C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity

Pål Ellingsen^{*}, Patrick Felke^{**}, Constanza Riera^{*}, Pantelimon Stănică^{***}, and Anton Tkachenko^{*}

^{*}Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway

^{**}University of Applied Sciences Emden-Leer, Constantiaplatz 4, 26723 Emden, Germany

*** Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943–5216

Abstract

We defined recently [3] a new (output) multiplicative differential, and the corresponding c-differential uniformity, which is first characterized via a convolution of Walsh transforms. With this new differential concept, even for characteristic 2, there are perfect c-nonlinear (PcN) functions. We looked at some of the known classes of perfect nonlinear (PN) functions and show that only one remains a PcN function, under a different condition on the parameters. Surprisingly, the p-ary Gold PN function increases its c-differential uniformity significantly, under some conditions on the parameters. We then characterize the c-differential uniformity of the inverse function (in any dimension and characteristic).

Let \mathbb{F}_{2^n} be the finite field with 2^n elements. We call a function from \mathbb{F}_{2^n} to \mathbb{F}_2 a *Boolean* function on n variables and denote the set of all such functions by \mathcal{B}_n . For a Boolean function $f: \mathbb{F}_{2^n} \to \mathbb{F}_2$ we define the *Walsh-Hadamard transform* to be the integer valued function

$$\mathcal{W}_f(u) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \operatorname{Tr}_1^n(ux)},$$

where $\operatorname{Tr}_1^n : \mathbb{F}_{2^n} \to \mathbb{F}_2$ is the absolute trace function, $\operatorname{Tr}_1^n(x) = \sum_{i=0}^{n-1} x^{2^i}$.

An (n, m)-function (often called a vectorial Boolean function if there is no need to explicitly specify the dimensions n and m) is a map $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$. When m = n, it can be represented as a univariate polynomial over \mathbb{F}_{2^n} (using the natural identification of the finite field \mathbb{F}_{2^n} with the vector space \mathbb{F}_2^n) of the form $F(x) = \sum_{i=0}^{2^n-1} a_i x^i$, $a_i \in \mathbb{F}_{2^n}$. The algebraic degree of the function is then the largest Hamming weight of an exponent i, with $a_i \neq 0$. For an (n, m)-function F, we define the Walsh transform $W_F(a, b)$ to be the Walsh-Hadamard transform of its component function $\operatorname{Tr}_1^m(bF(x))$ at a, that is,

$$W_F(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}_1^m(bF(x)) + \operatorname{Tr}_1^n(ax)}.$$

For an (n, n)-function F, and $a, b \in \mathbb{F}_{2^n}$, we let $\Delta_F(a, b) = |\{x \in \mathbb{F}_{2^n} : F(x+a) + F(x) = b\}|$. We call the quantity $\Delta_F = \max\{\Delta_F(a, b) : a, b \in \mathbb{F}_{2^n}, a \neq 0\}$ the differential uniformity of F. If $\Delta_F = \delta$, then we say that F is differentially δ -uniform. If $\delta = 2$, then F is an almost perfect nonlinear (APN) function.

At the Fast Software Encryption (FSE 2002) conference, N. Borisov, M. Chew, R. Johnson, D. Wagner used a new type of differential that is quite useful for the cryptanalysis of ciphers that utilize modular multiplication as a primitive operation. It is an extension of a type of differential cryptanalysis and it was used to cryptanalyse some existing ciphers (like a variant of the well-known IDEA cipher).

Inspired by the previously mentioned successful attempt, we started a theoretical analysis of an (output) multiplicative differential. Given a *p*-ary (n, m)-function $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^m}$, and $c \in \mathbb{F}_{p^m}$, the (multiplicative) *c*-derivative of *F* with respect to $a \in \mathbb{F}_{p^n}$ is the function

$$_{c}D_{a}F(x) = F(x+a) - cF(x)$$
, for all $x \in \mathbb{F}_{p^{n}}$.

(Note that, if c = 1, then we obtain the usual derivative, and, if c = 0 or a = 0, then we obtain a shift of the function.) For an (n, n)-function F, and $a, b \in \mathbb{F}_{p^n}$, we let ${}_{c}\Delta_{F}(a, b) = \#\{x \in \mathbb{F}_{p^n} : F(x + a) - cF(x) = b\}$. We call the quantity

$$_{c}\Delta_{F} = \max \{ _{c}\Delta_{F}(a,b) : a, b \in \mathbb{F}_{p^{n}}, \text{ and } a \neq 0 \text{ if } c = 1 \}$$

(surely, including a = 0 for the case $c \neq 1$, the equation F(x) - cF(x) = b is of course, $F(x) = b(1-c)^{-1}$, so we are looking here at how close F is to a permutation polynomial, and similarly in the case c = 0 for any a) the *c*-differential uniformity of F. If $_c\Delta_F = \delta$, then we say that F is differentially (c, δ) -uniform. If $\delta = 1$, then F is called a *perfect c-nonlinear* (*PcN*) function (certainly, for c = 1, they only exist for odd characteristic p; however, one wonders whether they can exist for p = 2 for $c \neq 1$, and we shall argue later that that is actually true). If $\delta = 2$, then F is called an *almost perfect c-nonlinear* (*APcN*) function. It is easy to see that if Fis an (n, n)-function, that is, $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$, then F is PcN if and only if $_cD_aF$ is a permutation polynomial.

