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Abstract

Some recent research articles addressed the specification of indicators leading to two classes of bent functions,
denoted C and D, derived from the Maiorana-McFarland (M) class by C. Carlet in 1994. Many of these explicitly
specified bent functions that belong to C or D are provably outside the completed M class. Nevertheless, these
modifications are performed on affine subspaces whereas modifying bent functions on suitable sets may provide
us with further classes of bent functions which are provably outside the completed M class. In this article, we
exactly specify new families of bent functions by adding together indicators well suited for the C and D class,
thus essentially modifying bent functions in M on suitable sets instead of subspaces. Apart from the desirable
property of being outside the completed M class, these bent functions can be potentially used for constructing
vectorial bent functions whose components (possibly not all) share the same property, which is an interesting
research challenge. It is also shown that certain instances of these bent functions are simultaneously outside
the completed M and PS+ classes.

1 Introduction

The term bent function was introduced by Rothaus [5]. Bent functions have a wide range of applications in error
correcting codes, sequences, symmetric design and cryptography. We introduce a new superclass of bent functions
which modifies bent functions in the M class on a suitable set rather than modifying it on affine subspaces. We
show that the function defined as f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a11E1(x)1E2(y), with x, y ∈ F2m , are bent
for any choice of the binary constants a0, a1 ∈ F2, for suitably selected subspaces L,E1, E2 and permutation π, in
accordance to the standard condition related to the bentness of functions in C and D.

2 Preliminaries

With |S| we denote the cardinality of a finite set S. The vector space Fn2 is the space of all n-tuples x = (x1, . . . , xn),
where xi ∈ F2. With F2n we denote the finite field of order 2n and with F∗2n its multiplicative cyclic group consisting
of 2n−1 elements. With “+” we denote the addition in the finite field F2n , and with “⊕” (bitwise XOR) we denote
the addition in Fn2 .

For x ∈ F2n the trace Trnk (x) : F2n → F2k of x over F2k , k is a divisor of n, is defined by

Trnk (x) = x+ x2
k

+ · · ·+ x2
k(n/k−1)

.

If k = 1, then Trn1 is called the absolute trace. The Walsh-Hadamard transform of a Boolean function f on F2n at
a point u ∈ F2n is defined by

Wf (u) =
∑
x∈F2n

(−1)f(x)+Tr
n
1 (ux). (1)

If Wf (u) = ±2
n
2 for all u ∈ F2n , then f is a bent function. A function f : F22m → F2 is called normal (weakly

normal) if there exists a flat of dimension m such that f is constant (affine) on this flat.
The following theorem will be useful when considering the inclusion/exclusion of bent Boolean functions in the

class M#, where M# is the completed version of M (see Section 2.1 for the definition of M) which is globally
invariant under the addition of any affine function and the composition (on the right) with any nonsingular affine
transformation. Throughout this article we use ⊕ to denote the addition of vectors in Fm2 , whereas “+” denotes
addition in a finite field.

Theorem 1. [3] An n-variable bent function f , n = 2m, belongs toM# if and only if there exists an m-dimensional
linear subspace V of Fn2 such that the second order derivatives

DaDbf(x) = f(x)⊕ f(x⊕ a)⊕ f(x⊕ b)⊕ f(x⊕ a⊕ b)

vanish for any a,b ∈ V .
*University of Primorska, FAMNIT & IAM, Koper, Slovenia, e-mail: amar.bapic@famnit.upr.si
�University of Primorska, FAMNIT & IAM, Koper, Slovenia, e-mail: enes.pasalic6@gmail.com
�State Key Laboratory of Integrated Services Networks, Xidian University, Xian, 710071, P.R. China, and Mine Digitization Engi-

neering Research Center of Ministry of Education, CUMT, Xuzhou, Jiangsu 221116, China, email:zhfl203@cumt.edu.cn

