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Abstract

The q-transform of a Boolean function f , introduced by A. Klapper, measures the cross-
correlation between f and the functions obtainable from a function q by nonsingular linear
change of basis. It is helpful for investigating the higher-order nonlinearity of Boolean func-
tions.

In this work, we employ the cross-correlation theory of Boolean functions to give a rela-
tion between the q-transforms and the Walsh-Hadamard transforms. As an application, we
illustrate the relation with quadratic functions q which have been well-studied. We prove a
(tight) lower bound on the second-order nonlinearity for bent functions.

Preliminary. Let n be a positive integer, let Fn
2 = {0, 1}n, treated as row vectors, and let

Bn = {f : Fn
2 → {0, 1}}, the set of Boolean functions of dimension n. We refer the reader to

Carlet’s book chapter [1] and Cusick and Stănică’s monograph [5] for background on Boolean
functions.

For f, g ∈ Bn, the Hamming distance d(f, g) from f to g, defined by

d(f, g) = |{x ∈ Fn
2 : f(x) 6= g(x)}| = wt(f + g),

is an important parameter for f and g, where wt(h) is the number of x ∈ Fn
2 such that h(x) = 1.

It measures how ‘far’ from f to g. The equation

W (f, g) =
∑
x∈Fn

2

(−1)f(x)+g(x) ∈ Z

defines the cross-correlation between f and g. It is useful for defining several measures used to
analyze Boolean functions. For example, the nonlinearity of a function f is defined by

nl(f) = min
w∈Fn

2

d(f, w · x).

where w · x = w1x1 + w2x2 + . . .+ wnxn is a linear function or zero.
The Walsh-Hadamard transform coefficient of f at w ∈ Fn

2 is defined by

Sf (w) = W (f, w · x), w ∈ Fn
2 .

It is a powerful tool for analyzing Boolean functions. For instance, the nonlinearity can be
written as

nl(f) = 2n−1 − 1

2
max
w∈Fn

2

|Sf (w)|.

It is well known that |Sf (w)| = 2n/2 for all w ∈ Fn
2 if and only if f is bent.
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Let deg(f) be the algebraic degree1 of f . More generally the rth-order (higher order) non-
linearity of f , denoted by nlr(f), is defined as

nlr(f) = min
deg(g)≤r

d(f, g).

We have

nlr(f) = 2n−1 − 1

2
max

deg(g)≤r
|W (f, g)|. (1)

Thus nlr(f) should be as large as possible (at least for small r) for the requirements of crypto-
graphic security. However, there is no known efficient algorithm that computes nlr(f) even if
r = 2. Quoting Carlet [2, pp.1262-1263],

Computing the r-th order nonlinearity of a given function with algebraic degree
strictly greater than r is a hard task for r > 1. In the case of the first order,
much is known in theory and also algorithmically since the nonlinearity is related to
the Walsh transform, which can be computed by the algorithm of the fast Fourier
Transform (FFT).· · · But for r > 1, very little is known. Even the second order
nonlinearity is known only for a few peculiar functions and for functions in small
numbers of variables.

Luckily, we find that the q-transform for Boolean functions, introduced by Klapper [7], might
be useful for computing the r-th order nonlinearity. This leads to the main contribution of this
work.

Let GLn = GLn(F2) be the group of all n×n invertible matrices over F2. Let N = |GLn| =
(2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1), the cardinality of GLn. Let qA denote the function
qA(x) = q(xA) for q ∈ Bn and A ∈ GLn. Let 0 denote the n× n zero matrix.

Definition 0.1 ([7]) Let q ∈ Bn. If f ∈ Bn and A ∈ GLn, then the q-transform coefficient of f
at A is Wq(f)(A) = W (f, qA). Also let

Wq(f)(0) =
∑
x∈Fn

2

(−1)f(x) , If ,

where If is referred to as the imbalance of f . Then q-transform is the list of Wq(f)(A) for all
A ∈ GLn.

