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Abstract

Differentially 4-uniform involutions on F22k play important roles in the design of substi-
tution boxes(S-boxes). Despite the active research on differentially 4-uniform permutation,
there are very few studies on differentially 4-uniform involutions, especially over the field
F2n with 4|n. In this paper, we construct new classes of differentially 4-uniform involutions
by using the Carlitz form. With this approach, we explicitly construct two new classes of
differentially 4-uniform involutions over F2n with even n ( expecially including 4|n ). We also
show that our constructions have high nonlinearity and an optimal algebraic degree. With
the help of computer, we show that our constructions are CCZ-inequivalent to the known
4-uniform involutions over F28 .

1 Introduction

In block ciphers, substitution boxes (S-boxes) play important roles in resisting resist several
attacks. To prevent various attacks, S-boxes should have good cryptographic properties, for
example low differential uniformity, high nonlinearity, and high algebraic degree. In the recent
book [5], the readers could find more details about Boolean cryptographic functions and pro-
found developments on the related criteria. For the efficient implementation, S-boxes are often
chosen to be permutations over F2n with even n. A function having the lowest differential uni-
formity is called almost perfect nonlinear (APN) function. However, finding APN permutations
over even dimensions, called the Big APN problem, is very difficult. Indeed, only one APN
permutation over F26 , up to CCZ-equivalence, was found [4], and the case for F28 is completely
open. Therefore a natural tradeoff is to choose differentially 4-uniform permutation S-boxes. In
this approach, constructions of differentially 4-uniform permutation have been studied exten-
sively [2, 3, 7, 11,12,15–17,20,22–32].

An involution I is a permutation satisfying I = I−1 where I−1 is the compositional inverse
of I. (for details, see also [10]) Due to this property, an involution S-box can be used on both
encryption and decryption, which leads to an advantage on the efficient design of the system.
Because of this advantage of implementation, the construction of differentially 4-uniform invo-
lutions is crucial in the block cipher. For example, the Advanced Encryption Standard(AES)
uses the multiplicative inverse function, which is a differentially 4-uniform involution having
maximal nonlinearity and algebraic degree [18]. Since the inverse function has good crypto-
graphic properties, modifications of the inverse function are often used in the construction of
new differentially 4-uniform involutions. For example, some differentially 4-uniform involutions
are constructed by modifying few points of the inverse function [11,13,17,21]. However finding
differentially 4-uniform involutions over F2n with 4|n is rather difficult, and very few examples
are known so far. (See [11].)

The Carlitz rank, first introduced in [1], is the concept based on the known result that all
permutations can be expressed by compositions of the inverse function and linear permutations.
In the case of a finite field of odd characteristic, differential uniformity of permutations with
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Carlitz rank 1 or 2 can be found in [9]. In the case of even characteristic, differential uniformity
of permutations with Carlitz rank 1,2 or 3 can be found in [13].

In this paper, we give new classes of differentially 4-uniform involutions over F22k obtained
by using permutations of Carlitz rank greater than 3. Our method provides plenty of examples
of 4-uniform involutions over F2n with 4|n, which were not known so far. We also study other
cryptographic properties such as nonlinearity and algebraic degree, and give some theoretical
bounds. Moreover, we present numerical results about our construction, for example the number
of our involutions, differential spectrum and nonlinearity.

2 Construction of differentially 4-uniform involutions on F22k

Throughout the rest of this paper, we let Invn denote the multiplicative inverse function on

F2n , that is Invn(x) = x−1 on F2n (as usual 0−1 def
= 0 ). If n is clear from the context, then

we omit the subscript, that is we use Inv instead of Invn. We consider the rational transform
r : F2n −→ F2n ,

r(x) =
ax+ b

cx+ d
=
a

c
+

ad+ bc

c(cx+ d)

as a permutation on F2n where a, b, c, d ∈ F2n and c 6= 0, by defining r(dc ) = a
c . We define a

finite field analogue of continued fraction of real numbers as:

[a1, a2, . . . , am−2, am−1, am] = ((· · · (a−1
m + am−1)

