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Abstract

Multiplicative complexity is a relevant complexity measure for many advanced cryptographic
protocols such as multi-party computation, fully homomorphic encryption, and zero-knowledge
proofs, where processing AND gates is more expensive than processing XOR gates. For Boolean
functions, multiplicative complexity is defined as the minimum number of AND gates that are
sufficient to implement a function with a circuit over the basis (AND, XOR, NOT). In this paper,
we study the multiplicative complexity of cubic Boolean functions. We propose a method to
implement a cubic Boolean function with a small number of AND gates and provide upper bounds
on the multiplicative complexity that are better than the known generic bounds.

1 Introduction

In many advanced cryptographic protocols such as multi-party computation (e.g., [1]), fully homo-
morphic encryption (e.g., [2]), and zero-knowledge proofs (e.g., [3]), processing nonlinear operations
is more expensive than processing linear operations. Hence, having efficient implementations of
these protocols in terms of nonlinear gates is of interest. This desired feature promoted the design
of new symmetric-key primitives (e.g., Rasta [4], LowMC [5]) that use a small number of AND gates.

The Multiplicative Complexity (MC) of a Boolean function f , denoted C∧(f), is defined as the
minimum number of AND gates that is sufficient to implement f with a circuit over the basis (AND,
XOR, NOT). The MC of a Boolean function having degree d is at least d − 1 [6]. Boyar et al. [7]
showed that the MC of an n-variable random Boolean function is at least 2n/2 − O(n) with high
probability. There is no known asymptotically efficient method to calculate the MC of a random
Boolean function. In practice, it is hard to calculate the MC even for Boolean functions with only
seven variables. For up to 6 variables, the MC of each Boolean function has been established in
[8, 9]. For arbitrary n, it is known that under standard cryptographic assumptions, computing the
MC in polynomial time in the length of the truth table is not possible [10]. Even if the function
is given in the form of a circuit, the problem is coNP -hard, as being able to determine MC would
allow one to decide if the circuit encodes a tautology [10].

There are known bounds for special classes of Boolean functions. The MC of affine Boolean
functions is zero. In [11], Mirwald and Schnorr showed that the MC of a quadratic function f is
k, iff f is affine equivalent to the canonical form

⊕k
i=1 x2i−1x2i. This implies the MC of quadratic

functions is at most bn2 c. In [12], Brandão et al. studied the MC of symmetric Boolean functions
and constructed circuits for all such functions with up to 25 variables. The exact MC of the
elementary symmetric functions Σn

k is also known for k less than or equal to 3 and for k larger than
or equal to n − 3 [13]. In 2017, Find et al. [14] characterized the Boolean functions with MC 2
by using the fact that MC is invariant with respect to affine transformations. In 2020, Çalık et al.
extended the result to Boolean functions with MC up to 4 [15].

In this paper, we study the MC of cubic Boolean functions. We enumerate the equivalence
classes of cubic functions with MC up to 4 and provide a generic implementation method. This
method provides upper bounds on the MC of cubic Boolean functions that are significantly better
than the upper bounds for random Boolean functions.

2 Preliminaries

Let F2 be the finite field with two elements. An n-variable Boolean function f is a mapping from
Fn2 to F2. Let Bn be the set of n-variable Boolean functions and Bc

n be the set of n-variable cubic



Boolean functions.
The algebraic normal form (ANF) of f is the multivariate polynomial f(x1, . . . , xn) =

∑
u∈Fn

2
aux

u,

where au ∈ F2 and xu = xu11 x
u2
2 · · ·xunn is a monomial containing the variables xi where ui = 1.

The degree of the monomial xu is the number of variables appearing in xu. The degree of a Boolean
function, denoted deg(f), is the highest degree among the monomials appearing in its ANF.

Two functions f, g ∈ Bn are affine equivalent if f can be written as

f(x) = g(Ax + a) + b>x + c (1)

where A is a non-singular n× n matrix over F2, a,b are column vectors in Fn2 , and c ∈ F2. We use
[f ] to denote the affine equivalence class of the function f . Degree and multiplicative complexity
are invariant under affine transformations.

Let Nf be the number of distinct input variables appearing in the ANF of f ∈ Bn. The
dimension of f , denoted dim(f), is defined as the smallest number of variables that appear in the
ANFs of functions that are affine equivalent to f , i.e., dim(f) = ming∈[f ]Ng.

3 Cubic Boolean Functions with MC ≤ 4

In this section we provide some results on the MC of cubic Boolean functions. These results mainly
follow from earlier studies [8, 9, 14, 15], and can be considered as special cases for cubic Boolean
functions.

By the degree bound, the MC of a cubic Boolean function is at least two. Proposition 3.1 follows
from [14] that exhaustively lists the affine equivalence classes with MC 2 as [x1x2x3], [x1x2x3+x1x4]
and [x1x2 + x3x4].

Proposition 3.1 Let f be an n-variable cubic Boolean function with MC 2. Then f is affine
equivalent to exactly one of the following two functions: x1x2x3 and x1x2x3 + x1x4.

