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Nonlinearity of Boolean functions

f : F3
2 → F2

f (x , y , z) = xy + yz + z

(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 1 0 0 0 1 1 1

z 0 1 0 1 0 1 0 1

x + y 0 0 1 1 1 1 0 0

x + y + z 1 0 0 1 0 1 1 0

The Hamming distance of f to the 16 affine Boolean functions

is either 2, 4, or 6. Therefore the nonlinearity of f is 2.
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Cryptography

Boolean functions with large nonlinearity are difficult to

approximate by linear functions and so provide resistance

against linear cryptanalysis.
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Cryptography

Boolean functions with large nonlinearity are difficult to

approximate by linear functions and so provide resistance

against linear cryptanalysis.

Main question
What is the largest nonlinearity of a Boolean function on Fn

2?

A related question
What is the largest nonlinearity of a

balanced Boolean function on Fn
2?
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Coding theory

The covering radius of a code C ⊆ FN
2 is the smallest

number r , such that the spheres of radius r centred at the

points of C cover the whole space FN
2 .

Main question (restated)

What is the covering radius of the

first order Reed-Muller code R(1, n)?
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Fourier transforms
The Fourier transform of f : Fn

2 → F2:

f̂ (a) =
1

2n/2

∑
y∈Fn

2

(−1)f (y) (−1)〈a,y〉.

The nonlinearity of f equals 2n−1 − µ(f ) 2n/2−1, where

µ(f ) = max
a∈Fn

2

|f̂ (a)|

is the spectral radius of f .

Main question (restated)

What is the smallest spectral radius µ(n) of a

Boolean function on Fn
2?
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Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions. They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.

6



Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions.

They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.

6



Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions. They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.

6



Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions. They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.

6



Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions. They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.

6



Parseval’s identity
Parseval’s identity is ∑

a∈Fn
2

f̂ (a)2 = 2n,

so that the spectral radius of a Boolean function is at least 1

and the covering radius of R(1, n) is at most 2n−1 − 2n/2−1.

The extremal functions are called bent functions. They exist

precisely when n is even.

This answers the main question for even n:

The smallest spectral radius is 1.

The largest nonlinearity is 2n−1 − 2n/2−1.

The covering radius of R(1, n) equals 2n−1 − 2n/2−1.
6



What happens for odd n?
√

2 = µ(1) ≥ µ(3) ≥ µ(5) ≥ . . .

(Helleseth-Kløve-Mykkeltveit 1978)

µ(3) =
√

2 (easy to check)

µ(5) =
√

2 (Berlekamp-Welch 1972)

µ(7) =
√

2 (Mykkeltveit 1980), (Hou 1996)

Whether µ(2m+1) =
√

2 in general remains an open question.

— Helleseth, Kløve & Mykkeltveit 1978

µ(n) ≤ 7
8

√
2 = 1.23 . . . for all n ≥ 9 (Kavut-Yücel 2010)

µ(n) ≤ 27
32

√
2 = 1.19 . . . for all n ≥ 15

(Patterson-Wiedemann 1983)
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µ(n) ≤ 27
32

√
2 = 1.19 . . . for all n ≥ 15

(Patterson-Wiedemann 1983)

7



What happens for odd n?
√

2 = µ(1) ≥ µ(3) ≥ µ(5) ≥ . . .

(Helleseth-Kløve-Mykkeltveit 1978)

µ(3) =
√

2 (easy to check)

µ(5) =
√

2 (Berlekamp-Welch 1972)

µ(7) =
√

2 (Mykkeltveit 1980), (Hou 1996)

Whether µ(2m+1) =
√

2 in general remains an open question.

— Helleseth, Kløve & Mykkeltveit 1978

µ(n) ≤ 7
8

√
2 = 1.23 . . . for all n ≥ 9 (Kavut-Yücel 2010)
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What did Patterson-Wiedemann do?

For a subgroup H ≤ GLn(F2) consider H-invariant functions:

f (hx) = f (x) for all x ∈ Fn
2 and all h ∈ H .

The Fourier transform of f is also H-invariant.

Functions F24 → F2 that are H-invariant for H = {1, θ5, θ10}:

θ1 θ2 θ3 θ4 θ6 θ7 θ8 θ9 θ11 θ12 θ13 θ140 θ0 θ5 θ10θ1 θ6 θ11θ2 θ7 θ12θ3 θ8 θ13θ4 θ9 θ14

Functions F24 → F2 that are H-invariant for H = Gal(F24/F2):

0 θ0 θ3 θ5 θ6 θ7 θ9 θ10 θ11 θ12 θ13 θ140 θ0 θ1 θ2 θ4 θ8θ3 θ6 θ9 θ12θ5 θ10θ7 θ11 θ13 θ14
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The case n = 15

2n−1 − 2(n−1)/2 = 16 256 b2n−1 − 2n/2−1c = 16 293

GL15(F2) has a subgroup

H ∼= F∗23 × F∗25 × Gal(F215/F2)

of order 7 · 31 · 15 = 3255.

