Bent and \mathbb{Z}_{2^k} -bent functions from spread-like partitions

Wilfried Meidl^{*} and Isabel Pirsic^{*}

^{*}RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, 4040-Linz, Austria

Abstract

Bent functions from a vector space \mathbb{V}_n over \mathbb{F}_2 of even dimension n = 2m into the cyclic group \mathbb{Z}_{2^k} , or equivalently, relative difference sets in $\mathbb{V}_n \times \mathbb{Z}_{2^k}$ with forbidden subgroup \mathbb{Z}_{2^k} , can be obtained from spreads of \mathbb{V}_n for any $k \leq n/2$. In this talk we show the existence of bent functions from \mathbb{V}_n to \mathbb{Z}_{2^k} , $k \geq 3$, which do not come from the spread construction. We present a construction of bent functions from \mathbb{V}_n into \mathbb{Z}_{2^k} , $k \leq n/6$, (and more general, into any abelian group of order 2^k) obtained from partitions of $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$, which can be seen as a generalization of the Desarguesian spread. As for the spreads, the union of a certain fixed number of sets of these partitions is always the support of a Boolean bent function. Finally we discuss generalizations to odd characteristic.

1 Introduction

Let $(A, +_A)$, $(B, +_B)$ be finite abelian groups. A function f from A to B is called a *bent function* if

$$\left|\sum_{x \in A} \chi(x, f(x))\right| = \sqrt{|A|} \tag{1}$$

for every character χ of $A \times B$ which is nontrivial on B. Equivalently, $f : A \to B$ is bent if the graph of $f, G = \{(x, f(x)) : x \in A\}$, is a *relative difference set* in $A \times B$ relative to B.

In the classical case, $A = \mathbb{V}_n$ and $B = \mathbb{V}_m$ are elementary abelian 2-groups, i.e., they are vector spaces of dimension n and m respectively over the prime field \mathbb{F}_2 . By (1), $F : \mathbb{V}_n \to \mathbb{V}_m$ is bent, if m > 1 also called *vectorial bent*, if and only if the character sum

$$\mathcal{W}_f(a,b) = \sum_{x \in \mathbb{V}_n} (-1)^{\langle a, f(x) \rangle_m \oplus + \langle b, x \rangle_r}$$

has absolute value $2^{n/2}$ for all nonzero $a \in \mathbb{V}_m$ and $b \in \mathbb{V}_n$, (here \langle , \rangle_k denotes an inner product in \mathbb{V}_k). As is well known, n must then be even and m can be at most n/2. There are many examples and constructions of Boolean bent functions (m = 1) in the literature. Even several classes of bent functions from \mathbb{V}_n to $\mathbb{V}_{n/2}$ are known, such as Maiorana-McFarland functions, Dillons *H*-class, see [2], and Kasami bent functions, cf.[1]. A particularly interesting construction is the (partial) spread construction, as it works not only for functions from \mathbb{V}_n to elementary abelian groups \mathbb{V}_k , but for functions from \mathbb{V}_n to any abelian group *B* of order 2^k , $k \leq m = n/2$.

Recall that a partial spread S of \mathbb{V}_n , n = 2m, is a set of *m*-dimensional subspaces of \mathbb{V}_n which pairwise intersect trivially. If $|S| = 2^m + 1$, hence every nonzero element of \mathbb{V}_n is in exactly one of those subspaces, then S is called a *(complete) spread*. The standard example is the Desarguesian spread, which has for $\mathbb{V}_n = \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ the representation $S = \{U, U_s : s \in \mathbb{F}_{2^m}\}$, with $U = \{(0, y) : y \in \mathbb{F}_{2^m}\}$ and for $s \in \mathbb{F}_{2^m}, U_s = \{(x, sx) : x \in \mathbb{F}_{2^m}\}$.

Given a (complete) spread S of \mathbb{V}_n , we obtain a bent function from \mathbb{V}_n to B, $|B| = 2^k$, $k \leq n/2$, as follows.

- For every element γ of B, except from w.l.o.g. $0 \in B$, we assign the nonzero elements of exactly 2^{m-k} elements of S to the preimage of γ .

- All other elements, i.e., the elements of $2^{m-k} + 1$ elements of \mathcal{S} , are mapped to $0 \in B$.

From this general construction we also infer that the union of any $2^{m-1} + 1$ elements of S is always the support of a Boolean bent function.

In this talk we are interested in bent functions from \mathbb{V}_n to the cyclic group \mathbb{Z}_{2^k} , equivalently in relative difference sets in $\mathbb{V}_n \times \mathbb{Z}_{2^k}$ with forbidden subgroup \mathbb{Z}_{2^k} . By (1), this are functions ffor which

$$\mathcal{H}_f(a,b) = \sum_{x \in \mathbb{V}_n} \zeta_{2^k}^{af(x)} (-1)^{\langle b, x \rangle},$$

where ζ_{2^k} is a complex primitive 2^k th root of unity, has absolute value $2^{n/2}$ for all nonzero $a \in \mathbb{Z}_{2^k}$ and $b \in \mathbb{V}_n$. Again such functions can only exist for $m \leq n/2$, [10]. We remark that functions $f : \mathbb{V}_n \to \mathbb{Z}_{2^k}$ satisfying the much weaker condition that $|\mathcal{H}_f(1,b)| = 2^{n/2}$ for all $b \in \mathbb{V}_n$ are referred to as *generalized bent functions*. They have been intensively studied in many papers, see [3, 4, 5, 6, 7, 8, 11]. If not also bent, generalized bent functions do not correspond to relative difference sets.