1



2.1 Bent functions in C and D
The Maiorana-McFarland class M is the set of n-variable (n = 2m) Boolean functions of the form

f(x,y) = x · π(y)⊕ g(y), for all x,y ∈ Fm2 ,

where π is a permutation on Fm2 , and g is an arbitrary Boolean function on Fm2 . From this class, Carlet [1] derived
the C class of bent functions that contains all functions of the form

f(x,y) = x · π(y)⊕ 1L⊥(x), (2)

where L is any linear subspace of Fm2 , 1L⊥ is the indicator function of the space L⊥ = {x ∈ Fm2 : x ·y = 0, ∀y ∈ L},
and π is any permutation on Fm2 such that:

(C) φ(a⊕ L) is a flat (affine subspace), for all a ∈ Fm2 , where φ := π−1.

The permutation φ and the subspace L are then said to satisfy the (C) property, or for short (φ,L) has property
(C).

Another class introduced by Carlet [1], called D, is defined similarly as

f(x,y) = x · π(y)⊕ 1E1
(x)1E2

(y) (3)

where π is a permutation on Fm2 and E1, E2 two linear subspaces of Fm2 such that π(E2) = E⊥1 . Quite recently, a
set of sufficient conditions for bent functions in C and D to lie outside the completed M class was derived in [7].
For convenience of the reader, we specify the main results related to the set of conditions for C class which uses a
hard assumption related to the (C) property.

Theorem 2. [7] Let n = 2m ≥ 8 be an even integer and let f(x,y) = π(y) · x ⊕ 1L⊥(x), where L is any linear
subspace of Fm2 and π is a permutation on Fm2 such that (π−1, L) has property (C). If (π−1, L) satisfies:

(C1) dim(L) ≥ 2;

(C2) u · π has no nonzero linear structure for all u ∈ Fm∗2 ,

then f is a bent function in C outside M#.

Similar conditions concerning class D were deduced in [7]:

Theorem 3. [7] Let n = 2m ≥ 8 be an even integer and let f(x,y) = π(y) · x ⊕ 1E1
(x)1E2

(y), where π is a
permutation on Fm2 , and E1, E2 are two linear subspaces of Fn2 such that π(E2) = E⊥1 . If (π,E1, E2) satisfies:

(D1) dim(E1) ≥ 2 and dim(E2) ≥ 2;

(D2) u · π has no nonzero linear structure for all u ∈ Fm∗2 ;

(D3) deg(π) ≤ m− dim(E2),

then f is a bent function in D outside M#.

3 Modifying bent functions in M on suitable sets

We first show that the addition of 1E1
(x)1E2

(y) + δ0(x) is not suitable for generating bent functions, where δ0
denotes the Dirac symbol. That is, δ0(x) equals 1 if x = 0, and 0 otherwise.

Theorem 4. Let π be a permutation on F2m and let E1, E2 ⊂ F2m be two linear subspaces of F2m such that
π(E2) = E⊥1 . Then the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xπ(y)) + 1E1
(x)1E2

(y) + δ0(x)

is not bent.

Proof. Let us consider Wf (0, 0).

Wf (0, 0) =
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) +

∑
y∈F2m

(−1)1E2
(y)+1

=
∑
x∈F∗

2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) −

∑
y∈F2m

(−1)1E2
(y)

=
∑
x∈F2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) − 2

∑
y∈F2m

(−1)1E2
(y)

= Wg(0, 0)− 2 · (2m − |E2|)
Since g(x, y) = Trm1 (xπ(y)) + 1E1

(x)1E2
(y) is a bent function in D, we have that either Wg(0, 0) = 2m or −2m. It

is straightforward to show that in both cases Wf (0, 0) 6= ±2m, thus f is not bent.