This group partitions F15
2 into 10 orbits

of size 3255 and one orbit of size 217.

F215

F23 F25

F2

The search space is reduced from 232 768 to 211. This gives

functions with nonlinearity 16 276 and spectral radius

27
32

√
2 = 1.1932 . . . .

9
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The case n = 9

2n−1 − 2(n−1)/2 = 240 b2n−1 − 2n/2−1c = 244

The search space is 2512.

subgroup # orbits nonlinearity spectral radius

F∗23 × Gal(F29/F2) 8 < 240 >
√

2

Gal(F29/F2) 60 = 241 = 1.3258 . . .

Gal(F29/F23) 176 ≥ 242 ≤ 1.2374 . . .

Patterson-Wiedemann 1983

Kavut-Maitra-Yücel 2007

Kavut-Yücel 2010
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Kavut-Yücel 2010

10



The case n = 9

2n−1 − 2(n−1)/2 = 240 b2n−1 − 2n/2−1c = 244

The search space is 2512.

subgroup # orbits nonlinearity spectral radius

F∗23 × Gal(F29/F2) 8 < 240 >
√

2

Gal(F29/F2) 60 = 241 = 1.3258 . . .

Gal(F29/F23) 176 ≥ 242 ≤ 1.2374 . . .

Patterson-Wiedemann 1983

Kavut-Maitra-Yücel 2007
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Best known nonlinearities

n

µ(n)

0 5 10 15 20
1

1.1

1.2

1.3

1.4

1.5

Conjecture (Patterson-Wiedemann 1983). limn→∞ µ(n) = 1.

Theorem (S. 2019). This conjecture is true.
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Nonlinearities of balanced functions

n

µ′(n)

0 10 20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

n even

n odd

Theorem (Dobbertin 1995). limm→∞ µ
′(2m) = 1.

Conjecture (Dobbertin 1995). limn→∞ µ
′(n) = 1.

Corollary (S. 2019). This conjecture is also true.
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The functions: An example

Take a subgroup H of F∗2n and consider functions

f : F2n → {−1, 1}

that are constant on the cosets of H , except for H itself.

Functions F24 → F2 with H = {1, θ5, θ10}:

0 θ0 θ5 θ10θ1 θ6 θ11θ2 θ7 θ12θ3 θ8 θ13θ4 θ9 θ14
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The functions: In general

H is a subgroup of F∗2n of index v .

T is a complete system of coset representatives of H .

g : T → {0,−1, 1} is balanced with g(z) = 0 ⇔ z ∈ H .

h : H → {−1, 1} is some function.

Consider functions f : F2n → {−1, 1} with f (0) = 1 and

f (y) = 1H(y) h(y) +
∑
z∈T

1H(y/z) g(z) for y ∈ F∗2n .

Proposition (S. 2019). Let v = 7e . Then, for some odd n,

there is a function h : H → {−1, 1} such that f satisfies

max
a∈F2n

|f̂ (a)| ≤ 1 + 12
√

log(2v)/v .

The main result follows by letting e tend to infinity.

14
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Fourier Near-Eigenfunctions

If 1H is an eigenfunction for the Fourier transform, then on F∗2n ,

f (y) =
∑
z∈T

1H(y/z) g(z) ←→ f̂ (a) = f (a−1).

Let χ be a multiplicative character of F2n of order v . Then

1H(y) =
1

v

v−1∑
j=0

χj(y) ←→ 1̂H(a) =
1

v

v−1∑
j=0

χj(a)
G (χj)

2n/2
.

Then G (χj) ∈ Q(
√
−7) and by the Davenport-Hasse Theorem

G (χj)

2n/2
≈ 1 for some odd n and all 0 < j < v .

Distribution of G(χ)

2n/2
, v = 7, n = 3m

ε

m = 1

15
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Six standard deviations suffice
Take an M × N matrix A with M ≥ N and real entries of

magnitude at most 1.

Is there a u ∈ {−1, 1}N such that ‖Au‖∞ is “small”?

Standard probabilistic method:

‖Au‖∞ <
√

2N log(2M) for almost all u ∈ {−1, 1}N .

Theorem (Spencer 1985). For all sufficiently large N , there

exists u ∈ {−1, 1}N such that

‖Au‖∞ < 11
√
N log(2M/N).