Bent functions from \mathbb{V}_n to \mathbb{Z}_{2^k} can certainly be obtained with the spread construction. As far as we are aware, for $k \geq 3$ no construction is known that does not come from spread or a partial spread. In this talk we ask the question whether, and for which $k \geq 3$, there exist such bent functions that do not come from (partial) spreads. We present a construction of bent functions from \mathbb{V}_n to \mathbb{Z}_{2^k} , $k \leq n/6$. With an argument via the algebraic degree of associated Boolean bent functions we show that this construction does not come from (partial) spreads. From the construction we infer partitions of \mathbb{V}_n that have similar properties as spreads, in fact can be interpreted as a generalization of the Desarguesian spread. In particular, the union of a certain fixed number of sets of these partitions is always the support of a Boolean bent function.

2 Results

As we have to distinguish addition in different structures, we denote the addition in the complex numbers and in the ring \mathbb{Z}_{2^k} by +, the addition in the elementary abelian groups \mathbb{F}_2 , \mathbb{V}_n and \mathbb{F}_{2^m} is denoted by \oplus .

Let f be a function from \mathbb{V}_n to \mathbb{Z}_{2^k} , then we can write f as

$$f(x) = a_0(x) + 2a_1(x) + \dots + 2^{k-1}a_{k-1}(x)$$

for uniquely determined Boolean functions a_j , $0 \le j \le k-1$, from \mathbb{V}_n to \mathbb{F}_2 .

As ingredients for our construction we will use the following facts.

- A function $f: \mathbb{V}_n \to \mathbb{Z}_{2^k}$ is bent if and only if $2^t f$ is generalized bent for all $t, 0 \le t \le k-1$.
- $f(x) = a_0(x) + 2a_1(x) + \cdots + 2^{k-1}a_{k-1}(x)$ is generalized bent if and only if all Boolean functions in the affine space of Boolean functions $\mathcal{A} = a_{k-1} \oplus \langle a_{k-2}, \ldots, a_0 \rangle$ are bent, and for any three functions $b_0, b_1, b_2 \in \mathcal{A}$ we have

$$(b_0 \oplus b_1 \oplus b_2)^* = b_0^* \oplus b_1^* \oplus b_2^*,$$

where b^* denotes the dual of a Boolean bent function b, see [3].

- Let d, e be integers such that $gcd(2^m - 1, d) = 1$ and $ed \equiv 1 \mod 2^m - 1$, and suppose that $\beta_0, \beta_1, \beta_2$ satisfy

$$(\beta_0 \oplus \beta_1 \oplus \beta_2)^{-e} = \beta_0^{-e} \oplus \beta_1^{-e} \oplus \beta_2^{-e}.$$

Then the Boolean bent functions $b_i(x) = \text{Tr}_m(\beta_i x y^d)$, i = 0, 1, 2, satisfy $(b_0 \oplus b_1 \oplus b_2)^* = b_0^* \oplus b_1^* \oplus b_2^*$, see [9].

We will then show the following Theorem.

Theorem 2.1 Let m, j be integers such that $gcd(2^m - 1, 2^j + 1) = 1$ and $gcd(2^m - 1, 2^j - 1) = 2^k - 1$, let $e = 2^m - 2^j - 2$, and let d be the inverse of e modulo $2^m - 1$. Then for a basis $\{\alpha_0, \alpha_1, \ldots, \alpha_{k-1}\}$ of \mathbb{F}_{2^k} over \mathbb{F}_2 , the functions f_1 and f_2 given as

$$f_1(x) = \sum_{i=0}^{k-1} \operatorname{Tr}_m(\alpha_i x y^d) 2^i, \qquad f_2(x) = \sum_{i=0}^{k-1} \operatorname{Tr}_m(\alpha_i^{-e} x^e y) 2^i$$
(2)

are bent functions from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{Z}_{2^k} .

With an argument via algebraic degrees, we will then conclude

Corollary 2.2 Let m and j > 0 be integers such that $gcd(2^m - 1, 2^j + 1) = 1$ and $gcd(2^m - 1, 2^j - 1) = 2^k - 1$, and let $e, d, \alpha_i, 0 \le i \le k - 1$, be as in Theorem 2.1. Then the functions f_1, f_2 in (2) are bent functions from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{Z}_{2^k} , which do not come from partial spreads.