Remark 1. In the extended version of this abstract, we will also show that the addition of 1L⊥(x)+1E1
(x)1E2

(y)+
δ0(x) is not suitable for generating new bent functions. Thus, when “combining” the classes C,D and D0, only the
superclasses SC (C and D0) and CD (C and D) give bent functions.
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3.1 Bentness of Boolean functions in the class CD
In this section, we consider the mixture of indicators stemming from C and D. Let g : F2m × F2m → F2 , defined
by g(x, y) = Trm1 (xπ(y)) ∈ M, be a bent Boolean function, where π is a permutation on F2m . Let L ⊂ F2m be a
linear subspace of F2m such that (π−1, L) satisfies the (C) property, and let E1, E2 6= {0} be two linear subspaces
of F2m such that π(E2) = E⊥1 . We consider the bentness of Boolean functions f in 2m variables defined by

f(x, y) = g(x, y) + 1L⊥(x) + 1E1
(x)1E2

(y), x, y ∈ F2m .

Then, the primary task is to find conditions which ensure that the function f is bent. Let us consider the
Walsh coefficient Wf (a, b) for arbitrary but fixed (a, b) ∈ F2m × F2m . Furthermore, we denote with C(x, y) :=
Trm1 (xπ(y)) + 1L⊥(x) and M(a, b) = C(x, y) + Trm1 (ax+ by).

Wf (a, b) =
∑

x,y∈F2m

(−1)M(a,b)+1E1
(x)1E2

(y) =
∑
x∈E1

∑
y∈F2m

(−1)M(a,b)+1E2
(y) +

∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y/∈E2

(−1)M(a,b) +
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −2
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y∈F2m

(−1)M(a,b) +
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

=
∑

x,y∈F2m

(−1)M(a,b) − 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b)

= WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b) = WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (xπ(y))+1

L⊥ (x)+Trm1 (ax+by)

Since E⊥1 = π(E2), we have that Trm1 (xπ(y)) = 0 for (x, y) ∈ E1 × E2. It follows now that

Wf (a, b) = WC(a, b)− 2 ·

∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) − 2

∑
x∈E1∩L⊥

∑
y∈E2

(−1)Tr(ax+by)

 . (4)

Furthermore, if we denote K = E1 ∩ L⊥, it is easy to see that∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2ε1+ε2 , (a, b) ∈ E⊥1 × E⊥2

0, otherwise
(5)

∑
x∈K

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2κ+ε2 , (a, b) ∈ K⊥ × E⊥2

0, otherwise
, (6)

where εi = dim(Ei) and κ = dim(K). Since K ⊂ E1, it follows that E⊥1 ⊂ K⊥, and as such, E⊥1 ×E⊥2 ⊂ K⊥×E⊥2 .
Obviously, when (a, b) /∈ K⊥ × E⊥2 , we have that Wf (a, b) = WC(a, b). Let us now consider the following cases:

Case 1: Suppose that (a, b) ∈ E⊥1 × E⊥2 . Since we wish that f is a bent function, we have the following sit-
uations:

(I) If Wf (a, b) = WC(a, b), then

WC(a, b) = WC(a, b)− 2ε1+ε2+1 + 2κ+ε2+2 ⇔ 2ε1+ε2+1 = 2κ+ε2+2 ⇔ κ = ε1 − 1.

(II) If Wf (a, b) = −WC(a, b), then −2WC(a, b) = −2m+1 + 2κ+ε2+2. Since WC(a, b) = ±2m, we have

−2m+1 = −2m+1 + 2κ+ε2+2 or 2m+1 = −2m+1 + 2κ+ε2+2.

The first case is not possible since a power of two is strictly larger than zero, and the second one leads to
κ = ε1.

Case 2: Suppose that (a, b) ∈ (K⊥ \ E⊥1 ) × E⊥2 . Since we wish that f is a bent function, we have the following
situations:

(I) If Wf (a, b) = WC(a, b), then

WC(a, b) = WC(a, b) + 2κ+ε2+2 ⇔ 2κ+ε2+2 = 0,

which is not possible.
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(II) If Wf (a, b) = −WC(a, b), then −2WC(a, b) = 2κ+ε2+2. Since the right-hand side of the equality is positive, so
must be the left-hand side. Thus, we must have that WC(a, b) = −2m and in this case κ = ε− 1.

