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Abstract

In a recent survey, Schmidt discusses connections between generalized bent functions,

group invariant Butson Hadamard matrices, and certain splitting relative difference sets.

We lift results from this base case by establishing broader connections between non-splitting

relative difference sets, cocyclic Butson Hadamard matrices, generalized partially bent func-

tions, and generalized perfect arrays.

This paper is inspired by Schmidt’s survey [9]. We first provide background on some of the

objects named in the title, before stating our main results.

Let q,m, h be positive integers, and let ζk be the complex kth root of unity exp (2π
√
−1/k).

Schmidt [9, Section 2.2] defines a map f : Zmq → Zh to be a generalized bent function (GBF) if∣∣∣ ∑
x∈Zm

q

ζ
f(x)
h ζ−wx

>
q

∣∣∣2 = qm ∀w ∈ Zmq ,

where |z| as usual denotes the modulus of z ∈ C.

One of our aims is to investigate the role of GBFs within cocyclic design theory. Some

requisite definitions follow. Let G and U be finite groups, with U abelian. A map ψ : G×G→ U

such that

ψ(a, b)ψ(ab, c) = ψ(a, bc)ψ(b, c) ∀ a, b, c ∈ G

is a cocycle (over G, with coefficients in U). We may assume that ψ is normalized, meaning

that ψ(1, 1) = 1. For any (normalized) map φ : G → U , the cocycle ∂φ defined by ∂φ(a, b) =

φ(a)−1φ(b)−1φ(ab) is a coboundary. The set of cocycles ψ : G×G→ U forms an abelian group

Z2(G,U) under pointwise multiplication. Each cocycle ψ ∈ Z2(G,U) may be displayed as a

cocyclic matrix, denoted Mψ. That is, under some indexing of rows and columns by G, the

entry in position (a, b) of Mψ is ψ(a, b). We focus on the case G = Zs1 × · · · × Zsm and

U = 〈ζh〉 ∼= Zh.

Denote the set of n×n matrices with entries in a set S byMn(S). A matrix M ∈Mn(〈ζk〉)
is a Butson Hadamard matrix if MM∗ = nIn where In is the n × n identity matrix and M∗ is

the complex conjugate transpose of M . We write BH(n, k) for the set of all Butson matrices in



Mn(〈ζk〉). The simplest examples are the Fourier matrices Fn =
[
ζ
(i−1)(j−1)
n

]n
i,j=1

∈ BH(n, n).

Hadamard matrices of order n, as they are usually defined, are the elements of BH(n, 2).

Matrices H, H ′ ∈ Mn(〈ζk〉) such that PHQ∗ = H ′ for monomials P,Q ∈ Mn(〈ζk〉 ∪ {0})
are equivalent. Equivalence preserves the Butson property: if H ∈ BH(n, k) and H ′ is equivalent

to H, then H ′ ∈ BH(n, k) too.

Our interest is in cocyclic Butson matrices. If |G| = n, ψ ∈ Z2(G, 〈ζk〉), and Mψ ∈ BH(n, k),

then the cocycle ψ is said to be orthogonal.

Remark 1 An n×n matrix X is group invariant, over a group G of order n, if X = [xa,b]a,b∈G

and xac,bc = xa,b for all a, b, c ∈ G. A group invariant Butson matrix is equivalent to a cocyclic

Butson matrix whose underlying orthogonal cocycle is a coboundary (over the same group).

Cocyclic designs are known to give rise to (relative) difference sets, and vice versa; see, e.g.,

[3, Sections 10.4, 15.4]. Let E be a group with a normal subgroup N of order n and index v. A

(v, n, k, λ)-relative difference set in E relative to N (the forbidden subgroup) is a k-subset R of

a transversal for N in E such that

|R ∩ xR| = λ ∀x ∈ E \N.

We call R abelian if E is abelian, and splitting if N is a direct factor of E.

