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Abstract

The recent FLIP cipher is an encryption scheme described by Méaux et al. at the confer-
ence EUROCRYPT 2016. It is based on a new stream cipher model, called the filter permuta-
tor and tries to minimize some parameters (including the multiplicative depth). In the filter
permutator, the input to the Boolean function has constant Hamming weight equal to the
weight of the secret key. As a consequence, Boolean functions satisfying good cryptographic
criteria when restricted to the set of vectors with constant Hamming weight play an impor-
tant role in the FLIP stream cipher. Carlet et al. have shown that for Boolean functions with
restricted input, balancedness and nonlinearity parameters continue to play an important role
with respect to the corresponding attacks on the framework of FLIP ciphers. In particular,
Boolean functions which are uniformly distributed over F2 on En,k = {x ∈ Fn

2 | wH(x) = k}
for every 0 < k < n are called weightwise perfectly balanced (WPB) functions, where wH(x)
denotes the Hamming weight of x. In this extended abstract, we firstly propose two methods
of constructing weightwise perfectly balanced Boolean functions in 2k variables (where k
is a positive integer) by modifying the support of linear and quadratic functions. Further-
more, we derive a construction of n-variable weightwise almost perfectly balanced Boolean
functions for any positive integer n.

1 Introduction

In a cryptographic framework, Boolean functions are classically studied with an input ranging
over the vector space Fn2 of binary vectors of length n [2]. This is the case when the Boolean
functions are used as the (main) nonlinear components of a stream cipher, in the so-called com-
biner and filter models of pseudo-random generators. However, the input of a Boolean function
can be restricted to a subset of the vector space Fn2 . A recent example of such a situation is given
by the FLIP cipher [10]. The FLIP cipher is a new family of stream ciphers proposed by Méaux
et al. at Eurocrypt 2016, which is intended to be combined with a homomorphic encryption
scheme to create an acceptable system of fully homomorphic encryption [4, 8]. Essentially, the
FLIP cipher is one of the encryption schemes specifically designed to be combined with a ho-
momorphic encryption scheme to improve the efficiency of somewhat homomorphic encryption
frameworks [1]. The FLIP cipher is based on a new stream cipher model, called the filter permu-
tator and tries to minimize some parameters (including the multiplicative depth). The reader
notices that Méaux et al [9] have proposed in 2019, an improved filter permutators for efficient
FHE (in particular better Instances and implementations). A nice description of FLIP can be
found in [10]. An early version of FLIP faces an attack given by Duval et al. [5], which leads the
design of the filter function to become more complicated to reach better criteria on the subsets
of Fn2 . In 2017, Carlet, Méaux, and Rotella [3] provided a security analysis on FLIP cipher and
gave the first study on cryptographic criteria of Boolean functions with restricted input. This
produces a special situation for the structure of filter function: the input of the filter function
consists of those vectors in Fn2 which have constant Hamming weight (in fact, by definition in



the filter permutator, the input to the Boolean function has constant Hamming weight equal
to the weight of the secret key). Carlet et al. [3] have shown that for Boolean functions with
restricted input, balancedness and nonlinearity parameters continue to play an important role
with respect to the corresponding attacks on the framework of FLIP ciphers. In particular,
Boolean functions which are uniformly distributed over F2 on En,k = {x ∈ Fn2 | wH(x) = k}
for every 0 < k < n are called weightwise perfectly balanced (WPB) functions, where wH(x)
denotes the Hamming weight of x. To our best knowledge, the first known construction of WPB
functions is due to [3] in 2017, which is designed through a recursive method. In 2008, Liu
and Mesnager [6] proposed a large class of WPB functions, which is 2-rotation symmetric.In
2019, Tang and Liu [11] also gave a construction of WPB functions. Some upper bounds on the
k-weight nonlinearity of Boolean functions are discussed in [3] and [7], respectively.

In this extended abstract, we firstly give a full study of the Hamming weight distribu-
tions of the linear function f(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xm and the quadratic function
g(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(xn ⊕ 1), where n = 2m. And then,
two concrete constructions of 2k-variable (where k is a positive integer) WPB functions by mod-
ifying the support of the linear function and the quadratic function are respectively proposed.
Lastly, a construction of n-variable almost-WPB functions for any positive integer n is given.