If q is linear, then the q-transform is essentially the Walsh-Hadamard transform.
From eqn. (1), the rth-order nonlinearity can be written as

nlr(f) = 2n−1 − 1

2
max

deg(q)≤r
max

A∈GLn∪{0}
|Wq(f)(A)|. (2)

Klapper considered the statistical behavior of the q-transform with respect to two probability
distributions [7]. For a random variable X on GLn ∪ {0}, let E′[X] denote the expected value
of X with respect to the uniform distribution on GLn. Let E[X] denote the expected value of
X on GLn ∪ {0} with respect to ω, which is the probability distribution on GLn ∪ {0}, defined
by

ω(A) =
1

N +N/(2n − 1)
=

2n − 1

2nN

for A ∈ GLn and

ω(0) =
N/(2n − 1)

N +N/(2n − 1)
=

1

2n
,

1The degree of Boolean functions, is defined as the number of variables in the largest product term of the
functions’ algebraic normal form (ANF) having a non-zero coefficient.



where N = |GLn|. The choice of ω comes from the case when q is linear, so that we can consider
the q-transform Wq(f) as a generalization of the Walsh-Hadamard transform Sf (w).

Then, for balanced q ∈ Bn, by some computations involving ω that we shall omit [7, p. 2801],
we get

E′[Wq(f)(A)2] = (22n − I2f )/(2n − 1), (3)

and so
E[Wq(f)(A)2] = 2n. (4)

This is a generalization of Parseval’s equation.
Certain basic topics involving q-transforms have appeared in the literature. For example, we

computed the auto-correlation of q-bent functions (if they exist) [8]. We answered the question
as to whether q-bent functions exist [3]. We investigated q-nearly bent functions in [4] and the
q-correlation immune functions in [6]. However, many open questions remain, many described
in our previous work [3, 4, 6, 7, 8]. For example, how can we model other measures of crypto-
graphic security using q-transforms? These questions still remain interesting when restricted to
simple q such as x1x2 or x1x2 + x3.

A computational formula of q-transform coefficients. The theorem below indicates a
relation between the q-transform and the Walsh-Hadamard transform, which is a direct result
coming from the cross-correlation of two functions. The proof is omitted due to space limits.

Theorem 0.2 Let n be an integer and q ∈ Bn. Then the q-transform coefficient of f ∈ Bn at
A ∈ GLn is

Wq(f)(A) = 2−n
∑
w∈Fn

2

Sf (w)SqA(w).

Theorem 0.2 shows that the computation of the q-transform can be based on the compu-
tation of the Walsh-Hadamard transform. A fast method for computing the Walsh-Hadamard
transform is the divide-and-conquer butterfly algorithm, known as the Fast Fourier Transform
(FFT) [10, Theorem 5, p. 422], [1, Sect. 2.2]. So the overall time complexity is O(n2n) for com-
puting Wq(f)(A) for any A ∈ GLn. This gives us a feasible method to calculate the q-transform
(for fixed f and q). And thus it might be helpful to compute nlr(f) (in particular nl2(f)) for
some special f .

We can efficiently compute the q-transform coefficients Wq(f)(A) if both f and q have few
non-zero Walsh-Hadamard transform coefficients. We introduce the parameter

∆h =: |{w ∈ Fn
2 : Sh(w) 6= 0}|.

Theorem 1 in [9] told us that ∆h ≥ 4 for all non-affine functions h and no h has ∆h ∈
{2, 3, 5, 6, 7}. When ∆h = 4, we see that the four non-zero Walsh-Hadamard transform co-
efficients of h are

(2n−1, 2n−1, 2n−1,−2n−1) or (−2n−1,−2n−1,−2n−1, 2n−1).

In particular, we find ∆q = 4 for q(x) = x1x2 or q(x) = x1x2 + x3.
Next we compute the q-transform coefficients of a bent function for those q ∈ Bn with ∆q = 4.

Theorem 0.3 Let n ≥ 4 be even and q ∈ Bn with ∆q = 4. If f is a bent function, then the
q-transform coefficient of f satisfies

Wq(f)(A) ∈ {0,±2n/2,±2n/2+1}, A ∈ GLn.

Example 0.4 Let n = 4, let A ∈ GLn, and let f(x) = x1x2 + x3x4. Then f is bent.
If q = x1x2, then f has a four-valued q-transform spectrum with Wq(f)(A) ∈ {0,±4, 8}.
If q = x1x2 + x3, then f has five-valued q-transform spectrum with Wq(f)(A) ∈ {0,±4,±8}.



