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Abstract

In this work we study metric properties of the well-known family of binary Reed-Muller
codes. Let A be an arbitrary subset of the Boolean cube, and Â be the metric complement
of A — the set of all vectors of the Boolean cube at the maximal possible distance from A. If
the metric complement of Â coincides with A, then the set A is called a metrically regular set.
The problem of investigating metrically regular sets appeared when studying bent functions,
which have important applications in cryptography and coding theory and are also one of the
earliest examples of a metrically regular set. In this work we describe metric complements
and establish the metric regularity of the codes RM(0,m) and RM(k,m) for k > m − 3.
Additionally, the metric regularity of the codesRM(1, 5) andRM(2, 6) is proved. Combined
with previous results by Tokareva N. (2012) concerning duality of affine and bent functions,
this proves the metric regularity of most Reed-Muller codes with known covering radius. It
is conjectured that all Reed-Muller codes are metrically regular.

1 Introduction

The problem of investigating and classifying metrically regular sets was posed by Tokareva
[14, 15] when studying metric properties of bent functions [11]. A Boolean function f in even
number of variables m is called a bent function if it is at the maximal possible distance from the
set of affine functions.

Bent functions have various applications in cryptography, coding theory and combinatorics
[6, 15]. In cryptography, bent functions are valued because of their outstanding nonlinearity,
which allows one to construct S-boxes for block ciphers which possess high resistance to the linear
cryptanalysis [6]. However, many problems related to bent functions remain unsolved; in partic-
ular, the gap between the best known lower and upper bound on the number of bent functions
is extremely large; currently known constructions of bent functions are rather scarse. In 2012
[14], Tokareva has proved that, like bent functions are maximally distant from affine functions,
affine functions are at the maximal possible distance from bent functions, thus establishing the
metric regularity of both sets. This discovery arouses interest in studying the property of metric
regularity in order to better understand the structure of the set of bent functions.

Let us briefly overview the results obtained in this area. Metric regularity of several classes
of partition set functions is studied in [13]. The work [4] examines metric properties of self-
dual bent functions. Metric regularity has been actively investigated by the author: metric
complements of linear subspaces of the Boolean cube are studied in the paper [8], while the
works [9] and [10] are studying possible sizes of the largest and smallest metrically regular set.

In this work we investigate metric properties of Reed-Muller codes. Among the codes of high
order, covering radii of the codes RM(k,m), for k > m− 3 are known. The covering radius of
RM(1,m) for odd m > 7 is unknown, but has been determined for RM(1, 5) [1] and RM(1, 7)
[7, 3]. In [12], Schatz has found the covering radius of RM(2, 6), while recently Wang has
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established the covering radius of RM(2, 7) [16]. For m > 7, the covering radius of RM(2,m)
is still unknown. We prove that the codes RM(k,m), for k = 0 and k > m − 3 and the codes
RM(1, 5) and RM(2, 6) are metrically regular and also describe their metric complements in
most cases.

2 Preliminaries

Let Fn
2 be the space of binary vectors of length n with the Hamming metric. The Hamming

distance d(·, ·) between two binary vectors is defined as the number of coordinates in which these
vectors differ, while wt(·) denotes the weight of a vector, i.e. the number of nonzero values it
contains. The plus sign + denotes addition modulo two (componentwise in case of vectors).

Let X ⊆ Fn
2 be an arbitrary set and y ∈ Fn

2 be an arbitrary vector. The distance from the
vector y to the set X is defined as

d(y,X) = min
x∈X

d(y, x).

The covering radius of the set X is defined as

ρ(X) = max
z∈Fn

2

d(z,X).

The set X with ρ(X) = r is also called a covering code [2] of radius r.
Consider the set

Y = {y ∈ Fn
2 |d(y,X) = ρ(X)}

of all vectors at the maximal possible distance from the set X. This set is called the metric
complement [8] of X and is denoted by X̂. Vectors from the metric complement are sometimes

called deep holes of a code. If
̂̂
X = X then the set X is said to be metrically regular [15].

