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Abstract

We defined recently [3] a new (output) multiplicative differential, and the corresponding
c-differential uniformity, which is first characterized via a convolution of Walsh transforms.
With this new differential concept, even for characteristic 2, there are perfect c-nonlinear
(PcN) functions. We looked at some of the known classes of perfect nonlinear (PN) functions
and show that only one remains a PcN function, under a different condition on the param-
eters. Surprisingly, the p-ary Gold PN function increases its c-differential uniformity signif-
icantly, under some conditions on the parameters. We then characterize the c-differential
uniformity of the inverse function (in any dimension and characteristic).

Let F2n be the finite field with 2n elements. We call a function from F2n to F2 a Boolean
function on n variables and denote the set of all such functions by Bn. For a Boolean function
f : F2n → F2 we define the Walsh-Hadamard transform to be the integer valued function

Wf (u) =
∑

x∈F2n

(−1)f(x)+Trn1 (ux),

where Trn1 : F2n → F2 is the absolute trace function, Trn1 (x) =
∑n−1

i=0 x
2i .

An (n,m)-function (often called a vectorial Boolean function if there is no need to explicitly
specify the dimensions n and m) is a map F : Fn

2 → Fm
2 . When m = n, it can be represented as

a univariate polynomial over F2n (using the natural identification of the finite field F2n with the
vector space Fn

2 ) of the form F (x) =
∑2n−1

i=0 aix
i, ai ∈ F2n . The algebraic degree of the function

is then the largest Hamming weight of an exponent i, with ai 6= 0. For an (n,m)-function F ,
we define the Walsh transform WF (a, b) to be the Walsh-Hadamard transform of its component
function Trm1 (bF (x)) at a, that is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = |{x ∈ F2n : F (x+a)+F (x) = b}|.
We call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential uniformity of F .
If ∆F = δ, then we say that F is differentially δ-uniform. If δ = 2, then F is an almost perfect
nonlinear (APN) function.

At the Fast Software Encryption (FSE 2002) conference, N. Borisov, M. Chew, R. Johnson,
D. Wagner used a new type of differential that is quite useful for the cryptanalysis of ciphers
that utilize modular multiplication as a primitive operation. It is an extension of a type of
differential cryptanalysis and it was used to cryptanalyse some existing ciphers (like a variant
of the well-known IDEA cipher).



Inspired by the previously mentioned successful attempt, we started a theoretical analysis
of an (output) multiplicative differential. Given a p-ary (n,m)-function F : Fpn → Fpm , and
c ∈ Fpm , the (multiplicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn .

(Note that, if c = 1, then we obtain the usual derivative, and, if c = 0 or a = 0, then we obtain
a shift of the function.) For an (n, n)-function F , and a, b ∈ Fpn , we let c∆F (a, b) = #{x ∈ Fpn :
F (x+ a)− cF (x) = b}. We call the quantity

c∆F = max {c∆F (a, b) : a, b ∈ Fpn , and a 6= 0 if c = 1}

(surely, including a = 0 for the case c 6= 1, the equation F (x) − cF (x) = b is of course,
F (x) = b(1 − c)−1, so we are looking here at how close F is to a permutation polynomial, and
similarly in the case c = 0 for any a) the c-differential uniformity of F . If c∆F = δ, then we
say that F is differentially (c, δ)-uniform. If δ = 1, then F is called a perfect c-nonlinear (PcN)
function (certainly, for c = 1, they only exist for odd characteristic p; however, one wonders
whether they can exist for p = 2 for c 6= 1, and we shall argue later that that is actually true). If
δ = 2, then F is called an almost perfect c-nonlinear (APcN) function. It is easy to see that if F
is an (n, n)-function, that is, F : Fpn → Fpn , then F is PcN if and only if cDaF is a permutation
polynomial.

In the work [3] we first characterized the c-differential uniformity of a function via a gener-
alized convolution of Walsh transforms. As particular examples, we show that if m,n are fixed
positive integers and c ∈ Fpm , c 6= 1, F is an (n,m)-function, then∑

u∈Fpn

v∈Fpm

|WF (u, v)|2|WF (u, cv)|2 ≥ p3n+m,

with equality if and only if F is a perfect c-nonlinear (PcN) function; Furthermore, we have∑
u1,u2∈Fpn

v1,v2∈Fpm

WF (u1 + u2, v1 + v2)WF (u1 + u2, c(v1 + v2))

· WF (u1, v1)WF (u2, v2)WF (u1, cv1)WF (u2, cv2)

≥ 3 · pm+n
∑

u∈Fpn

v∈Fpm

|WF (u, v)|2|WF (u, cv)|2 − 2 · p2(2n+m),

with equality if and only if F is an almost perfect c-nonlinear (APcN).
We then proceeded to investigate some of the known perfect nonlinear functions. We there-

fore show the following major theorem [3].

Theorem 1 Let F : Fpn → Fpn be the monomial F (x) = xd, and c 6= 1 be fixed. The following
statements hold:

(i) If d = 2, then F is APcN, for all c 6= 1.

(ii) If d = pk + 1, p > 2, then F is not PcN, for all c 6= 1. Moreover, when (1 − c)pk−1 = 1
and n/gcd (n, k) is even, the c-differential uniformity c∆F ≥ pg + 1, where g = gcd(n, k).

(iii) Let p = 3. If d =
3k + 1

2
, then F is PcN, for c = −1 if and only if

n

gcd(n, k)
is odd.

(iv) If p = 3 and F (x) = x10 − ux6 − u2x2, the c-differential uniformity of F is c∆F ≥ 2.

We then looked at the inverse function, which is APN for n odd and has differential uniformity
4 for n even and show the next two theorems [3].



Theorem 2 Let n be a positive integer, 1 6= c ∈ F2n and F : F2n → F2n be the inverse function
defined by F (x) = x2

n−2. We have:

(i) If c = 0, then F is PcN (that is, F is a permutation polynomial).

(ii) If c 6= 0 and Trn(c) = Trn(1/c) = 1, the c-differential uniformity of F is 2 (and hence F
is APcN).

(iii) If c 6= 0 and Trn(1/c) = 0, or Trn(c) = 0, the c-differential uniformity of F is 3.

Theorem 3 Let p be an odd prime, n ≥ 1 be a positive integer, 1 6= c ∈ Fpn and F : Fpn → Fpn

be the inverse p-ary function defined by F (x) = xp
n−2. We have:

(i) If c = 0, then F is PcN (that is, F is a permutation polynomial).

(ii) If c 6= 0, 4, 4−1, (c2 − 4c) ∈ (Fpn)2, or (1− 4c) ∈ (Fpn)2, the c-differential uniformity of F
is 3.

(iii) If c = 4, 4−1, the c-differential uniformity of F is 2 (and hence F is APcN).

(iv) If c 6= 0, (c2 − 4c) /∈ (Fpn)2 and (1 − 4c) /∈ (Fpn)2, the c-differential uniformity of F is 2
(and hence F is APcN).

The computational data on c-differential uniformity presented in [3] on the Gold and Kasami
cases prompted more investigation and a first step was taken in [5] with a complete description
of the Gold case, as well as an investigation of some of the APN entries from the Helleseth-
Rong-Sandberg table [4].

It would be quite interesting to continue with some of the other entries in the table [4],
Dobbertin et al. [2] further examples, or even newer PN or APN classes of functions, through
the prism of the newly defined c-differentials concept we introduced in [3].
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