From Case 1 and 2, we obtain bent Walsh coefficients for κ = ε1 and κ = ε1−1. Based on these observations, we
give the following results. We note that Theorem 5 corresponds to the case κ = ε1− 1 and Theorem 6 corresponds
to the case κ = ε1.

Theorem 5. Let π be a permutation on F2m , L ⊂ F2m be a linear subspace of F2m such that (π−1, L) satisfies the
(C) property, and let E1, E2 6= {0} be two linear subspaces of F2m such that π(E2) = E⊥1 and dim(E1 ∩ L⊥) =
dim(E1)− 1. Then the function f : F2m × F2m → F2 defined by

f(x, y) = C(x, y) + 1E1
(x)1E2

(y),

where C(x, y) = Trm1 (xπ(y)) + 1L⊥(x), is bent. Moreover, it holds that

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ ((E1 ∩ L)⊥ \ E⊥1 )× E⊥2
WC(a, b), otherwise.

.

Proof. Suppose that (a, b) /∈ (E1 ∩ L)⊥ × E⊥2 . From (4) and (5)-(6), it is easy to see that Wf (a, b) = WC(a, b).
Suppose that (a, b) ∈ E⊥1 × E⊥2 . From (4) and (5)-(6), it follows that

Wf (a, b) = WC(a, b)− 2 · (2ε1+ε2 − 2 · 2ε1−1+ε2) = WC(a, b).

Lastly, if (a, b) ∈ ((E1 ∩ L)⊥ \ E⊥1 )× E⊥2 , the sum (5) is equal to zero, and thus from (4) and (6) it follows that

Wf (a, b) = WC(a, b)− 2 · 2ε1+ε2 = WC(a, b)− 2m+1.

Using Parseval’s equation, it is straightforward to show that WC(a, b) = 2m for all (a, b) ∈ (E1 ∩L)⊥ ×E⊥2 . Thus,

Wf (a, b) = 2m − 2m+1 = −2m = −WC(a, b).

In other words, the function f is bent.

Theorem 6. Let π be a permutation on F2m , E1, E2 6= {0} be two linear subspaces of F2m such that π(E2) = E⊥1
and (π−1, E⊥1 ) satisfies the (C) property. Then the function f : F2m × F2m → F2 defined by

f(x, y) = C(x, y) + 1E1(x)1E2(y)),

where C(x, y) = Trm1 (xπ(y) + 1E1
(x), is bent. Moreover, it holds that

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ E⊥1 × E⊥2
WC(a, b), otherwise.

Proof. We note that (4) becomes

Wf (a, b) = WC(a, b) + 2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
WC(a, b) + 2m+1, (a, b) ∈ E⊥1 × E⊥2

WC(a, b), otherwise,
.

Using Parseval’s equation, it is straightforward to show that WC(a, b) = −2m for all (a, b) ∈ E⊥1 × E⊥2 . Thus,

Wf (a, b) = −2m + 2m+1 = 2m = −WC(a, b).

In other words, the function f is bent.

Definition 1. Let π be a permutation on F2m , L ⊂ F2m be a linear subspace of F2m such that (π−1, L) satisfies
the (C) property, and let E1, E2 6= {0} be two linear subspaces of F2m such that π(E2) = E⊥1 . If dim(E1 ∩ L⊥) ∈
{dim(E1),dim(E1)− 1}, then the class of bent functions f : F2m × F2m → F2 containing all functions of the form

f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a11E1(x)1E2(y), ai ∈ F2, (7)

is called CD and is a superclass of C and D.

