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Abstract

A Walsh zero space (WZ space) for f : F2n → F2n is an n-dimensional vector subspace of
F2n × F2n whose all nonzero elements are Walsh zeros of f . We provide several theoretical
and computer-free constructions of WZ spaces for Gold APN functions f(x) = x2

i+1 on
F2n where n is odd and gcd(i, n) = 1. We also provide several constructions of trivially
intersecting pairs of such spaces. We illustrate applications of our constructions that include
partitioning of the CCZ class of f to EA classes, and constructing APN permutations that
are CCZ equivalent to f but not extended affine equivalent to f or its compositional inverse.

1 Background

Let F2n denote the finite field with 2n elements. A function f : F2n → F2n is almost perfect
nonlinear (APN) if for all a, b ∈ F2n , a 6= 0, the equation f(x + a) − f(x) = b has at most two
solutions x ∈ F2n . Without loss of generality, we can normalize any APN function such that
f(0) = 0, and we will assume this throughout.

APN functions, and more generally functions with low differential uniformity, have been
extensively studied due to their importance in the design of S-boxes of block ciphers in cryp-
tography, where they offer the best possible protection against differential cryptanalysis. In
some block cipher designs, such as substitution-permutation networks (SPN), it is required that
S-boxes are invertible mappings. Of special interest are therefore APN functions which are in-
vertible, that is, they are permutations of F2n . Constructing new APN permutations of F2n is
one of the objectives of our work.

Let Trnm denote the trace function from F2n to F2m , and let Tr denote the absolute trace
function from F2n to F2. Let f be a function from F2n to F2n . For (a, b) ∈ F2n × F2n we define
the Walsh transform of f at (a, b) as Wf (a, b) =

∑
x∈F2n

(−1)Tr(ax+bf(x)). We say that (a, b) is a
Walsh zero of f if Wf (a, b) = 0.

Definition 1.1 Let f be a function from F2n to F2n. Suppose that S is an F2-linear subspace
of F2n × F2n such that dimF2 S = n and each element of S except (0, 0) is a Walsh zero of f .
We say that S is a WZ space of f .

We say that two WZ spaces S, T of the same function intersect trivially if S ∩ T = {(0, 0)}.
The CCZ-equivalence of functions was introduced by Carlet, Charpin and Zinoviev in [4]. It

has many important features, in particular it preserves the APN property. Dillon et al. intro-
duced in [2] a method that, assuming certain conditions are satisfied, constructs a permutation
that is CCZ equivalent to a given APN function. In the following proposition we present this
method in a different but equivalent form, using the concept of WZ spaces. We also include
a proof of the proposition, which is contained only implicitly in [2], because it allows one to
explicitly construct an APN permutation CCZ equivalent to the given APN function.

Proposition 1.2 [2] Let f be an APN function from F2n to F2n such that f(0) = 0. If there exist
two WZ spaces of f that intersect trivially, then f is CCZ-equivalent to an APN permutation of
F2n.



Proof: Fix a basis of F2n over F2. Then the elements of F2n can be represented as n-
dimensional column vectors over F2, and we will use this representation to associate functions
f, f ′ with matrices G,G′ in this proof. Let G be a (2n)× (2n−1) matrix over F2 whose columns

are of the form

(
x

f(x)

)
where x runs through all nonzero elements of F2n . Since f is assumed

to be APN, we know [4, Corollary 1(i)] that the rank of G is 2n.
Let S and T be the two given trivially intersecting WZ spaces, and let {(a1, b1), . . . , (an, bn)}

and {(an+1, bn+1), . . . , (a2n, b2n)} be their bases. Let G′ be the (2n) × (2n − 1) matrix over F2

defined as follows. The i-th row of G′ is (Tr(aix + bif(x)))x where x runs through all nonzero
elements of F2n in the same order as it did when we constructed the matrix G above. Let G′1
be the submatrix of G′ formed by its top n rows, and let G′2 be the submatrix of G′ formed by
its bottom n rows. Since f(0) = 0 and each (ai, bi) is a Walsh zero of f , it follows that each
row of G′ has Hamming weight 2n−1. Since S and T are trivially intersecting and each of them
has dimension n, it follows that S ⊕ T = F2n × F2n and the rank of G′ is 2n. Hence the binary
linear codes generated by G and G′ are equal. Further it follows that the binary linear codes
generated by G′1 and G′2 are simplex codes, hence columns of G′1 are distinct and columns of

G′2 are distinct. Viewing the columns of G′ as

(
y

f ′(y)

)
defines a new function f ′ : F2n → F2n

where we additionally let f ′(0) = 0. The function f ′ is CCZ equivalent to f [4] and since f
is APN, it follows that f ′ is APN. Since the columns of G′2 are distinct and nonzero, f ′ is a
permutation. �

2 Constructions of WZ spaces

In this section we provide constructions of some WZ spaces for the Gold APN functions f(x) =
x2

i+1 defined on F2n , where n is odd and gcd(i, n) = 1.