Next, we characterize the cubic Boolean functions with MC 3. As shown in [8], there are no
cubic Boolean functions with MC 3 for n = 4. The dimension of a Boolean function with MC k is
at most 2C∧(f) [15], hence the dimension of Boolean functions with MC 3 is either 5 or 6.

Proposition 3.2 Let f be an n-variable cubic Boolean function with dimension 5 and MC 3. Then
f is affine equivalent to exactly one of the following four functions x1x3x4 +x1x2x5, x1x2x3 +x4x5,
x3x4 + x1x3x4 + x1x2x5 and x1x2x3 + x2x4 + x1x5.

Proposition 3.3 Let f be an n-variable cubic Boolean function with dimension 6 and MC 3. Then
f is affine equivalent to exactly one of the following three functions x3x4 +x1x3x4 +x1x2x5 +x1x6,
x1x3x4 + x1x2x5 + x1x6 and x1x2x3 + x4x5 + x1x6.

Table 1 shows the affine equivalence classes for cubic functions with MC 4. The functions listed
in Proposition 3.2, Proposition 3.3 and Table 1 are obtained by extracting cubic equivalance classes
from [16].



Table 1: Affine equivalence class representations for cubic Boolean functions with MC 4

Dimension Equivalence class

5
x2x3 + x1x3x4 + x1x2x5
x2x4 + x3x4 + x1x3x4 + x1x2x5 + x3x5

6

x1x3x4 + x1x2x5 + x2x6
x1x3x4 + x1x2x5 + x3x5 + x2x6
x3x4x5 + x1x2x6
x2x3 + x1x3x4 + x1x2x5 + x1x6
x2x3x4 + x1x3x5 + x1x2x6
x2x3x4 + x1x3x5 + x4x5 + x1x2x6 + x3x6
x2x3 + x1x4 + x3x4x5 + x1x2x6
x1x4 + x2x3x4 + x1x3x5 + x1x2x6
x1x4 + x2x3x4 + x2x5 + x1x3x5 + x1x2x6x1x2x3 + x3x4 + x2x5 + x1x6
x2x4 + x3x4 + x1x3x4 + x1x2x5 + x3x5 + x1x6
x2x4 + x3x4 + x2x3x4 + x3x5 + x1x3x5 + x1x2x6
x1x3 + x3x4x5 + x1x2x6

7

x1x2 + x1x2x3 + x1x2x4 + x3x4 + x1x2x6 + x5x6 + x3x7 + x4x7 + x5x7 + x6x7
x1x2x3 + x1x2x4 + x1x3x4 + x1x5x6 + x3x5x6 + x4x5x6 + x1x7 + x3x7 + x4x7
x1x2x3 + x1x2x4 + x3x4 + x1x2x5 + x1x2x6 + x5x6 + x1x7 + x2x7 + x4x7 + x6x7
x1x2x3 + x1x2x4 + x3x4x5 + x5x6 + x1x7 + x2x7 + x3x7 + x4x7 + x3x4x7 + x6x7
x3x4 + x1x2x5 + x3x5 + x3x4x5 + x1x2x6 + x3x4x6 + x6x7
x3x4 + x1x2x5 + x5x6 + x1x2x7 + x3x4x7 + x5x7 + x6x7
x1x2x4 + x1x3x4 + x2x3x4 + x1x5 + x2x5 + x4x5 + x1x2x6 + x3x4x6 + x6x7
x1x2x3 + x1x5 + x2x5 + x3x5 + x1x2x6 + x3x4x6 + x1x5x6 + x2x5x6 + x3x5x6 + x6x7
x1x2 + x3x4 + x1x2x5 + x5x6 + x7 + x3x4x7 + x5x7 + x6x7
x1x2 + x3x4 + x5x6 + x1x2x7 + x3x4x7 + x5x7 + x6x7
x1x2x3 + x3x4x5 + x5x6 + x1x2x7 + x3x7 + x3x4x7 + x6x7
x1x2x7 + x3x7 + x4x7 + x3x4x7 + x5x7 + x6x7 + x5x6x7
x3x4 + x5x6 + x1x7 + x2x7 + x1x2x7 + x3x4x7 + x6x7 + x5x6x7

8

x1x2 + x1x2x5 + x3x4x5 + x5x6 + x1x2x7 + x3x4x7 + x7x8
x1x2x7 + x3x4x7 + x5x6x7 + x7x8
x3x4x5 + x1x2x6 + x5x6 + x3x4x7 + x1x2x8 + x7x8
x1x2x3 + x3x4 + x1x2x5 + x5x6 + x1x2x7 + x7x8
x1x2x5 + x3x4x5 + x5x6 + x1x2x7 + x3x4x7 + x7x8
x1x2 + x5x6 + x1x2x7 + x3x4x7 + x5x6x7 + x7x8

4 Constructing Circuits for Cubic Boolean Functions

Next, we provide an iterative method to implement cubic Boolean functions that uses a small
number of AND gates. The method decomposes an n-variable cubic Boolean function f such that
f = xnf1 + f2, where f1 is a quadratic function defined on (x1, . . . , xn−1) and f2 is a function
of degree at most three defined on (x1, . . . , xn−1). The method implements the functions f1 and
f2 independently and computes f using one additional AND gate. The quadratic function f1 is
implemented using at most bn−12 c AND gates, as shown in [11]. The function f2 is then recursively
implemented. The recursion stops when f2 is sub-cubic or when the number of variables in f2 is
small (e.g., n = 6). At that point, the function can be implemented optimally. Note that the
decomposition can be done using any of the input variables. The natural greedy approach is to
factor out a variable that appears in the largest number of cubic terms.