−1 + · · · )−1 + a2)
−1 + a1

For any permutation F : F2n −→ F2n , F can be represented as

F (x) = [am+1, am, . . . , a2, a1 + a0x] = ((· · · ((a0x+ a1)
−1 + a2)

−1 + · · · )−1 + am)−1 + am+1

where m ≥ 0, a0, a2, . . . am ∈ F∗
2n and a1, am+1 ∈ F2n . In other words, any permutation can

be expressed by compositions of inverse function and linear permutations ax + b (a 6= 0), and
we call this expression Carlitz form. The above expression is not unique in general. However,
there is the least m ≥ 0 among all possible expressions of F . The Carlitz rank of F , denoted by
crk(F ), is the least nonnegative integer m satisfying the above expression. We summarize some
basic properties of the Carlitz form. (For details, see [1, 8, 9])

Proposition 2.1. Let F (x) = [am+1, am, . . . , a2, a1 + a0x] be a permutation of the Carlitz form
on F2n and R be the rational transform

R(x) =
αm+1x+ βm+1

αmx+ βm
(1)

where
αk+1 = ak+1αk + αk−1, βk+1 = ak+1βk + βk−1 (1 ≤ k ≤ m)

with the initial conditions α0 = 0, α1 = a0 and β0 = 1, β1 = a1. Then the followings are satisfied:

(i) αk+1βk + αkβk+1 = a0 for 1 ≤ k ≤ m.

(ii) F (x) = R(x) for all x /∈ { βiαi
: αi 6= 0, 1 ≤ i ≤ m}.

By Proposition 2.1-(ii), given a Carlitz form F and a rational transform R defined in (1),
there exists a permutation π on F2n and the set P such that

F = R ◦ π and P = {x ∈ F2n : π(x) 6= x} (2)

where ◦ denotes the function composition and P ⊂
{
βi
αi

: αi 6= 0, 1 ≤ i ≤ m
}
. It turns out

that π(P ) = P , and the explicit permutation structure of π on
{
βi
αi

: αi 6= 0, 1 ≤ i ≤ m
}

can

be found in [1, 8, 9, 13]. Let τ = (c1, c2, . . . , cm) denotes the cyclic permutation (cycle)

τ(x) =

{
ci+1 if x = ci for 1 ≤ i ≤ m
x otherwise



where cm+1 is regarded as c1.
For a given permutation F on F2n , we define a permutation IF : F2n −→ F2n as

IF
def
= F ◦ Inv ◦ F−1, that is IF (x) = F

(
1

F−1(x)

)
where F−1 is the compositional inverse of F . Then IF is an involution because IF ◦ IF =
F ◦ Inv ◦ F−1 ◦ F ◦ Inv ◦ F−1 = id where id is the identity function.

2.1 The first construction of differentially 4-uniform involution

Let F (x) = [0, c, c−1, d, x] be a permutation on F2n with even n. Then it follows that

F (x) =


0, x = d−1 =: p1

c−1, x = (c+ d)−1 =: p2

c−2(c+ d) + c−2x−1 =: R(x), x /∈ P = {p1, p2}

that is F = R ◦ π where π = (p1, p2).
From the setting of the above F with P = {p1, p2}, we are ready to state our first (explicit)

construction of differentially 4-uniform involutions.

Construction 1. Let F be defined as above and suppose that all elements of Q = P ∪ P−1 =
{p1, p2, p−1

1 , p−1
2 } are distinct with p1p

−1
2 6∈ F4. If the following 5 trace conditions are satisfied,

Tr(1/(p2+p−1
1 )) = Tr(1/(p1+p−1

2 )) = Tr(1/((p1+p−1
1 )(p2+p−1

2 ))) = Tr(p2/p1) = Tr(p1/p2) = 1,

then IF is differentially 4-uniform involution on F2n.

2.2 The second construction of differentially 4-uniform involution

Let F (x) = [0, c, c−1, d+ d2, d−1, d, x] on F2n with even n. Then it follows that

F (x) =



c−2d2 + c−1 + c−2d, x = 0

c−2d2 + c−1, x = d−1 =: p1

0, x = 1

c−1, x = 1 + cd−2 =: p2

c−2d2 + c−1 + c−2d2x =: R(x) x /∈ P = {0, 1, p1, p2},

that is F = R ◦ π where π = (0, p1)(1, p2).
From the setting of the above F with P = {0, 1, p1, p2}, we are ready to state our second

construction of differentially 4-uniform involutions.