Note that metrically regular sets always come in pairs, i.e. if A is a metrically regular set,
then its metric complement Â is also a metrically regular set and both of them have the same
covering radius. For some simple examples of metric complements and metrically regular sets,
refer to [8, 9, 10].

The following trivial auxiliary lemma, established in [8], will be used throughout the paper.

Lemma 2.1 Let C ⊆ Fn
2 be a linear code. Then ρ(Ĉ) = ρ(C) and a vector x ∈ Fn

2 is in
̂̂
C if

and only if x+ Ĉ = Ĉ.

Let Fm be the set of all Boolean functions in m variables. The Reed-Muller code of order k
is defined as:

RM(k,m) = {f ∈ Fm : deg(f) 6 k},

where deg(·) denotes the degree of the algebraic normal form (ANF) of the function.
Let f and g be two functions in m variables. Denote as Lb

A : Fm
2 → Fm

2 the affine transfor-
mation of the variables with the matrix A and the vector b):

(f ◦ Lb
A)(x) = f(Ax + b).

Here ◦ denotes the composition of the functions. If the vector b is zero, it will be omitted from
the notation. Functions f and g are called linearly equivalent if one can be obtained from the
other by applying a nonsingular linear transformation to the variables, i.e. f = g ◦ LA, where
det A 6= 0.

Extended affine equivalence is more common when classifying boolean functions: functions
f and g are called EA-equivalent if there exists a nonsingular linear transformation of variables
A, a boolean vector b of length m and a function h of degree at most 1 such that f = g ◦Lb

A +h.



For our study we will use a variant of these two equivalence relations, which will be referred
to as extended linear equivalence (to the power of k). Functions f and g are called ELk-equivalent
if there exists a nonsingular binary matrix A and a function h of degree at most k such that

f = g ◦ LA + h.

It is easy to see that this relation is indeed an equivalence. We will denote this equivalence by

f
k∼ g.
The Reed-Muller code of order k in m variables is usually denoted as RM(k,m). Since we

will refer to these codes regularly, we will instead often use Rk,m to denote the Reed-Muller
code of order k in m variables. We will sometimes omit the number of variables m if it is clear
from the context.

3 The Reed-Muller code RM(1, 5)

In the work [1], Berlekamp and Welch presented a partition of all cosets of the R1,5 code into
48 classes with respect to the EA-equivalence and obtained weight distributions for each class
of cosets. Four of these cosets contain only codewords of weight 12 and higher, and those cosets
constitute the metric complement of R1,5. Thus we can present the metric complement of this
code as:

R̂1,5 = {f : f
EA∼ g for some g from one of 4 farthest classes}

Since R1,5 is linear, it follows that ρ(R̂1,5) = ρ(R1,5) = 12, and f ∈ ̂̂R1,5 if and only if

f + R̂1,5 = R̂1,5. Thus, in order to establish the metric regularity of R1,5, we must prove that

for every f /∈ R1,5 it holds f + R̂1,5 6= R̂1,5.
This is done by taking a representative fc from every class of cosets C (aside from R1,5 itself)

and showing that there exists a function gc ∈ R̂1,5 such that fc + gc /∈ R̂1,5. Since the metric

complement R̂1,5 consists of EA-equivalence classes, this proves that none of the functions from

the class C belong to R̂1,5. Therefore, the following holds:

Theorem 3.1 The code R1,5 is metrically regular.

4 The Reed-Muller codes of orders 0, m, m− 1 and m− 2

The Reed-Muller codes of orders 0, m and m − 1 coincide with the repetition code, the whole
space and the even weight code respectively. It is trivial that all of them are metrically regular.