The method provides an upper bound on the MC of n-variable cubic Boolean functions, denoted
MaxMC(Bc

n), using the following relation

MaxMC(Bc
n) ≤ MaxMC(Bc

n−1) + bn− 1

2
c+ 1. (2)

For n = 6, it is known that the MC of cubic Boolean functions is at most 5 and this bound is tight,
i.e., there exists cubic Boolean functions with MC 5 [9]. For n = 7, there are 179 affine equivalence



classes for cubic Boolean functions [17, 18]. After applying the method presented here, we observed
that the MC of cubic Boolean function for n = 7 is at most 8. Using this bound and the relation
given in (2), we obtain

MaxMC(Bc
n) ≤ 1

2
(bn− 1

2
c2 + bn− 1

2
c+ (bn

2
c − 1)bn

2
c+ 2(n− 8)) ∈ 3n2

8
+O(n). (3)

If we factor out two variables, as in f(x1, . . . , xn) = xnf1 + xn−1f2 + f3, where, without loss
of generality, f3 is at most cubic on variables x1, . . . , xn−2 and f1, f2 are at most quadratic on
variables x1, . . . , xn−1, we obtain the recurrence

MaxMC(Bc
n) ≤ MaxMC(Bc

n−2) +MC(f1, f2) + 2 (4)

≤ MaxMC(Bc
n−2) + b3(n− 1)

4
c+ 2 ∈ 3n2

16
+O(n). (5)

The last inequality holds by a theorem of Mirwald and Schnorr [11]. We note that in practice this
bound is likely not tight as, having calculated a circuit for {f1, f2}, the number of additional AND
gates needed to calculate f3 is likely smaller than C∧(f3).

Table 2 provides upper bounds on the MC of n-variable cubic Boolean functions. The bounds
for n ≥ 8 are obtained using the bound from (5). The table also provides the best known bounds
for the generic Boolean functions, given in [12].

Table 2: Upper bounds on the MC of n-variable Boolean functions

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cubic functions - 2 2 4 5 8 12 16 20 25 30 36 41 48 54

All functions 1 2 3 4 6 13 26 41 57 88 120 183 247 374 502

One can divide Bn into the set of functions B+
n for which f(0) = 0 and the set of functions B−n

for which f(0) = 1. Function in B+
n can be optimally computed (with respect to multiplicative

complexity) over the basis (AND, XOR). That is, negation (adding the constant 1) is not needed. An
optimal circuit for a function f() in B−n can be constructed from an optimal circuit for f()+1 ∈ B+

n

by adding 1 to the output gate. Thus the number of functions in Bn that can be computed with
at most k AND gates is exactly twice the number of functions in B+

n that can be computed with
at most k AND gates. With this observation, a slight modification of the proof of Lemma 15 in
[7], shows that the number of functions in Bn that can be computed with at most k AND gates is
bounded above by 2k

2+2kn+n+2.

The cardinality of Bc
n is (2(n3) − 1)2(n2)+n+1. Thus, letting τ = MaxMC(Bc

n), we have

(2(n3) − 1)2(n2)+n+1 ≤ 2τ
2+2τn+n+2(

n

3

)
+

(
n

2

)
+ n ≤ τ2 + 2τn+ n+ 2

n3 − n ≤ 6τ2 + 12τn+ 12

√
6

6
(n3 + 6n2 − n− 12)

1
2 − n ≤ τ, (6)

which shows that MaxMC(Bc
n) is Ω(n3/2). Thus

Ω(n3/2) ≤ MaxMC(Bc
n) ≤ O(n2). (7)

Closing the gap in (7) is an interesting open problem.



5 Conclusion and Discussion

In this paper, we studied the multiplicative complexity of cubic Boolean functions. We first enu-
merated the equivalence classes of cubic Boolean functions with up to MC 4. Next, we provided a
method to implement cubic Boolean functions that decomposes the input function into an expres-
sion of functions defined on a smaller number of variables. Using this method, we provide upper
bounds on MC of cubic Boolean functions that are significantly better than the upper bounds
for random Boolean functions. The methods in this paper can also be extended to implement
Boolean functions with small Hamming distance to cubic Boolean functions, e.g., functions with
small second-order nonlinearity. The extended algorithm and the proofs will be provided in the
full version of the paper.
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