Remark 2. Let us consider the sum of the indicators 1L⊥(x) + 1E1
(x)1E2

(y) defined above. We note that

1L⊥(x) + 1E1(x)1E2(y) = 1

⇔(x, y) ∈ (L⊥ × F2m) \ (E1 × E2) ∨ (x, y) ∈ (E1 × E2) \ (L⊥ × F2m)

⇔(x, y) ∈ (L⊥ × F2m)4(E1 × E2) := S,

where ∆ denotes the symmetric difference. Moreover, the cardinality of S is equal to

|S| = 2m+λ + 2ε1+ε2 − 2ε2+1 · |L⊥ ∩ E1|, (8)

where dim(L⊥) = λ and dim(Ei) = εi, i = 1, 2. It is easy to verify that S is neither a linear nor an affine subspace
of F2n , rather a set of elements in F2n .
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4 Conditions for CD to be outside M#

In this section, we present sufficient conditions for functions in the CD class to be provably outside M#. Further-
more, we believe that these functions, for a0 = a1 = 1 in (1), are also outside C# and D# (apparently they are
outside C and D), because the support of the indicator function used in the definition is not a subspace, as required
by the definition of the C and D classes. A more rigorous treatment on this difficult task is left for the extended
version of this abstract. The following proposition is proved useful for our main result.

Proposition 1. Let V be a subspace of Fn2 . Then, we have

deg(DaDb(1V (x))) =

{
n− dim(V )− 2, if a,b ∈ V ⊥ \ {0n}
0, otherwise

.

Proof. We know that deg(1V (x)) = n− dim(V ). Further, if a /∈ V , then

Da(1V (x))) = 1V (x)⊕ 1V (x⊕ a) = 1V ∪(V+a)(x),

that is, deg(Da(1V (x))) = n− dim(V )− 1.
If a ∈ V , then

Da(1V (x))) = 1V (x)⊕ 1V (x⊕ a) = 0.

We are now able to prove that, under certain conditions, functions in CD are provably outside M#.

Theorem 7. Let π be a permutation on Fm2 , L ⊂ Fm2 be a linear subspace of Fm2 such that (π−1, L) satisfies the
(C) property, and let E1, E2 6= {0m} be two linear subspaces of Fm2 such that π(E2) = E⊥1 and dim(E1 ∩ L⊥) ∈
{dim(E1),dim(E1)− 1}. Let f : Fm2 × Fm2 → F2 be defined by

f(x,y) = x · π(y)⊕ 1L⊥(x)⊕ 1E1
(x)1E2

(y).

If (π−1, L) and (π,E1, E2) satisfy the properties (C1)−(C2) and (D1)−(D3), respectively, then f is a bent function
in CD outside M#.

Proof. From Theorem 6 and Definition 1, it follows that f is bent. From Theorem 1, it suffices to show that there
is no m-dimensional subspace V = V1 × V2 of Fm2 × Fm2 on which the second-order derivative DaDb(f) vanishes,
for some a,b ∈ V .

The second derivative of f with respect to a = (a1,a2) and b = (b1,b2), ai,bi ∈ Vi for i = 1, 2, can be written
as

DaDbf(x,y) = x · (Da2
Db2

π(y))⊕ a1 ·Db2
π(y ⊕ a2)

⊕b1 ·Da2
π(y ⊕ b2)⊕Da1

Db1
1L⊥(x)⊕DaDb1E1

(x)1E2
(y).

(9)

For any a ∈ Fn2 , we have a = a[1] ⊕ a[2], where a[1] ∈ E1 × E2,a
[2] ∈ (E1 × E2)⊥. Thus, we have

DaDb1E1(x)1E2(y) = Da[2]Db[2]1E1(x)1E2(y). (10)

If |{a[2] : (a[1] ⊕ a[2]) ∈ V }| > 2, then we select two nonzero vectors a,b ∈ V such that a[2],b[2] ∈ (E1 ×E2)⊥ \
{0m}. From Proposition 1 and (10), we have that

deg (DaDb1E1
(x)1E2

(y)) = m− 2.

Since the properties (D1) and (D3) are satisfied, we have that deg (DaDb(π(y) · x)) < m−2 and deg (Da1Db11L⊥(x)) ≤
dim(L)− 2 < m− 2. From (9), it follows that

DaDbf(x,y) 6= 0.