Similar to Theorem 0.3, we have the following for plateaued functions2 (including semi-bent
functions).

Theorem 0.5 Let n ≥ 4 and q ∈ Bn with ∆q = 4. If f is a plateaued function with Sf (w) ∈
{0,±λ} for w ∈ Fn

2 , then the q-transform coefficient of f satisfies

Wq(f)(A) ∈
{

0,±1

2
λ,±λ,±3

2
λ,±2λ

}
, A ∈ GLn.

Example 0.6 Let n = 4 and f(x) = x1 + x2 + x3x4 be plateaued (with λ = 8). Then f has a
five-valued q-transform spectrum with Wq(f)(A) ∈ {0,±4,±8} for q = x1x2 and q = x1x2 + x3,
respectively.

Second-order nonlinearity of bent functions. Proving general upper or lower bounds
on the higher-order nonlinearity of functions is also a difficult task, even for second-order
nonlinearity[1]. Here we use Theorem 0.2 to prove a general lower bound on the second-order
nonlinearity of bent functions. Based on some examples, we show that the bound is tight.

The computation of the second-order nonlinearity of functions relates to quadratic functions.
For quadratic h ∈ Bn, we define

Ker(h) = {x ∈ Fn
2 : h(x+ y) + h(x) + h(y) = 0 for any y ∈ Fn

2},

the kernel of h. Ker(h) is a linear subspace of Fn
2 . For each 0 ≤ k < n with k ≡ n (mod 2),

there always exists a quadratic h such that the dimension of Ker(h) equals k.

Theorem 0.7 Let n ≥ 6 be even and q ∈ Bn be a quadratic function with kernel Ker(q) of
dimension k. If f ∈ Bn is a bent function of degree d ≥ 3, then the q-transform coefficient of f
satisfies

|Wq(f)(A)| ≤
{

2n−k/2, if k > 0,
2n − 2n−d+1, if k = 0,

for all A ∈ GLn.

Theorem 0.7 leads to a lower bound on the second-order nonlinearity of bent functions.

Theorem 0.8 Let n ≥ 6 be even and f ∈ Bn be bent of degree d ≥ 3. Then the second-order
nonlinearity of f satisfies

nl2(f) ≥ 2n−d.

Proof. We use eqn. (1). Since f is bent, we have

max
deg(g)≤1

|W (f, g)| = max
w∈Fn

2

|Sf (w)| = 2n/2. (5)

From Theorem 0.7, we have

max
deg(g)=2

|W (f, g)| = max
deg(q)=2

max
A∈GLn

|Wq(f)(A)| ≤ 2n − 2n−d+1. (6)

Putting eqns. (1), (5) and (6) together, we get

nl2(f) = 2n−1 − 1

2
max

deg(g)≤2
|W (f, g)| ≥ 2n−1 − (2n−1 − 2n−d) = 2n−d.

This completes the proof.
We give an example to illustrate that the lower bound in Theorem 0.8 is tight.

2A function f ∈ Bn is called a plateaued function if Sf (w) = {0,±λ} for w ∈ Fn
2 where λ ≥ 2n/2. In particular,

a plateaued function is semi-bent if λ = 2(n+1)/2 for odd n or if λ = 2(n+2)/2 for even n.



Example 0.9 Let n = 2m ≥ 6 and 3 ≤ d ≤ m. Let

q(x, y) =
m∑
i=1

xiyi

and let

f(x, y) = y1y2 · · · yd +
m∑
i=1

xiyi, 3 ≤ d ≤ m

for x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). Then f is bent of degree d and q is quadratic
bent. Since y1y2 · · · yd ∈ Bn has weight wt(y1y2 · · · yd) = 2n−d, we have

Wq(f)(E) =
∑

(x,y)∈Fn
2

(−1)f(x,y)+qE(x,y) =
∑

(x,y)∈Fn
2

(−1)y1y2···yd = 2n − 2n−d+1,

where E ∈ GLn is the identity matrix. This means that there is a bent function whose q-
transform coefficient is maximal. So the f in this example has second-order nonlinearity nl2(f) =
2n−d.
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