Construction 2. Let F be defined as above and suppose that all elements of Q = P ∪ P−1 =
{0, 1, p1, p2, p−1

1 , p−1
2 } are distinct and p1, p2 6∈ F4. If the following 10 trace conditions are satis-

fied,

Tr(1/(p1 + p2)) = Tr(1/(p1 + 1)) = Tr(1/((p1 + 1)(p1 + p−1
2 ))) = Tr(1/(p2(p2 + p−1

1 ))) = Tr(p2/(p2 + 1)3) =

Tr(p1) = Tr(1/(p2 + 1)) = Tr(1/(p−1
1 + p−1

2 )) = Tr(p2/(p
−1
1 + 1)) = Tr(1/(1 + p−1

1 + p−1
2 )) = 1,

then IF is differentially 4-uniform involution on F2n.

3 Nonlinearity and algebraic degree of proposed involutions

Theorem 3.1. Let F (x) = [am+1, am, am−1, · · · , a3, a2, a1 + a0x] on F2n with αmβm = 0. Let
F = R ◦ π and Q = P ∪ P−1. Then the nonlinearity of the involution IF is

nl(IF ) ≥ 2n−1 − 2
n
2 −#Q.

Corollary 3.2. The involutions in Construction 1 and Construction 2 are of algebraic degree
n− 1.



4 Numerical Results

In this section, we give some numerical results. With the help of software SageMath, we count
the number of involutions satisfying the conditions in Construction 1 and Construction 2, re-
spectively. The result is shown in Table 1:

n N1 D1 N2 D2

4 0 0 0 0

6 144 ≈ 2−4.830 0 0

8 2112 ≈ 2−4.496 104 ≈ 2−9.300

10 29200 ≈ 2−5.166 910 ≈ 2−10.170

12 531648 ≈ 2−4.953 15972 ≈ 2−10.037

14 8423632 ≈ 2−4.994 271096 ≈ 2−9.952

16 133344640 ≈ 2−5.009 4106624 ≈ 2−10.030

Table 1: Number of involutions in Construction 1 and Construction 2

where Ni denotes the number of involutions in Construction i, Di = Ni/2
2n for i ∈ {1, 2}.

We checked that our constructions are (previously undiscovered) new involutions by comput-
ing CCZ-invariant quantities. It is well-known that the differential spectrum and the extended
Walsh spectrum are invariant under CCZ-equivalence. By computing the differential spectrum
and the extended Walsh spectrum, we count the number of CCZ-inequivalence classes. The
result is shown in Table 2.

n # Construction 1 # Construction 2

4 0 0

6 6 0

8 66 13

10 1495 94

Table 2: Number of CCZ-inequivalence involutions in Construction 1 and Construction 2

5 Conclusion

In this paper, we presented a new methodology for constructing differentially 4-uniform in-
volutions by using permutations of low Carlitz rank, which enables us to find new classes of
differentially 4-uniform involutions over F2n when n is even, especially when 4|n (not many
4-uniform involutions are known over F2n with 4|n so far). We applied our method explicitly to
the following permutations.

F (x) = [0, c, c−1, d, x] and F (x) = [0, c, c−1, d+ d2, d−1, d, x],

and obtained new classes of differentially 4-uniform involutions IF over F2n with n ≡ 0, 2
(mod 4), where

IF (x) = [0, am, . . . , a2, a2, . . . , am, x] (F (x) = [0, am, . . . , a2, x]).

The algebraic degree and a lower bound of nonlinearity of the proposed involutions have been
given. The results show that they possess a high nonlinearity and an optimal algebraic degree.

The implementation results, via SAGE, show that there are many CCZ-inequivalent classes
of our 4-uniform involutions, which means that our constructions are indeed new results. In
particular, there exist many 4-uniform involutions in our constructions when n is multiple of 4.
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