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Abstract

We found 5412 new quadratic APN functions on F28 by modifying the last two columns
of a given QAM, thus bringing the number of known CCZ-inequivalent APN functions on F28

to 26525. Unfortunately, none of these new functions are CCZ-equivalent to permutations.
A complete list (to the best of our knowledge) of known quadratic APN functions, including
our new ones, has been added to sboxU for ease of study by others.

In this paper, we recall how to construct new QAMs from a known one. Based on these
results and on others on smaller fields, we make two conjectures: that the total number of
CCZ-inequivalent APN functions on F28 may exceed 50000, and that the full list of quadratic
APN functions could be obtained by modifying only a small number of entries of the QAM
(provided enormous computing power).

1 Introduction

Browning and Dillon [4] found the first APN permutation in dimension 6. Their idea was to
check the CCZ-equivalence [6] class of a quadratic APN function: indeed, if an APN function is
CCZ-equivalent to a permutation, then that permutation has to be APN. Browning and Dillon
then provided a method to find APN permutations. Their idea was to construct new APN
functions and to check whether they are equivalent to permutations. In this paper, we focus on
how to construct quadratic APN functions in small dimensions, especially in dimension 8. Edel
and Pott [8] listed 23 CCZ-inequivalent APN functions on F28 . Weng et al.[11] and Yu et al.[13]
extended the length of the list to 8190. A very recent breakthrough was achieved by Beierle and
Leander [1] [2], where 12923 new quadratic APN functions were found in dimension 8. In total,
21113 CCZ-inequivalent quadratic APN functions were known before this paper. We present
another 5412 new quadratic APN functions. Thus, the number of CCZ-inequivalent quadratic
APN functions in dimension 8 increases to 26525.

We will recall how to modify a QAM to get some new QAMs in the sequel. The related
theory and algorithm can be found in [13]. A discussion of our results on 8 bits, including
conjectures about 8-bit APN functions, are presented in Section 3.

2 Notation

The following notations and results are needed to understand our work.

Rank: Let η1, η2, . . . , ηm be m elements on F2n (m,n ≥ 1), and B = (η1, η2, . . . , ηm) ∈ Fm2n .
Then Span(B) = Span(η1, η2, . . . , ηm) denotes the subspace spanned by {η1, η2, . . . , ηm}
over F2. Further, RankF2(B) = RankF2{η1, η2, . . . , ηm} denotes the dimension of Span(B).



CF: Let F (x) =
∑

1≤t<i≤n
ci,tx

2i−1+2t−1 ∈ F2n [x] be a homogeneous quadratic function

(quadratic functions without linear and constant terms), then the coefficient matrix CF is
an n × n matrix such that CF [t, i] = CF [i, t] = ci,t for 1 ≤ t < i ≤ n and CF [i, i] = 0 for
1 ≤ i ≤ n.

δ(F): δ(F ) = maxa∈F?
2n ,b∈F2n

|{x ∈ F2n : F (x+a)−F (x) = b}| denotes the differential uniformity
of F .

Suppose α = {α1, α2, . . . , αn} is a basis of F2n over F2, let Mα ∈ Fn×n2n with Mα[i, u] = α2i−1

u

for 1 ≤ u, i ≤ n. The transpose of Mα is denoted by M t
α. For any homogeneous quadratic

function F (x), ifH = M t
αCFMα, thenH is a symmetric matrix over F2n with zero main diagonal.

In our algorithm, we choose the normal basis to construct the matrix Mα for simplicity. Suppose

α = {α1, α2, . . . , αn} = {γ, γ2, . . . , γn}

is a normal basis on F2n . Then we have Mα[i, u] = γ2
i+u−2

for 1 ≤ u, i ≤ n. Specifically, we let
γ = g11 on F28 , where g is the default primitive element in Magma [3].

Our method for generating QAMs relies on the following concept from [13].

Definition 2.1 ([13]QAM) Let H = (hu,v)n×n be an n×n matrix defined on F2n. The matrix
H is called a Quadratic APN Matrix (QAM) if:

1. H is symmetric and the elements in its main diagonal are all zeros, and

2. every nonzero linear combination of the n rows of H has rank n− 1.

Crucially, there is a one-to-one correspondence between quadratic homogeneous APN func-
tions and a subset of such matrices, as explained by the following theorem from the same paper.