This shows the existence of h : H → {−1, 1} such that

f (y) = 1H(y)h(y) ←→ |f̂ (a)| ≤ 11
√

log(2v)/v .
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More general functions
f : F2

3 → F3, f (x , y) = x2 + xy − y 2

(x , y) 00 01 02 10 11 12 20 21 22

f (x , y) 0 2 2 1 1 2 1 2 1

x + y + 1 1 2 0 2 0 1 0 1 2

x − y + 1 1 0 2 2 1 0 0 2 1

The Hamming distance of f to each of the 27 affine functions

is either 5 or 8. Therefore the nonlinearity of f is 5.

A more general question
What is the largest nonlinearity of a function from Fn

q to Fq?

Equivalently, what is the covering radius of the generalised

first order Reed-Muller code Rq(1, n)?

17
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A more general conjecture
Writing the nonlinearity as

qn−1(q − 1)− µ(f )qn/2−1

and letting µq(n) be the minimum of µ(f ), we have

1 ≤ µq(n) ≤ √q.
Moreover µq(n) = 1 for all even n.

It was shown by (Leducq 2013) that
√
q = µq(1) ≥ µq(3) ≥ µq(5) ≥ . . .

µ3(n) ≤ 2
3

√
3 for each n ≥ 3 with equality for n = 3 and 5

The generalised Patterson-Wiedemann Conjecture
.

lim
n→∞

µq(n) = 1 for all prime powers q.
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Asymptotic nonlinearities

Theorem (S. 2020). Let q be a power of a prime p and suppose

that there is another prime r > 3 such that r ≡ 3 (mod 4) and

−p is a primitive root modulo r 2. Then limn→∞ µq(n) = 1.

Prime pairs (p, r) satisfying the condition

p 2 3 5 7 11 13 17 19 23 29 31 37

r 7 23 11 31 7 23 19 31 7 23 11 7

Corollary (S. 2020).We have limn→∞ µq(n) = 1 for all powers q

of a prime p lying in a subset of the primes with density 1.

Theorem (S. 2020). Assume GRH. Then limn→∞ µq(n) = 1 for

all prime powers q.
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Best known nonlinearities

n

µ(n)

0 5 10 15 20
1

1.1

1.2

1.3

1.4

1.5

We now know that limn→∞ µ(n) = 1,

however without improving any specific value of µ(n).
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The quadratic residue construction

This idea goes back to (Bringer-Gillot-Langevin 2005).

Functions F24 → F2 with H = {1, θ5, θ10}, so that v = 5:

12 ≡ 1, 22 ≡ 4, 32 ≡ 4, 42 ≡ 1 (mod 5).

0 θ0 θ5 θ10θ1 θ6 θ11θ2 θ7 θ12θ3 θ8 θ13θ4 θ9 θ14

In general, v is prime and f (0) = 1 and

f (y) = 1H(y)h(y) +
v−1∑
k=0

1H(y/θk)(k |v) for y ∈ F∗2n .

We still have to choose h : H → {−1, 1}.
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The Fourier transform

Choose v prime, such that v ≡ 3 (mod 4) and such that −2 is

a primitive root modulo v . For example, v = 7, 23, 47, 71, 79.

If χ is a multiplicative character of F2n of order v , then

G (χ) = a + b
√
−v

for some unique a, b ∈ Z satisfying a2 + vb2 = 2n.

Then the Fourier transform of
∑v−1

k=1 1H(y/θk)(k |v) takes on

the four values in the set

1

2n/2
{0, a − b, −a − b, (v − 1)b} .

The maximum modulus is close to 1 if and only if G(χ)

2n/2
≈ ±1.

22



The Fourier transform

Choose v prime, such that v ≡ 3 (mod 4) and such that −2 is

a primitive root modulo v . For example, v = 7, 23, 47, 71, 79.

If χ is a multiplicative character of F2n of order v , then

G (χ) = a + b
√
−v

for some unique a, b ∈ Z satisfying a2 + vb2 = 2n.

Then the Fourier transform of
∑v−1

k=1 1H(y/θk)(k |v) takes on

the four values in the set

1

2n/2
{0, a − b, −a − b, (v − 1)b} .

The maximum modulus is close to 1 if and only if G(χ)

2n/2
≈ ±1.

22



The Fourier transform

Choose v prime, such that v ≡ 3 (mod 4) and such that −2 is

a primitive root modulo v . For example, v = 7, 23, 47, 71, 79.

If χ is a multiplicative character of F2n of order v , then

G (χ) = a + b
√
−v

for some unique a, b ∈ Z satisfying a2 + vb2 = 2n.

Then the Fourier transform of
∑v−1

k=1 1H(y/θk)(k |v) takes on

the four values in the set

1

2n/2
{0, a − b, −a − b, (v − 1)b} .

The maximum modulus is close to 1 if and only if G(χ)

2n/2
≈ ±1.

22



The Fourier transform

Choose v prime, such that v ≡ 3 (mod 4) and such that −2 is

a primitive root modulo v . For example, v = 7, 23, 47, 71, 79.