This extended abstract is organized as follows. Some definitions are presented in Section 2
but we assume the reader familiar with background on Boolean functions as well as standard
notation. In Section 3, a construction of WPB functions on 2k variables (where k is a positive
integer) obtained by modifying the support of a linear function is given. Next, a construction
of WPB functions on 2k variables obtained by modifying the support of a quadratic function is
proposed in Section 4. The construction of n-variable almost-WPB functions for any positive
integer n is given in Section 5.

2 Some preliminaries

For 0 ≤ k ≤ n, we always denote En,k = {x ∈ Fn2 |wt(x) = k}. Obviously,
⋃n
k=0En,k = Fn2 . We

denote by Bn the set of all the n-variable Boolean functions. A function f ∈ Bn is said to be
balanced if its truth table contains an equal number of 1’s and 0’s, i.e., if its Hamming weight
wt(f) = 2n−1. The k-weight of the function f ∈ Bn, denoted by wtk(f), is the cardinality of
the subset {x ∈ En,k | f(x) = 1}, i.e. wtk(f) = |{x ∈ En,k | f(x) = 1}|. It is known that the
cardinality of the subset En,k is |En,k| =

(
n
k

)
for 0 ≤ k ≤ n. Since

(
n
0

)
=
(
n
n

)
= 1, we have the

following Definition.

Definition 2.1 If a function f ∈ Bn satisfies wtk(f) = 1
2

(
n
k

)
for all integers 1 ≤ k ≤ n − 1, the function f(x) is called a weightwise perfectly balanced

(WPB) function.

Definition 2.2 If a function f ∈ Bn satisfies wtk(f) = 1
2

(
n
k

)
for all odd integers k ∈ {1, 2, · · · , n−

1}, then the function f(x) is called an odd-weightwise perfectly balanced (odd-WPB) function.

Definition 2.3 If a function f ∈ Bn satisfies wtk(f) =
⌊
1
2

(
n
k

)⌋
for all integers 0 ≤ k ≤ n, then

the function f(x) is called a weightwise almost perfectly balanced (almost-WPB) function.

3 Construction of WPB functions by modifying a linear func-
tion

.
Define an n-variable Boolean function as

f(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xm, (1)



where n = 2m with m being a positive integer. Then, the support of the n-variable Boolean
function f(x) in (1) is

supp(f) = {(x1, x2, · · · , xn) ∈ Fn2 |wt(x1, x2, · · · , xm) is odd}. (2)

.

Theorem 3.1 For any odd integer k ∈ {1, 3, · · · , n − 1} and n = 2m, the n-variable Boolean
function f(x) in (1) satisfies wtk(f) = 1

2

(
n
k

)
. Hence, the function f(x) in (1) is odd-WPB.

Theorem 3.2 For any even integer k ∈ {2, 4, 6, · · · , n−2} and n = 2m, the n-variable Boolean

function f(x) in (1) satisfies wtk(f) = 1
2

(
n
k

)
− (−1)

k
2

2

(m
k
2

)
.

Corollary 3.3 For any even integer k ∈ {2, 4, 6, · · · , n−2} and n = 2m, we have
∑

0≤i≤k
i is odd

(
m
i

)(
m
k−i
)

=

1
2

(
n
k

)
− (−1)

k
2

2

(m
k
2

)
.

Given a positive integer m, define a 2m-variable Boolean function as

supp(fm) =
m⊔
i=1

{
(x, y, x, y, · · · , x, y) ∈ F2m

2 |x, y ∈ F2m−i

2 ,wt(x) is odd
}
. (3)

Theorem 3.4 The function fm in 2m variables defined in (3) is weightwise perfectly balanced.

Theorem 3.5 The ANF of the 2m-variable Boolean function fm(x) in (3) is fm(x1, x2, . . . , x2m) =
2m−1⊕
i=1

xi ⊕ fm−1(x1, x2, . . . , x2m−1)
2m−1∏
i=1

(xi ⊕ x2m−1+i ⊕ 1),

where f1(x1, x2) = x1. Moreover, the algebraic degree of the 2m-variable Boolean function
fm(x) in (3) is deg(fm) = 2m − 1.

