all 0 ≤ i < e, we have S = 2 + k(p − 1) for some 0 ≤ k < e.
Our proof of Theorem 1 can now be outlined. For the remainder of this article, assume

q = p3 and let n = a0 + a1 p + a2 p2 with 0 ≤ ai < p. Set S = a0 + a1 + a2. Based on our
above discussion, there are three possible cases we must deal with:

Case 1. S = 2.
Case 2. S = 2p.
Case 3. S = p + 1.

The first case will be shown to be the only positive case, in that the latter two cases will
prove to be empty of planar examples. While the case of S = 2p can be excluded using
a single Hermite exponent, the final case turns out to be exceedingly complicated, first
involving two Hermite exponents that we must play off against each other to exclude all
but 11 specific choices of n, and then using specific Hermite exponents to eliminate these
remaining 11 possible choices for n. Each of these Hermite exponent proofs are long and
technical, and due to space limitations we omit them.

3. Cases 1 and 2

Coulter and Matthews showed xpi+p j
is planar over Fpe if and only if e/ gcd( j − i, e) is

odd, see [5], Theorem 3.3. This completely resolves Case 1.

Proposition 1. If S = 2, then n = pi + p j with 0 ≤ i ≤ j < 3, and xn is always planar over
Fq.

The case S = 2p is also relatively straightforward, the proof following very similarly to
the classification of planar monomials over Fp2 , even down to the Hermite exponent used
in [3].

Proposition 2. If S = 2p, then the Hermite exponent t = p + 1 shows fn(x) is never a PP
over Fq. Hence, xn is never planar over Fq.

4. Case 3

We are left with the case where S = p + 1. To eliminate this case from providing po-
tential planar exponents, we must resort to dealing with a sequence of Hermite exponents.
Throughout we assume a2 ≥ a0, a1, which we can safely do thanks to the observation given
immediately after Lucas’ Theorem concerning xnp.

Firstly, we deal with the situation where ai ≥ 2 for all i. To eliminate this broad subcase
of Case 3 we consider two Hermite exponents.
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Proposition 3. Let n = a0 + a1 p + a2 p2, S = a0 + a1 + a2 = p + 1, a2 ≥ a0, a1, and ai ≥ 2
for i = 0, 1, 2.

(i) If a2 ≥ (p + 1)/2, then the Hermite exponent t = 2 + p + p2 shows fn(x) is not a
PP over Fq.

(ii) If a2 ≤ (p+1)/2, then it is impossible for the two Hermite exponents t1 = 2+ p+ p2

and t2 = 2 + 2p to both fail to show fn(x) is not a PP over Fq.
Thus, xn is not planar over Fq.

We are unaware of another application of Hermite’s criteria which uses two Hermite
exponents simultaneously to obtain a non-PP result as we do for this case.

This leaves us to deal with the scenario where at least one of the ai is less than 2. This
last situation degenerates into a multitude of exceptions, with over 25 pages needed to give
a full proof. The result can be stated as follows.

Proposition 4. Let n = a0 + a1 p + a2 p2, S = a0 + a1 + a2 = p + 1, a2 ≥ a0, a1, and ai < 2
for at least one i ∈ {0, 1}. The Hermite exponent t = 2 + 2p + 2p2 shows fn(x) is not a
PP over Fq for all but 11 specific choices of n. The remaining 11 exceptions can also be
shown to not be PPs over Fq using Hermite’s criteria. The 11 exceptions, and the Hermite
exponents used to eliminate them, are as follows:

#1: n =
p+1

2 (p + p2) with t = (p − 2) + p and t = (p − 6) + p + 4p2,
#2: n =

p+1
2 (1 + p2) with t = (p − 2) + p and t = (p − 6) + p + 4p2,

#3: n = 1 + ( p+1
2 − 1)p +

p+1
2 p2 with t = 2p + 4p2,

#4: n = ( p+1
2 − 1) + p +

p+1
2 p2 with t = (p − 2) + p,

#5: n = ( p+1
2 − 1) + ( p+1

2 + 1)p2 with t = (p − 6) + p + 2p2,
#6: n = 1 + 3p + (p − 3)p2 with t = 2 + 4p + 4p2,
#7: n = 1 + 2p + (p − 2)p2 with t = (p − 1)(p + p2),
#8: n = 2 + p + (p − 2)p2 with t = 1 + 2p + 3p2,
#9: n = 2 + (p − 1)p2 with t = 1 + 2p + 3p2,

#10: n = 2p + (p − 1)p2 with t = 2 + (p − 1)p,
#11: n = 1 + p + (p − 1)p2 with t = p − 1.

Thus, xn is not planar over Fq.

Throughout all of our proofs, we assume p ≥ 11, relying on the fact that the smaller
values of p can be easily checked computationally. However, for some of these exceptional
exponents, we must do further computations for certain primes to complete the proof.
Specifically, for exceptions #1 and #2 we must check p = 29, while for the exception #6,
we deal with all primes p ≤ 17 and p = 373 computationally. All of these computations
were carried out using the Magma Algebra package [1].

References

1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic
Comput. 24 (1997), 235–265.

2. W-S. Chou and X-D. Hou, On a conjecture of Fernando, Hou and Lappano concerning permutation polyno-
mials over finite fields, Finite Fields Appl. 56 (2019), 58–92.

3. R.S. Coulter, The classification of planar monomials over fields of prime square order, Proc. Amer. Math.
Soc. 134 (2006), 3373–3378.

4. R.S. Coulter and F. Lazebnik, On the classification of planar monomials over fields of square order, Finite
Fields Appl. 18 (2012), 316–336.

5. R.S. Coulter and R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr.
10 (1997), 167–184.



THE CLASSIFICATION OF PLANAR MONOMIALS OVER FIELDS OF ORDER p3 5

6. P. Dembowski and T.G. Ostrom, Planes of order n with collineation groups of order n2, Math. Z. 103 (1968),
239–258.

7. L.E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a
discussion of the linear group, Ann. of Math. 11 (1897), 65–120, 161–183.

8. D. Gluck, Affine planes and permutation polynomials, Coding Theory and Design Theory, part II (Design
Theory), The IMA Volumes in Mathematics and its Applications, vol. 21, Springer-Verlag, 1990, pp. 99–100.

9. C. Hermite, Sur les fonctions de sept lettres, C.R. Acad. Sci. Paris 57 (1863), 750–757.
10. Y. Hiramine, A conjecture on affine planes of prime order, J. Combin. Theory Ser. A 52 (1989), 44–50.
11. X-D. Hou, Permutaion polynomials over finite fields – A survey of recent advances, Finite Fields Appl 32

(2015), 82–119.
12. N.L. Johnson, Projective planes of order p that admit collineation groups of order p2, J. Geometry 30 (1987),

49–68.
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