Lemma 2.1 Suppose n is odd and gcd(i, n) = 1, where 0 < i < n. Let f(x) = x2
i+1 be a Gold

APN function. Then (a, b) is a Walsh zero of f if and only if Tr(ab
− 1

2i+1 ) = 0 or a 6= b = 0.

Proof: For b = 1 the result is proved in [6] by a calculation based on the arguments given in
[5]. For b 6= 1 it is sufficient to augment the calculation in [6] by a simple substitution in the
summation range. �

Theoretical constructions given in this section were partially motivated by examples of WZ
spaces in low dimensions that we obtained computationally using the SboxU software package
written by Léo Perrin [1, Section 4], [7]. We expect that the constructions given herein are not
exhaustive; indeed this is an active project that we are currently pursuing. Proofs of propositions
are omitted due to the page limit of this extended abstract; all proofs will be included in the
full version of the paper.

Proposition 2.2 The space F2n × {0} is a WZ space for each function from F2n to F2n. The
space {0} × F2n is a WZ space for f : F2n → F2n if and only if f is a permutation.

Proposition 2.3 Assume that n = 3k where k is odd. Let f : F2n → F2n, f(x) = x2
i+1, with

gcd(i, n) = 1. Let ξ ∈ F23 ⊂ F2n and let µ ∈ F∗2n. Then

S = {
(
x , µ−(2

i+1)(ξTr(µx) + Tr(ξ2
i
µx))

)
: x ∈ F2n}

is a WZ space of f .

While Proposition 2.3 holds for each ξ ∈ F23 , one obtains interesting results only when ξ is
a primitive element of F23 . If ξ = 0, 1 then S is the trivial WZ space F2n × {0}.

From now on let us define 0
− 1

2i+1 = 0 as this will simplify some of the forthcoming con-
structions and arguments. Let us note that for testing whether a pair (a, b) is a Walsh zero it



is then sufficient to use only the first condition of Lemma 2.1, because for a pair (a, 0) we get

Tr(a · 0−
1

2i+1 ) = Tr(a · 0) = 0, as desired.

Definition 2.4 Let n be odd and gcd(i, n) = 1. Let S be an additive subspace of F2n. We say

that S is i-compatible if the set S
− 1

2i+1 = {s−
1

2i+1 : s ∈ S} is also an additive subspace of F2n.

It is easy to show that if S is i-compatible, then it is also (n− i)-compatible. This is closely
related to the linear equivalence of Gold functions f(x) = x2

i+1 and g(x) = x2
n−i+1.

For U ⊆ F2n and a ∈ F2n denote aU = {au : u ∈ U}.

Example 2.5
(i) If n is odd and gcd(i, n) = 1 then the following subspaces of F2n are i-compatible: {0}, F2

and F2n.
(ii) If S is i-compatible subspace of F2n, then µS is also i-compatible for each µ ∈ F2n.

Moreover, when n is a multiple of 3, then F2n contains the subfield F23 and the following
lemma applies.

Lemma 2.6 Assume that n is odd and divisible by 3. Let S be the subspace of F2n isomorphic
to F23. Then each additive subspace of S is i-compatible whenever gcd(i, n) = 1.

As any two 2-dimensional subspaces (hyperplanes) of F23 can be obtained from each other
just by scaling by an element of F∗23 , it follows that if 3 divides n, then Lemma 2.6 along with
Example 2.5(ii) provide 2n − 1 two-dimensional i-compatible subspaces of F2n and (2n − 1)/7
three-dimensional i-compatible subspaces of F2n .

Problem 2.7 For odd n, do there exist i-compatible subspaces of F2n other than those described
by Example 2.5(i,ii) and Lemma 2.6?

The next proposition shows an application of i-compatible subspaces to the construction of
WZ spaces.

Proposition 2.8 Assume that n is odd, gcd(i, n) = 1 and S is an i-compatible subspace of F2n.
Let f : F2n → F2n be given by f(x) = x2

i+1. Let

X = {x ∈ F2n : (∀a ∈ S−
1

2i+1 ) Tr(ax) = 0}.

Then X × S is a WZ space for f .

Proposition 2.9 Suppose n is odd and m|n. Let f : F2n → F2n, f(x) = x2
i+1, with gcd(i, n) =

1 and let µ ∈ F∗2n be fixed. Then

S := {(µa, µ2i+1b) : a ∈ F2n , b ∈ F2m and Trnm(a) = b+ b
1

2i }

is a WZ space of f .