The final piece of preliminary background concerns arrays. Let s = (s1, . . . , sm) be an m-

tuple of integers si > 1, and let G = Zs1 × · · · × Zsm . A h-ary s-array is merely a set map

φ : G→ Zh. When h = 2, the array is binary. For w ∈ G, we define the periodic autocorrelation

at shift w of an array φ, denoted ACφ(w), by

ACφ(w) =
∑
g∈G

ζ
φ(g)
h ζ

−φ(g+w)
h .

If ACφ(w) = 0 for all w 6= 0, then φ is called perfect.

Now we have the ingredients to state the fundamental motivating result, extracted mostly

from [9].

Theorem 1 Suppose that h divides qm, and let f be a map Zmq → Zh. The following are

equivalent.

1. f is a GBF.

2.
[
ζ
f(x−y)
h

]
x,y
∈ BH(qm, h) is equivalent to a coboundary matrix indexed by Zmq .

3. f is a perfect h-ary (q, . . . , q)-array.

4. {(f(x), x) | x ∈ Zmq } is a splitting (qm, h, qm, qm/h)-relative difference set in Zh × Zmq .

We investigate the effect on the equivalences of Theorem 1 when non-splitting abelian relative

difference sets are considered in point 4; i.e., non-coboundary cocyclic Butson matrices are

considered in point 2. To that end, we need some more specialized material.

Jedwab [5] introduced generalized perfect binary arrays (GPBA), and showed that each

GPBA is equivalent to a certain non-splitting abelian relative difference set. Hughes [4] later

identified its orthogonal cocycle arising from the relevant central extension. We recast these

ideas for h-ary arrays (cf. [1, Section 3]).



Definition 1 Let s, G, be as above, and let z = (z1, . . . , zm) ∈ {0, 1}m. The expansion of an

array φ : G → Zh of type z is the map φ′ from E = Z(z1(h−1)+1)s1 × · · · × Z(zm(h−1)+1)sm to Zh
defined by

φ′ : (g1, . . . , gm) 7→ φ(a) + b mod h,

where b =
∑m

i=1b
gi
si
c and a ≡ g mod s, i.e., a = (g1 mod s1, . . . , gm mod sm).

Remark 2 The definition above reduces to the one in [5] when h = 2.

We isolate the following subgroups of E as in Definition 1:

L = {(g1, . . . , gm) ∈ E | gi = yisi with 0 ≤ yi < h if zi = 1, and yi = 0 if zi = 0},
K = {(g1, . . . , gm) ∈ L |

∑
yi ≡ 0 mod h}.

Proposition 1 Let φ be a h-ary s-array and let φ′ be its expansion of type z. Then

ACφ′(g) = ζ−bh ACφ′(0) = ζ−bh

m∏
i=1

(zi(h− 1) + 1)si ∀g ∈ L,

where b =
∑

i gi/si for g = (g1, . . . , gm) ∈ L. Furthermore, if g /∈ L then |ACφ′(g)| < |ACφ′(0)|.

Let z 6= 0. We have a short exact sequence

1 −→ 〈ζh〉
ι−→ E/K

β−→ G −→ 0, (1)

where β(g + K) = g mod s and ι sends ζh to a generator of L/K ∼= Zh. In the standard

way, (1) determines a cocycle µz ∈ Z2(G, 〈ζh〉) depending on the choice of a transversal map

τ : G → E/K. We set τ(x) = x + K (with a slight abuse of notation), and then µz(x, y) =

ι−1(τ(x) + τ(y)− τ(x+ y)).

Proposition 2 (cf. [4, Lemma 3.1]) Define γm ∈ Z2(Zm, 〈ζh〉) by γm(j, k) = ζ
b(j+k)/mc
h ,

evaluating the exponent as an ordinary integer. Then µz(x, y) =
∏
zi=1 γsi(xi, yi).

Example 1 Let A0 =
[
0 1

1 1

]
and A1 =

[
0 0

1 0

]
. The binary map A on Z3

2 with layers A0 and A1

(Ai denotes the layer on {i}×Z2×Z2) is a GPBA(2, 2, 2) of type z = (1, 1, 1). Its (orthogonal)

cocycle is µz∂2∂3∂4∂6, where ∂i is the coboundary associated to the multiplicative Kronecker

delta φi of αi, with α1 = (0, 0, 0), α2 = (0, 0, 1), and so on.