If |{a[2] : (a[1] ⊕ a[2]) ∈ V }| ≤ 2, then |V ∩ (E1 × E2)| ≥ 2m−1 (since |V | = 2m). From property (D1) and
π(E2) = E⊥1 , we have

|V ∩ (E1 × E2)| ≥ 2m−1 > |E1| and |V ∩ (E1 × E2)| ≥ 2m−1 > |E2|.

Moreover, we have that
|V ∩ (E1 × 0m)| ≥ 2 and |V ∩ (0m × E2)| ≥ 2.

W.l.o.g., if we assume |V ∩(E1×0m)| < 2, then |V ∩(E1×E2)| < |E2|, which is in contradiction with |V ∩(E1×E2)| ≥
2m−1 > |E2|. Hence, we can select two nonzero vectors a,b ∈ V ∩ (E1 ×E2) such that a = (a1,0m),b = (0m,b2).
Combining Proposition 1, (9) and property (D2), we have

DaDbf(x,y) = a1 ·Db2π(y) 6= 0.
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As an immediate consequence of the previous result, we present the following explicit family of bent functions
in CD outside M#. We will define it using a finite field notation.

Proposition 2. Let n = 2m, m even, and s be a positive divisor of m such that m/s is odd. Let π(y) = yd be a
permutation on F2m such that d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let L = 〈1, α, . . . , αs−1〉, where α is a

primitive element of F2s , E2 = 〈α 2s−1
3 , α

2(2s−1)
3 〉 and E1 = E⊥2 . Then the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xyd) + 1L⊥(x) + 1E1
(x)1E2

(y), x, y ∈ F2m

is a bent function in CD outside M#.

Proof. From [7, Theorem 9] we know that (π−1, L) satisfies the (C) property. Since m is even and m/s is odd,
we must have that s is even. Thus, 22 − 1 = 3|2s − 1 and furthermore E2 is not only a vector space but also

corresponds to a subfield {0, 1, α 2s−1
3 , α

2(2s−1)
3 } of F2s . Since π is a monomial permutation, it must map every

subfield to itself, thus π(E2) = E2 = E⊥1 . Since wt(d) ≥ 3, from [7, Proposition 5], we have that Tr(uπ(y)) admits
no linear structures, for any u ∈ F∗2m . Since dim(E2) = 2, we have that dim(E1) = m − 2. Hence, the conditions
(C1)− (C2) and (D1)− (D3) of Theorems 2 and 3, respectively, are satisfied. From Theorem 7, it follows that f
is a bent function in CD outside M#.

Example 1. Let m = 6, s = 2 and d = 38. One can easily verify that d(2s + 1) ≡ 1 (mod 2m− 1). With respect to
the notation in Proposition 2, we have that for E2 = F22 and E1 = E⊥2 the function f : F26 × F26 → F2 defined by

f(x, y) = Tr61(xy38) + 1E1
(x)(1 + 1E2

(y)), x, y ∈ F216

is a bent function in 12 variables lying in CD outside M#.

Remark 3. Especially, for m = 6, we inspected all possible choices for L,E1 and E2 such that either dim(L) =
dim(E2) = 2 or 3, (π−1, L) satisfies the (C) property and π(E2) = E⊥1 , where π(y) = y38 is a fixed permutation on
F26 . Using Sage we were able to construct 500 functions f ∈ CD of the form (1) for the fixed permutation π given
above. Furthermore, all of them are outside M#. The question whether (some of) these functions induce distinct
EA-equivalent classes is left open.

We now provide one more example of bent functions in CD outside M#, for larger n. We leave the discussion
about their generalization for the extended version of this abstract.