3 Constructions of trivially intersecting pairs of WZ spaces

Due to Proposition 1.2 it is of great interest to find APN functions possessing trivially inter-
secting pairs of WZ spaces, as it allows one to construct APN permutations. In this section we
give several constructions of such pairs of WZ spaces of the Gold APN functions. Again we skip
the proofs due to the page limit of this extended abstract; all proofs will be included in the full
version of the paper.



Proposition 3.1 Let n = 3k where k is odd and let gcd(i, n) = 1. Let

S = {(x, µ−(2i+1)(ξTr(µx) + Tr(ξ2
i
µx))) : x ∈ F2n}

with ξ a primitive element of F23 ⊂ F2n and µ ∈ F∗2n, and let T = {0}×F2n. Then S and T are

WZ spaces for f(x) = x2
i+1 on F2n, and the pair {S, T} intersects trivially.

Proposition 3.2 Let n be odd and gcd(i, n) = 1. Let

S = {(µa, µ2i+1b) : a, b ∈ F2n and a = b+ b
1

2i }

and T = F2n ×{0}. Then S and T are WZ spaces for f(x) = x2
i+1 on F2n, and the pair {S, T}

intersects trivially.

Proposition 3.3 Let n = 3k where k is odd and gcd(i, n) = 1. Let

S = {(x, µ−(2i+1)(ξTr(µx) + Tr(ξ2
i
µx))) : x ∈ F2n}

with ξ a primitive element of F23 ⊂ F2n and µ ∈ F∗2n. Let

T = {(νa, ν2i+1b) : a, b ∈ F2n and a = b+ b
1

2i }

where ν ∈ F∗2n. Suppose also that Tr((ξ + ξ2
i
)(µν)−2

i
) = 0. Then S and T are WZ spaces for

f(x) = x2
i+1 on F2n, and the pair {S, T} intersects trivially.

Proposition 3.4 Let n = 3k where k is odd and gcd(i, n) = 1. Let

R = {(νa, ν2i+1b) : a, b ∈ F2n and a = b+ b
1

2i }

where ν ∈ F∗2n. Suppose ξ is a primitive element of F23 ⊂ F2n. Suppose T = X × Sµ where
Sµ = spanF2

{µ, ξµ} for some µ ∈ F∗2n and T is constructed by applying Proposition 2.8. Suppose

also that Tr((ξ + ξ2
i
)µ

2i

2i+1 ν−2
i
) = 1. Then R and T are WZ spaces for f(x) = x2

i+1 on F2n,
and the pair {R, T} intersects trivially.

Remark 3.5 The theoretical constructions of WZ spaces for Gold APN functions and of triv-
ially intersecting pairs of such spaces presented above cover all examples existing in odd dimen-
sions n ≤ 9.

4 Applications

4.1 Classifying EA classes of functions

Functions f and g mapping F2n to F2n are extended affine equivalent (EA equivalent) if there
exist affine permutations A1, A2 of F2n and an affine function A3 such that A1(f(A2(x))) +
A3(x) = g(x) for all x ∈ F2n . It is known that EA equivalent functions are also CCZ equivalent,
but partitioning CCZ classes into EA classes is in general a hard problem. This problem was
addressed by Canteaut and Perrin [3] by studying the structure of Walsh zeros of functions. WZ
spaces play an important role in their investigations.

To bring up a more specific example, in [3, Lemma 12] it is stated that the CCZ class
of f(x) = x3 on F25 contains three EA classes, and this is based on the classification of 64
WZ spaces that according to [3] were found experimentally. Here we can give a computer-free
description of these spaces: 32 of them are obtained from Proposition 2.9 with m = n = 5, and
the remaining 32 of them are obtained from Proposition 2.8 with S = µF2 where µ ∈ F25 .



4.2 Construction of new APN permutations

If we know two trivially intersecting WZ spaces for an APN function f : F2n → F2n , then
Proposition 1.2 allows us to construct an APN permutation f ′ of F2n . Then f ′ is CCZ equivalent
to f , but in general it need not be EA equivalent to it.

Just for illustration we present a simple numerical example. For n = 9, the algebraic degree
of f(x) = x3 is 2, and the algebraic degree of its compositional inverse g(x) = x1/3, which is also
an APN permutation, is 5. By applying Proposition 1.2 along with constructions of trivially
intersecting WZ spaces provided in Section 3 above, we found APN permutations of F29 of
algebraic degrees 2, 4 and 5. Since the algebraic degree is preserved by EA equivalence, the
APN permutations of degree 4 are not EA equivalent to f or g.

The constructions in Section 3 work in arbitrary odd dimensions and for all Gold APN
functions. It will be interesting to investigate how many EA inequivalent APN permutations
they provide.

Acknowledgement
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