The Reed-Muller code of order m− 2 has covering radius 2 [2]. By definition, it consists of
all Boolean functions of degree at most m− 2. Since all functions of degree m have odd weight,
and all functions of smaller degree have even weight, functions of degree m are at distance 1
from Rm−2, while functions of degree m− 1 are at distance 2 and therefore

R̂m−2 = Rm−1 \ Rm−2.

Since Rm−2 is linear, ρ(R̂m−2) = ρ(Rm−2) = 2 and thus functions of degree m are at distance

1 from R̂m−2. It follows that
̂̂Rm−2 = Rm−2 and Rm−2 is metrically regular.

5 The Reed-Muller code of order m− 3

5.1 Covering radius

McLoughlin [5] has proved that

ρ(Rm−3) =

{
m+ 1, if m is odd,

m+ 2, if m is even.



This result is reestablished by Cohen et al in the book “Covering codes” [2], using a method of
syndrome matrices, different from that in [5]. This method allows us not only to obtain covering
radius of the Reed-Muller code of order m − 3, but also to describe the metric complement of
this code. As with the covering radius, the cases of even and odd m are distinct.

5.2 Case m is even

In this case, the metric complement can be described as follows:

R̂m−3 =
⋃
g∈G

(g +Rm−3) ,

where

G = {g : supp(g) = {0, x1, x2 . . . , xm, x1 + . . .+ xm},
{x1, . . . , xm} are linearly independent}.

It is easy to see that all functions in G form an equivalence class with respect to the linear
equivalence. Let us pick any function g∗ from this class. We can now say that a function g is
in R̂m−3 if and only if g = g∗ ◦ LA + h for some nonsingular matrix A and some function h of
degree at most m − 3, or, in other words, g is in R̂m−3 if and only if g is ELm−3-equivalent to
g∗. Therefore,

R̂m−3 = {g : g
m−3∼ g∗},

where g∗ is some function from the class G (or from R̂m−3, since all functions in metric com-
plement are ELm−3-equivalent).

5.3 Case m is odd

In this case, the metric complement can be described as follows:

R̂m−3 =
⋃

g∈G1∪G2

(g +Rm−3),

where

G1 = {g : supp(g) = {0, x1, x2 . . . , xm}, {x1, . . . , xm} are linearly independent},

and

G2 = {g : supp(f) = {0, x1, x2 . . . , xm−1, x1 + . . .+ xm−1},
{x1, . . . , xm−1} are linearly independent}.

Same as with the case of even m, all functions in G1 form an equivalence class with respect
to the linear equivalence, so do functions from G2. If we now choose a representative from each
class, g∗1 from G1 and g∗2 from G2, we can describe metric complement in the following manner:

R̂m−3 = {g : g
m−3∼ g∗1} ∪ {g : g

m−3∼ g∗2}.

5.4 Metric regularity

Since the code Rm−3 is linear, it follows that ρ(R̂m−3) = ρ(Rm−3) and a function f is in
̂̂Rm−3

if and only if f + R̂m−3 = R̂m−3. Thus, like in the Section 3, we prove the metric regularity
of Rm−3 by proving that no functions other that those contained in Rm−3 preserve the metric
complement under addition, using the representations of metric complements obtained in the
previous subsections.



6 The Reed-Muller code RM(2, 6)

Let us consider one other special case. If we change the order of values in the value vectors of
functions so that the first half of values corresponds to the values of the function when the last
variable is set to 0, and the other half corresponds to the values of the function when the last
variable is set to 1, then each Reed-Muller code (for m > 1, r > 0) can be inductively defined
as follows:

Rr,m = {(u,u + v)|u ∈ Rr,m−1,v ∈ Rr−1,m−1}.

In particular,
R2,6 = {(u,u + v)|u ∈ R2,5,v ∈ R1,5}.

Since both R2,5 and R1,5 were shown to be metrically regular, this construction proves useful
and allows us to establish the metric regularity of the code R2,6 as well. From now on, vectors
in bold will represent value vectors of functions in 5 variables (of length 32), while value vectors
of 6-variable functions will be presented as pairs of value vectors of 5-variable functions.

Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. We will prove that (ũ, ũ + ṽ) is in R2,6 in two steps: first we establish
that ũ is in R2,5, then we prove that ṽ is in R1,5. The following results heavily rely on the fact
thatR2,6 attains the upper bound on the covering radius provided by the (u,u + v) construction,
i.e. ρ(R2,6) = ρ(R2,5) + ρ(R1,5) [12].

Recall (Section 5) that R̂2,5 = {g : g
2∼ g1} ∪ {g : g

2∼ g2}, where g1 and g2 are some
representatives of two EL2-equivalence classes. Let us denote

R̂1
2,5 := {g : g

2∼ g1}, R̂2
2,5 := {g : g

2∼ g2}.

The following lemma is useful when proving that ũ ∈ R2,5:

Lemma 6.1 For each i = 1, 2 one of the following statements holds:

1. ∀y ∈ R̂i
2,5 ∀w ∈ F32

2 it holds (y,w) /∈ R̂2,6;

2. ∀y ∈ R̂i
2,5 ∃w ∈ F32

2 such that (y,w) ∈ R̂2,6;

This lemma tells us that for each EL2-equivalence class of R̂2,5, either all vectors appear in
the metric complement of R2,6 as the first half of the vector, or no vectors do. Since for any

(ũ, ũ + ṽ) ∈ ̂̂R2,6 it holds (ũ, ũ + ṽ) + R̂2,6 = R̂2,6, it is easy to show that ũ must keep R̂2,5,

R̂1
2,5 or R̂2

2,5 in place under addition. From the proof of the metric regularity of the code Rm−3,m
for odd m it is not hard to see that only the vectors from R2,5 do that, and thus the following
holds:

Proposition 6.2 Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. Then ũ ∈ R2,5.

Recall from Section 3 that R̂1,5 is composed of 4 EA-equivalence classes: R̂1,5 =
⋃4

i=1 R̂i
1,5.

Somewhat similar to Lemma 6.1, the following statement holds:

Lemma 6.3 For each i = 1, 2, 3, 4 one of the following statements holds:

1. ∀w′ ∈ R̂i
1,5 ∀(y,w) ∈ R̂2,6 ∀u ∈ R2,5 (d(y,u) = 6→ w + u 6= w′);

2. ∀w′ ∈ R̂i
1,5 ∃(y,w) ∈ R̂2,6 ∃u ∈ R2,5 : (d(y,u) = 6 ∧w + u = w′);

The following result shows that any of the EA-equivalence classes of the metric complement
of R1,5 are also rather “unstable” when summed with a non-affine function:

Lemma 6.4 For any v /∈ R1,5 and any i = 1, 2, 3, 4 there exists a vector w ∈ R̂i
1,5 such that

v + w /∈ R̂1,5.



These last two lemmas allow us to show that for any (ũ, ũ + ṽ) ∈ ̂̂R2,6, the vector ṽ is in
R1,5. Combined with Proposition 6.2, this results in the

Theorem 6.5 Let (ũ, ũ + ṽ) ∈ ̂̂R2,6. Then (ũ, ũ + ṽ) ∈ R2,6.

Since the inverse inclusion holds for any linear code, Theorem 6.5 establishes the metric
regularity of the code R2,6.

7 Conclusion

We have established the metric regularity of the codes RM(1, 5), RM(2, 6) and of the codes
RM(k,m) for k > m − 3. Factoring in the result by Tokareva [14], which proves the metric
regularity of RM(1,m) for even m, we have covered all infinite families of Reed-Muller codes
with known covering radius. The only other Reed-Muller codes with known covering radius,
metric regularity of which has not been yet established, are RM(1, 7) and RM(2, 7). Given
these results, we formulate the following

Conjecture 1 All Reed-Muller codes RM(k,m) are metrically regular.
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