Definition 2 A h-ary s-array φ is a generalized perfect h-ary s-array of type z if ACφ′(g) = 0

for all g ∈ E \ L; in short, we say that φ is a GPhA(s).

Remark 3 If z = 0 then a GPhA(s) is a perfect h-ary s-array.

Definition 3 A generalized partially bent function (GPBF) is a map f : Zmq → Zh such that

|ACf (x)| ∈ {0, qm} for all x ∈ Zmq .

Mesnager, Tang, and Qi in [7] extend the notion of GBF to that of generalized plateaued

function f : Zmp → Zpk , p prime. Our main result, as follows, connects these functions to GPBFs,

and ‘lifts’ Theorem 1.



Theorem 2 Let h be a prime and q be a multiple of h. Further, let φ : Zmq → Zh be a map and

φ′ : Zmhq → Zh be the expansion of φ for z = (1, 1, . . . , 1). The following are equivalent.

1. φ′ is a GPBF.

2. µz∂φ is orthogonal, i.e., Mµz∂φ ∈ BH(qm, h).

3. φ is a GPhA(qm) of type z = (1, 1, . . . , 1).

4. {g + K ∈ E/K | φ′(g) = 0} is a non-splitting (qm, h, qm, qm/h)-relative difference set in

E/K with forbidden subgroup H/K.

5. φ′ is a generalized plateaued function, i.e.,∣∣∣ ∑
x∈Zm

hq

ζ
φ′(x)
h ζ−vx

>

hq

∣∣∣2 =

{
(h2q)m v ∈ F

0 otherwise,

where F := {v = (v1, . . . , vm) ∈ Zmhq | vi ≡ 1 mod q ∀ i, 1 ≤ i ≤ m}.

Corollary 1 A necessary condition for existence of a GPhA(qm) of type z = (1, 1, . . . , 1) is

h = q.

Remark 4 Regarding point 4 of Theorem 2, cf. the conditions outlined in [8] for existence of

relative difference sets in abelian p-groups.

Remark 5 If h = q in Theorem 2, then |L| · |F| = (hq)m. This identity is the condition under

which in [11, Definition 2.2] (resp., [2, Definition 1]) a map f : Zmq → Zq (resp., q = 2) is called

a generalized partially bent function. The coincidence with our Definition 3 is proved in [10,

Theorem 2] for q = 2 and in [6, Proposition 8] for q > 2.

Remark 6 For even m, prime h = q, and z = (1, 1, . . . , 1), the expansion φ′ : Zmh2 → Zh in

Theorem 2 is an (m/2)th-order generalized plateaued function, because (h2h)m = (h2)m+m/2

(see [6, Definition 2]).

Example 2 Let φ′ be the expansion of the binary array in Example 1. We see that φ′ : Z3
4 → Z2

is defined by the layers on {i} × Z4 × Z4 for i = 0, 1, 2, 3 by

Bi =



[
A0 A0 ⊕ J

A0 ⊕ J A0

]
i = 0, 2

[
A1 ⊕ J A1

A1 A1 ⊕ J

]
i = 1, 3,

with J denoting an all 1s matrix; i.e., B0 = B2 =


0 1 1 0

1 1 0 0

1 0 0 1

0 0 1 1

, B1 = B3 =


1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

.

Now L = {(0, 0, 0), (0, 0, 2), (0, 2, 0), (0, 2, 2), (2, 0, 0), (2, 0, 2), (2, 2, 0), (2, 2, 2)} and

ACφ′(v) =

{
(−1)wt(v) 64 v ∈ H

0 v /∈ H.



Also F = {(1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3), (3, 1, 1), (3, 1, 3), (3, 3, 1), (3, 3, 3)} and

∣∣∣ ∑
x∈Z3

4

ζ
φ′(x)
2 ζ−vx

>

4

∣∣∣2 =

{
512 v ∈ F
0 v /∈ F .

Therefore φ′ is a GPBF.
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