In the work [3] we first characterized the c-differential uniformity of a function via a generalized convolution of Walsh transforms. As particular examples, we show that if m, n are fixed positive integers and $c \in \mathbb{F}_{p^m}$, $c \neq 1$, F is an (n, m)-function, then

$$\sum_{\substack{u \in \mathbb{F}_{p^n} \\ v \in \mathbb{F}_{n^m}}} |\mathcal{W}_F(u, v)|^2 |\mathcal{W}_F(u, cv)|^2 \ge p^{3n+m},$$

with equality if and only if F is a perfect *c*-nonlinear (PcN) function; Furthermore, we have

$$\sum_{\substack{u_1,u_2\in\mathbb{F}_{p^n}\\v_1,v_2\in\mathbb{F}_{p^m}}}\overline{\mathcal{W}_F}(u_1+u_2,v_1+v_2)\mathcal{W}_F(u_1+u_2,c(v_1+v_2))$$

$$\cdot\overline{\mathcal{W}_F}(u_1,v_1)\overline{\mathcal{W}_F}(u_2,v_2)\mathcal{W}_F(u_1,cv_1)\mathcal{W}_F(u_2,cv_2)$$

$$\geq 3\cdot p^{m+n}\sum_{\substack{u\in\mathbb{F}_{p^n}\\v\in\mathbb{F}_{p^m}}}|\mathcal{W}_F(u,v)|^2|\mathcal{W}_F(u,cv)|^2 - 2\cdot p^{2(2n+m)},$$

with equality if and only if F is an almost perfect c-nonlinear (APcN).

We then proceeded to investigate some of the known perfect nonlinear functions. We therefore show the following major theorem [3].

Theorem 1 Let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be the monomial $F(x) = x^d$, and $c \neq 1$ be fixed. The following statements hold:

- (i) If d = 2, then F is APcN, for all $c \neq 1$.
- (ii) If $d = p^k + 1$, p > 2, then F is not PcN, for all $c \neq 1$. Moreover, when $(1 c)^{p^k 1} = 1$ and $n/\gcd(n,k)$ is even, the c-differential uniformity $c\Delta_F \ge p^g + 1$, where $g = \gcd(n,k)$.

(iii) Let
$$p = 3$$
. If $d = \frac{3^k + 1}{2}$, then F is PcN, for $c = -1$ if and only if $\frac{n}{\gcd(n,k)}$ is odd.

(iv) If
$$p = 3$$
 and $F(x) = x^{10} - ux^6 - u^2x^2$, the c-differential uniformity of F is $c\Delta_F \ge 2$.

We then looked at the inverse function, which is APN for n odd and has differential uniformity 4 for n even and show the next two theorems [3].

Theorem 2 Let n be a positive integer, $1 \neq c \in \mathbb{F}_{2^n}$ and $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ be the inverse function defined by $F(x) = x^{2^n-2}$. We have:

- (i) If c = 0, then F is PcN (that is, F is a permutation polynomial).
- (ii) If $c \neq 0$ and $\operatorname{Tr}_n(c) = \operatorname{Tr}_n(1/c) = 1$, the c-differential uniformity of F is 2 (and hence F is APcN).
- (iii) If $c \neq 0$ and $\operatorname{Tr}_n(1/c) = 0$, or $\operatorname{Tr}_n(c) = 0$, the c-differential uniformity of F is 3.

Theorem 3 Let p be an odd prime, $n \ge 1$ be a positive integer, $1 \ne c \in \mathbb{F}_{p^n}$ and $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be the inverse p-ary function defined by $F(x) = x^{p^n-2}$. We have:

- (i) If c = 0, then F is PcN (that is, F is a permutation polynomial).
- (ii) If $c \neq 0, 4, 4^{-1}$, $(c^2 4c) \in (\mathbb{F}_{p^n})^2$, or $(1 4c) \in (\mathbb{F}_{p^n})^2$, the c-differential uniformity of F is 3.
- (iii) If $c = 4, 4^{-1}$, the c-differential uniformity of F is 2 (and hence F is APcN).
- (iv) If $c \neq 0$, $(c^2 4c) \notin (\mathbb{F}_{p^n})^2$ and $(1 4c) \notin (\mathbb{F}_{p^n})^2$, the c-differential uniformity of F is 2 (and hence F is APcN).

The computational data on c-differential uniformity presented in [3] on the Gold and Kasami cases prompted more investigation and a first step was taken in [5] with a complete description of the Gold case, as well as an investigation of some of the APN entries from the Helleseth-Rong-Sandberg table [4].

It would be quite interesting to continue with some of the other entries in the table [4], Dobbertin et al. [2] further examples, or even newer PN or APN classes of functions, through the prism of the newly defined *c*-differentials concept we introduced in [3].

References

- N. Borisov, M. Chew, R. Johnson, D. Wagner, *Multiplicative Differentials*, In: Daemen J., Rijmen V. (eds) Fast Software Encryption. FSE 2002. Lecture Notes in Computer Science, vol 2365. Springer, Berlin, Heidelberg, 2002.
- [2] H. Dobbertin, D. Mills, E. N. Muller, A. Pott, and W. Willems, APN functions in odd characteristic, Discr. Math. 267 (1-3) (2003), 95–112.
- [3] P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, *C*-differentials, multiplicative uniformity, and (almost) perfect c-nonlinearity, IEEE Trans. Inf. Theory, 2020.
- [4] T. Helleseth, C. Rong, D. Sandberg, New families of almost perfect nonlinear power mappings, IEEE Trans. Inf. Theory 45 (1999), 475–485.
- [5] C. Riera, P. Stănică, Investigations on c-(almost) perfect nonlinear functions, manuscript, 2020.