If χ is a multiplicative character of F2n of order v , then

G (χ) = a + b
√
−v

for some unique a, b ∈ Z satisfying a2 + vb2 = 2n.

Then the Fourier transform of
∑v−1

k=1 1H(y/θk)(k |v) takes on

the four values in the set

1

2n/2
{0, a − b, −a − b, (v − 1)b} .

The maximum modulus is close to 1 if and only if G(χ)

2n/2
≈ ±1.

22



Improving Spencer’s theorem
Take an M × N matrix A with M ≥ N and real entries of

magnitude at most 1.

Theorem (Spencer 1985). For all sufficiently large N , there

exists u ∈ {−1, 1}N such that

‖Au‖∞ < 11
√
N log(2M/N).

Theorem (Goldammer-S. 2020). There exists u ∈ {−1, 1}N
such that

‖Au‖∞ < 6
√

N log(2M/N).

This shows the existence of h : H → {−1, 1} such that

f (y) = 1H(y)h(y) ←→ |f̂ (a)| ≤ 6
√

log(2v)/v .
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Smallest known nonlinearities

µ(3) =
√

2 (easy to check)

µ(5) =
√

2 (Berlekamp-Welch 1972)

µ(7) =
√

2 (Mykkeltveit 1980), (Hou 1996)

µ(n) ≤ 1.237 . . . for all n ≥ 9 (Kavut-Yücel 2010)

µ(n) ≤ 1.193 . . . for all n ≥ 15 (Patterson-Wiedemann 1983)

µ(n) ≤ 1.157 . . . for all n ≥ 7 515 (Goldammer-S. 2020)

. . .

µ(n) ≤ 1.056 . . . for all n ≥ 1 211 811 (Goldammer-S. 2020)
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Autocorrelations
The autocorrelation of a Boolean function f : Fn

2 → F2 at shift

u ∈ Fn
2 is

Cu(f ) =
∑
y∈Fn

2

(−1)f (y)+f (y+u).

The absolute indicator of f is

δ(f ) =
1

2n/2
max
u 6=0
|Cu(f )|.

This measures the resistance of a Boolean function against

differential cryptanalysis.

A related question

What is the smallest absolute indicator δ(n) of a

Boolean function on Fn
2?
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Small autocorrelations

The autocorrelations can be computed from the Fourier

transform:

Cu(f ) =
∑
a∈Fn

2

f̂ (a)2 (−1)〈a,u〉.

For example, every bent function f satisfies δ(f ) = 0. Hence

δ(n) = 0 for all even n.

The best known general result is (Zhang-Zheng 1996)

δ(n) ≤
√

2 for all odd n.
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The Zhang-Zheng conjecture

(Zhang-Zheng 1996) constructed balanced Boolean

functions f on Fn
2 satisfying

δ(f ) ≤

{
2 for even n
√

2 for odd n.

Conjecture (Zhang-Zheng 1996). For every balanced Boolean

function f : Fn
2 → F2 we have

δ(f ) ≥
√

2.

This conjecture has been disproved for several small values

of n by using the Patterson-Wiedemann approach together

with heuristic search techniques.
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Infinitely many counterexamples

Theorem (Tang-Maitra 2018). For each n ≥ 46 with n ≡ 2

(mod 4) there is a balanced function f : Fn
2 → F2 such that

δ(f ) ≤ 1− o(1) and µ(f ) ≤ 7
4

+ o(1).

Theorem (S. 2020). For each even n ≥ 6 there exists a

balanced function f : Fn
2 → F2 such that

δ(f ) ≤
8
√

(n + 3) log(2)

2n/4
and µ(f ) ≤ 1 + o(1).

Moreover there is a probabilistic algorithm that constructs

such a function with probability at least 1/2.

This gives counterexamples for all even n ≥ 20.
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Tweaking bent functions

Let f : Fn
2 → F2 be a bent function. Then f is perfect:

δ(f ) = 0 and µ(f ) = 1,

but not balanced. Suppose that there are more 1’s than 0’s.

Flip every 1 with probability

2n/2−1

2n−1 + 2n/2−1 .

Show that this does typically not change δ(f ) and µ(f ) by

much and that we typically get a nearly balanced function.

Then only a few more bit flips make the function balanced.
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New conjectures
Let δ′(n) be the smallest absolute indicator of a balanced

Boolean functions on Fn
2.

Corollary (S. 2020). We have

lim
m→∞

δ′(2m) = 0.

It is tempting to conjecture that

lim
n→∞

δ′(n) = 0

and hence also

lim
n→∞

δ(n) = 0.

It seems that the functions used in the proof of the Patterson-

Wiedemann Conjecture can be used to prove this.
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