Example 2. Let m = 9 and d = 284. We note that d(23+1) mod (29−1) = 1, wt(d) = 4 and d mod (23−1) = 4.
Let L = 〈1, α, α2〉 and E2 = 〈α, α2〉, where α is a primitive element of F23 such that α3 + α + 1 = 0. From [7,
Theorem 9] we know that (π−1, L) satisfies the (C) property. We further observe that E2 is a 2-dimensional
subspace of F26 . Let us show that π(E2) = E2. From α3 = α + 1 we have that α4 = α + α2. Because α is an
element in the small field F23 , we consider its exponent modulo 23 − 1. Thus, we have that:

0d = 0

αd = α4 = α+ α2

(α2)d = (α2)4 = α8 = α

(α+ α2)d = (α4)d = α16 = (α8)2 = α2

In other words, π(E2) = E2 = E⊥1 . Since wt(d) ≥ 3, from [7, Proposition 5], we have that Tr(uπ) does not admit
linear structures, for any u ∈ F∗2m . Since dim(E2) = 2, we have that dim(E1) = m − 2. Hence the conditions
(C1)− (C2) and (D1)− (D3) of Theorems 2 and 3, respectively, are satisfied. From Theorem 7 it follows that the
function f : F29 × F29 → F2 defined by

f(x, y) = Tr91(xyd) + 1S(x, y), x, y ∈ F29 ,

is a bent function in CD outside M#, where 1S(x, y) = 1 if and only if (x, y) ∈ S and S = (L⊥×F2m)4(E1×E2)
(see Remark 2), and equals 0 otherwise. From (8) we see that 1S modifies the truth table of g(x, y) at 29+6 = 215

positions. Furthermore, S is neither a linear nor an affine subspace.

4.1 Exclusion from the PS+ class

In [2] it has been shown that if a Boolean function f in 2m variables is in the completed PS+ class, then it is
weakly normal. In other words, if a function is weakly nonnormal it lies outside the completed PS+ class. In
this section we discuss the weakly normality of the functions in CD and propose an interesting research problem
regarding them.

Remark 4. Depending on the choice of L,E1 and E2, the functions in CD are weakly normal in the majority of
cases when π(E2) = E2 = E⊥1 .
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If dim(E1 ∩ L⊥) ∈ {dim(E1),dim(E1)− 1}, we can have four possible situations E1 = L⊥, L⊥ ⊂ E1, E1 ⊂ L⊥

and dim(E1) = dim(L⊥) ∧ dim(E1 ∩ L⊥) = dim(E1)− 1. We will consider these cases depending if π(E2) = E2 or
π(E2) 6= E2.

1. Suppose that π(E2) = E2 = E⊥1 .

(a) L⊥ = E1. If we consider an m-dimensional subspace E1×E2 of F2m ×F2m , we have that 1 +1E2
(y) = 0

for all y ∈ E2. Thus, 1E1
(x)(1 + 1E2

(y)) is always equal to 0. On the other hand, because of the choice
of E1 and E2, we have that Trm1 (xπ(y)) = 0 because x ∈ E1 and π(E2) = E⊥1 . Thus, f |E1×E2

≡ 0.

(b) L⊥ ⊂ E1. If we take α ∈ F2m \ E1, we have that 1L⊥(x) = 1E1
(x) = 0 for all x ∈ α + E1. Thus,

1L⊥(x) + 1E1
(x)1E2

(y) vanishes on the m-dimensional flat (α + E1) × E2. Furthermore, for (x, y) ∈
(α+ E1)× E2 (w.l.o.g. say x = α+ e1) we have:

Trm1 (xπ(y)) = Trm1 ((α+ e1)π(y)) = Trm1 (απ(y)) + Trm1 (e1π(y))︸ ︷︷ ︸
=0 (same explanation as in 1.)

= Trm1 (απ(y))

Since π(E2) = E2 we have that {Trm1 (απ(y)) : y ∈ E2} = {Trm1 (αy) : y ∈ E2}, which is obviously the
truth table of an affine function. Thus, f |(α+E1)×E2

is affine.