Theorem 2.2 (Theorem 1 of [13]) Let F (x) =
∑

1≤t<i≤n
ci,tx

2i−1+2t−1 ∈ F2n [x], CF and Mα

be defined as above. Let
H = M t

αCFMα. (1)

Then, δ(F ) = 2k if and only if any nonzero linear combination of the n rows of H has rank
at least n − k. In particular, F is APN on F2n if and only if H is a QAM. In fact, Equa-
tion (1) describes a one to one correspondence between quadratic homogeneous APN functions
and QAMs.

3 New 8-bit Quadratic APN Functions

3.1 Our Results

Using the search algorithm from [13], we could obtain 6794 APN functions by modifying a very
small part (less than 0.5%) of the last two columns of the corresponding QAM of x3. These do
not all correspond to new CCZ-classes. In order to partition this set into CCZ-classes, we used
a classical method based on CCZ-class invariants. Those we considered are listed in Section 3.2,
the main one being based on the ortho-derivative [5].

In total, we have obtained 5412 new classes of quadratic APN functions operating on 8 bits.
These functions have been added to sboxU1: the function

sboxU.known functions.eightBitAPN.second QAMs()

returns a list containing their look-up tables. The function

sboxU.known functions.eightBitAPN.all quadratics()

now also returns them along with all other known quadratic APN functions in this dimension.

1https://github.com/lpp-crypto/sboxU

https://github.com/lpp-crypto/sboxU


3.2 Using Class Invariants

In order to sort our functions into distinct EA-equivalence classes (and thus distinct CCZ-
classes)2 , we used the approach based on ortho-derivative introduced in [5]. First let us recall
the definition of the ortho-derivative.

Definition 3.1 Let F : F2n → F2n be a quadratic APN function, and let x · y denote a scalar
product of x and y (where x and y are in F2n). Then the ortho-derivative of F is the unique
function πF : F2n → F2n such that πF (0) = 0, πF (a) 6= 0 if a 6= 0, and such that

πF (a) ·
(
F (x+ a) + F (x) + F (a) + F (0)

)
= 0

for all a ∈ F∗2n and all x ∈ F2n.

The crucial fact behind the sorting approach presented in [5] is that if two functions are EA-
equivalent, then their ortho-derivatives are affine-equivalent. As a consequence, they need to
have identical differential and extended Walsh spectra. Thus, two functions for which these spec-
tra do not match cannot be EA-equivalent, and as a consequence cannot be CCZ-equivalent [12].
For each function F , we computed its ortho-derivative πF . Then, we sorted all functions F ac-
cording to the extended Walsh and differential spectra of their ortho-derivatives, keeping only
one function when several had the same spectra. Here are some observations about these 6794
functions that we found.

• There are repetitions: there is a pair of spectra shared by 3 different functions, and 245
pairs that are each shared by 2 different functions. As a consequence, we can only prove
that there are at least 6547 distinct CCZ-classes in the set we generated.

• Among these 6547 functions, only 2 had a pair of spectra that was already present in the
set identified by Beierle and Leander [2]; and 1133 had already been found using the QAM
method [13]. The intersections are distinct: there was no function among the ones that
we found that was in either the data set of Beierle and Leander or the previous QAM one.

In the end, we can conclude that we found 5412 new EA-equivalence classes of quadratic APN
functions.

Unfortunately, none of our new functions yield a new Walsh spectrum. More precisely, if we
let Ni denote the number of pairs (a, b) ∈ F28 with b 6= 0 such that |

∑
x∈F28

(−1)a·x+b·F (x)| = i,

then we observe the following spectra:

W1 = {N0 = 16320, N16 = 43520, N32 = 5440}
W2 = {N0 = 15600, N16 = 44544, N32 = 5120, N64 = 16}
W3 = {N0 = 14880, N16 = 45568, N32 = 4800, N64 = 32},

where W1 occurs 5084 times, W2 324 times, and W3 only 4 times.
The ∆- and Γ-ranks are well known CCZ-class invariants defined as follows. First, let S be

any subset of F2n . We denote by r(S) the rank of the binary matrix M(S) of dimension 2n× 2n

which is such that Mx,y = 1 if and only if x+y ∈ S. Then, we have that the Γ-rank of a function
F : F2n → F2n is equal to

ΓF = r
({

(x, F (x)) : x ∈ F2n
})
,

and that its ∆-rank is

∆F = r
({

(a, b) ∈ (F2n)2 : F (x+ a) + F (x) = b has at least 1 solution
})
.