In order to get a flexible construction of WPB functions, define
I
(1)
1 ⊆ {1, 2, · · · , n}, I(1)2 = {1, 2, · · · , n} \ I1,
I
(2)
1 ⊆ I(1)1 , I

(2)
2 = I

(1)
1 \ I

(2)
1 , I

(2)
3 ⊆ I(1)2 , I

(2)
4 = I

(1)
2 \ I

(2)
3 ,

· · · · · ·
I
(m)
1 ⊆ I(m−1)1 , I

(m)
2 = I

(m−1)
1 \ I(m)

1 , · · · · · · , I(m)
2m−1 ⊆ I

(m−1)
2m−1 , I

(m)
2m = I

(m−1)
2m−1 \ I

(m)
2m−1,

where |I(i)j | = 2m−i, for 1 ≤ i ≤ m and 1 ≤ j ≤ 2i. For convenience, denote xI = (xi1 , xi2 , · · · , xit)
for x = (x1, x2, · · · , xn) and I = {i1, i2, · · · , it} ⊆ {1, 2, · · · , 2m}. Then, a flexible construction
of 2m-vriable WPB function is given as

supp(fm) =
m⊔
i=1

{
x ∈ F2m

2 |wt(x
I
(i)
1

) is odd, x
I
(i)
1

= x
I
(i)
3

= · · · = x
I
(i)

2i−1

, x
I
(i)
2

= x
I
(i)
4

= · · · = x
I
(i)

2i

}
,

where m is a positive integer. In fact, if the order of the entries in the vector x
I
(i)
j

is considered,

a more flexible constructions of WPB functions can be obtained.

4 Construction of WPB functions by modifying the support of
a quadratic function

Define an n-variable Boolean function as

g(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(xn ⊕ 1), (4)

where n = 2m with m being a positive integer.



Theorem 4.1 For any integer k ∈ {1, 2, · · · , n−1} and n = 2m, the n-variable Boolean function

g(x) in (4) satisfies wtk(g) = 1
2

(
n
k

)
− δk

2

(m
k
2

)
, where δk =

{
1, k is even,
0, k is odd.

According to the values of the k-weights of the n-variable Boolean function g(x) defined in
(4), 1 ≤ k ≤ n− 1, we can construct another WPB function as follows.

Define a 2m-variable Boolean function gm(x) as

gm(x1, x2, . . . , x2m) = g(x1, x2, . . . , x2m)⊕ gm−1(x1, x2, . . . , x2m−1)
2m−1∏
i=1

(xi ⊕ x2m−1+i ⊕ 1), (5)

where m ≥ 1, g(x) is defined in (4), and g0(x1) = 0.

Theorem 4.2 The Boolean defined in (5) is weightwise perfectly balanced. Its algebraic degree
equals deg(gm) = 2m (hence it has a maximal algebraic degree).

5 Construction of almost-WPB functions

In this section, a construction of almost-WPB functions by modifying the support of a quadratic
Boolean function in any variables is proposed.

Define an n-variable Boolean function as

h(x1, x2, · · · , xn) = x1(xm+1 ⊕ 1)⊕ x2(xm+2 ⊕ 1)⊕ · · · ⊕ xm(x2m ⊕ 1), (6)

where n is a positive integer and m = bn2 c.

Theorem 5.1 • For any integer k ∈ {1, 2, · · · , n − 1} and n = 2m + 1 with m ≥ 1, the
n-variable Boolean function h(x) in (6) satisfies wtk(h) = 1

2

(
n
k

)
− 1

2

( m
b k
2
c
)
.

• For any integer k ∈ {1, 2, · · · , n− 1} with n ≥ 2, the n-variable Boolean function h(x) in

(6) satisfies wtk(h) =

{ 1
2

(
n
k

)
, n is even and k is odd,

1
2

(
n
k

)
− 1

2

(bn
2
c

b k
2
c

)
, otherwise.

Define an n-variable Boolean function hn(x) as

hn(x1, x2, . . . , xn) = h(x1, x2, . . . , xn)⊕ hbn
2
c(x1, x2, . . . , xn)

bn
2
c∏

i=1

(xi ⊕ xbn
2
c+i ⊕ 1), (7)

where n ≥ 2, h(x1, x2, . . . , xn) is defined in (6), and h1(x1) = 0.

Theorem 5.2 • The Boolean function hn defined in (7) is almost weightwise perfectly bal-
anced.

• Its Hamming weight equals wt(hn) = 2n−1 − 2wt(n)−1, where wt(n) = wt(n1, n2, · · · , nt)
satisfying n = n12

0 + n22
1 + · · ·+ nt2

t−1.

• Its algebraic degree equals deg(hn) = n − wt(n) + 1, where wt(n) = wt(n1, n2, · · · , nt)
satisfying n = n12

0 + n22
1 + · · ·+ nt2

t−1.
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