(c) E1 ⊂ L⊥. If we take λ ∈ L⊥ \ E1, we have that 1L⊥(x) = 1 and 1E1
(x) = 0 for all x ∈ λ + E1. Thus,

1L⊥(x) + 1E1(x)1E2(y) = 1 on the m-dimensional flat (λ+E1)×E2. Similarly as in 2., Trm1 (xπ(y)) is
affine on this flat. Thus, f |(λ+E1)×E2

is affine.

(d) dim(E1) = dim(L⊥) = m − µ, dim(E1 ∩ L⊥) = m − µ − 1. Let U = E1 + L⊥ be the direct sum of E1

and L⊥. It holds that dim(U) = dim(E1) + dim(L⊥)− dim(E1 ∩L⊥) = m− µ+ 1. On the other hand,
dim(E2) = µ.

i. If µ = 2 (all of the known constructions of functions in D outside M# have dim(E2) = 2), then
dim(U) = m − 1. Let α ∈ F2m \ U . If we consider the flat A = (α + U) × {0, β}, where β ∈ E2,
we have that 1L⊥(x) + 1E1(x)1E2(y) = 0 and Trm1 (xπ(y)) is affine for all (x, y) ∈ A. Thus, f |A is
affine.

ii. Suppose µ > 2. Again, we have that dim(U) = m− µ+ 1 and dim(E2) = µ. Let W be any (µ− 1)-
dimensional subspace of E2. Then, 1L⊥(x)+1E1

(x)1E2
(y) vanishes on A = (α, 0)+(U ×W ), where

α /∈ U . Let us consider the function Trm1 (xπ(y)). If x ∈ α + U , then w.l.o.g. x = α + xu for some
xu ∈ U . We have that:

Trm1 ((α+ xu)π(y))) = Trm1 (απ(y)) + Trm1 (xuπ(y)).

We note that if xu ∈ U \ E1, then Trm1 (xuπ(y)) is not necessarily an affine function and thus we
cannot be certain if f is affine on A.

To summarize, we have that f is weakly normal for the situations (a)-(d-i). In the case (d-ii), the question
whether f is weakly normal remains open.

The case when π(E2) 6= E2, that is, the permutation π is not affine on E2 seems to be more difficult to analyze
(due to the lack of assumption that f is affine on E2) which leads to the following open problem.

Open problem: With the same notation as in Definition 1, suppose that either π(E2) 6= E2 or π(E2) = E2

with dim(E1) = dim(L⊥) = m− µ, µ > 2. Is the function f defined by (1) weakly normal ?

With the same notation as in Example 2, Table 1 illustrates the bentness and algebraic degree of the Boolean
function f : F29 × F29 → F2 defined as

f(x, y) = Tr91(xyd) + a01L⊥(x) + a11E1
(x)1E2

(y) + a2δ0(x), (11)

for all possible values a0, a1, a2 ∈ F2 .

Concluding remarks

We have introduced a new superclass of bent functions obtained from C and D which is shown to be provably
outside M# under certain conditions (see Theorem 7). Furthermore, we strongly believe that these functions are
also outside C# and D#, because the modification of a bent function in the Maiorana-McFarland class is performed
on a set rather than on a linear/affine subspace. We have provided an explicit class of bent functions in CD outside
M# (see Proposition 2) and two examples which can (possibly) be generalized. The question whether these bent
functions can be simultaneously outside the completed M and PS+ classes is partially addressed. Construction
methods of vectorial bent functions, based on this CD class, whose components (possibly not all) are outside M#

are also of interest.
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(a0, a1, a2) ∈ F3
2 Algebraic degree Bent Class

(0, 0, 0) 5 yes M
(0, 0, 1) 9 yes D0 \M#

(0, 1, 0) 9 yes D \M#

(0, 1, 1) 9 no -
(1, 0, 0) 5 yes C \M#

(1, 0, 1) 9 yes SC \M#

(1, 1, 0) 9 yes CD \M#

(1, 1, 1) 9 no -

Table 1: Class inclusion of the Boolean function f defined by (11)
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