However, their computation relies on evaluating the rank of a binary matrix of dimension 216×
216, a task of significant computational complexity. Our best implementation could only compute

2As recalled before, two quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent
[12].



57 of these in a week of computations3. Furthermore, the pairs formed by ∆-rank and Γ-rank
of these 57 functions are one of only five distinct values in

{(14044, 454), (14046, 452), (14046, 454), (14048, 454), (14050, 454)} .

As a consequence, we can see that these invariants are of little interest when sorting quadratic
APN functions for n ≥ 8: they are slow to compute, and do not provide much differentiation.

We have also computed the multisets ΣF
4 (0) for each F in our set of functions, where this

quantity is the multiset defined as follows [9]:

ΣF
4 (0) =

{
3∑
i=0

F (xi) : {x0, ..., x3} ∈ (F2n)4, and
3∑
i=0

xi = 0

}
,

and is an EA-class invariant. Evaluating this invariant on our full set of function is quite
practical, and 4655 distinct values were found. This invariant is thus far more useful than the
∆- and Γ-rank: it can be computed much faster, and provides much more differentiation. It
also has the significant advantage over the ortho-derivative that it does not require the function
investigated to be both quadratic and APN.

3.3 Some Conjectures

Up to now, the total number of CCZ-inequivalent quadratic APN functions on F28 is more than
26000. However, we believe that this number is still far from complete. We give a conjecture to
estimate the lower bound of the total number.

Conjecture 1 The total number of CCZ-inequivalent quadratic APN functions on F28 is more
than 50000.

We list some facts to support Conjecture 1 that correspond to the experiments we made by
looping through all the QAMs with a given structure for a given n.

(1) In dimension 8, we can still construct a quadratic APN function every 24 hours with the
QAM method, and there is an about 79% probability that it is new compared to all known
ones.

(2) In dimension 7, when 230 (47%=230
488 of the total number) CCZ-inequivalent quadratic

APN functions have been found, there is an about 79% probability that the next APN
function constructed by the QAM method is new (i.e. not among the first 230).

(3) In dimension 6, when 6 (46%= 6
13 of the total number) CCZ-inequivalent quadratic APN

functions have been traversed, there is an about 75% probability that the next APN
function constructed by the QAM method is not among the first 6 found.

Based on the above facts, we guess that the total number of CCZ-inequivalent quadratic
APN functions in dimension 8 is at least twice the number of the known ones.

The following conjecture may provide a method to construct the complete list of quadratic
APN functions in dimension 8.

Conjecture 2 Let CF = M−1α H8(M
t
α)−1 be the coefficient matrix of F (x) ∈ F28 [x], where H8

is such that

H8 =



0 g34 g81 g83 g170 g106 x13 x7

g34 0 g68 g162 g166 g85 x12 x6

g81 g68 0 g136 g69 g77 x11 x5

g83 g162 g136 0 g17 g138 x10 x4

g170 g166 g69 g17 0 g34 x9 x3

g106 g85 g77 g138 g34 0 x8 x2

x13 x12 x11 x10 x9 x8 0 x1

x7 x6 x5 x4 x3 x2 x1 0


.

3For comparison, computing the extended Walsh and differential spectra of all our new functions takes 21
seconds on the same machine.



All CCZ-inequivalent classes of quadratic APN functions on F28 can be obtained by letting x1,
x2, . . ., x12 and x13 traverse F28.

The first 6× 6 submatrix of H8 is the same as the corresponding QAM of x3, and all known
QAM-based APN functions are constructed by modifying the last two columns (and rows) of
the matrix H8. However, we have only traversed less than 1% elements of the last two columns
(and rows), and there is an about 79% probability that the next QAM-based APN function is
new compared to all known ones.

We had to generate more than 200 (about 16 × 13) and more than 3000 (about 8 × 488)
quadratic APN functions using the QAM method in order to obtain the complete list of quadratic
APN functions in dimension 6 and dimension 7, respectively. Therefore, we may need to generate
more than 200000 (4 × 50000) quadratic APN functions in order to get the complete list in
dimension 8 using a QAM-based approach. Thus, there is a high probability that we can get the
full list after traversing x1, x2, . . ., x12 and x13, since using this method we can construct at least
2000000 quadratic APN functions. This would require substantial computations corresponding
to centuries of CPU time.
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