The final part of the talk is dedicated to partitions which we infer from the functions in Theorem 2.1

Let m, k be integers such that k divides m and $gcd(2^m - 1, 2^k + 1) = 1$, let $e = 2^m - 2^k - 2$ and d such that $de \equiv 1 \mod 2^m - 1$. For an element $s \in \mathbb{F}_{2^m}$ define

$$U_s := \{ (x, sx^{-e}) : x \in \mathbb{F}_{2^m} \}, \ U_s^* = U_s \setminus \{ (0, 0) \}, \text{ and } U = \{ (0, y) : y \in \mathbb{F}_{2^m} \}$$

Then $U, U_s^*, s \in \mathbb{F}_{2^m}$, form a partition of $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$. Note that $U, U_s, s \in \mathbb{F}_{2^m}$, are the subspaces of the Desarguesian spread if $2^k + 1 \equiv -e \equiv 1 \mod 2^m - 1$ (more general, if $-e \equiv 2^v \mod 2^m - 1$). Also note that U_s is not a subspace if we do not have $-e \equiv 2^v \mod 2^m - 1$ for some integer v.

Similarly, for an element $s \in \mathbb{F}_{2^m}$ we define

$$V_s := \{ (x^{-d}s, x) : x \in \mathbb{F}_{2^m} \}, \ V_s^* = V_s \setminus \{ (0, 0) \}, \text{ and } V = \{ (x, 0) : x \in \mathbb{F}_{2^m} \}.$$

Note that as above for the sets U and U_s , if $-d \equiv 2^v \mod 2^m - 1$, then V_s and V are the subspaces of the Desarguesian spread.

For the divisor k of m and an element γ of \mathbb{F}_{2^k} let

$$\mathcal{A}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{2m} \\ \operatorname{Tr}_k^m(s) = \gamma}} U_s^* \quad \text{and} \quad \mathcal{B}(\gamma) = \bigcup_{\substack{s \in \mathbb{F}_{2m} \\ \operatorname{Tr}_k^m(s) = \gamma}} V_s^*.$$

With this definitions we obtain two partitions of $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$

$$\Gamma_1 = \{ U, \mathcal{A}(\gamma); \gamma \in \mathbb{F}_{2^m} \}$$

$$\Gamma_2 = \{ V, \mathcal{B}(\gamma); \gamma \in \mathbb{F}_{2^m} \},\$$

that have similar properties as spreads have:

Theorem 2.3 Let m, k be integers such that k divides m and $gcd(2^m - 1, 2^k + 1) = 1$, and let $\pi(i) = \gamma_i$ be a one-to-one map from \mathbb{Z}_{2^k} to \mathbb{F}_{2^k} . Define functions $f_A, f_B : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{Z}_{2^k}$ as follows:

- If $(x, y) \in \mathcal{A}(\gamma_i)$ then $f_A(x, y) = i$, and, w.l.o.g., $f_A(0, y) = 0$ for all $y \in \mathbb{F}_{2^m}$;
- If $(x,y) \in \mathcal{B}(\gamma_i)$ then $f_B(x,y) = i$, and, w.l.o.g., f(x,0) = 0 for all $x \in \mathbb{F}_{2^m}$.

Then f_A, f_B are bent functions from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{Z}_{2^k} .

Theorem 2.4 Let m, k be integers such that k divides m and $gcd(2^m - 1, 2^k + 1) = 1$, let $e = 2^m - 2^k - 2$ and d such that $de \equiv 1 \mod 2^m - 1$.

I. Every Boolean function of which the support is the union of 2^{k-1} of the sets $\mathcal{A}(\gamma)$ is a bent function. Likewise, their complements, i.e., the Boolean functions with U and 2^{k-1} of the sets $\mathcal{A}(\gamma)$ as their support, are bent.

- II. Every Boolean function of which the support is the union of 2^{k-1} of the sets $\mathcal{B}(\gamma)$ is a bent function. Likewise the Boolean functions with V and 2^{k-1} of the sets $\mathcal{B}(\gamma)$ as their support, are bent.
- The duals of the bent functions of the class in I are in the class in II (and vice versa).
- **Remark 2.5** (i) In the special case k = m, the partitions Γ_1, Γ_2 reduce to a Desarguesian spread partition, and f in Theorem 2.3 is a spread function on the complete Desarguesian spread. Theorem 2.4 describes then the well known PS_{ap}^- and PS_{ap}^+ bent functions, cf. [2]. Hence we may see the bent functions in Theorem 2.3, and the Boolean bent functions in Theorem 2.4 as generalizations of the Desarguesian spread bent functions.
 - (ii) As for the classical spread functions, also the proof of Theorem 2.3, holds not only for functions from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{Z}_{2^k} , but for functions from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to any abelian group B of order 2^k . The bentness is a property of the partition of $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$. For instance, also many more vectorial bent functions in dimension k are obtained.
- (iii) Clearly, as for the spreads, the partitions Γ_1 and Γ_2 represent a whole equivalence class of partitions. Numerically we confirmed that in general Γ_1 and Γ_2 are not equivalent.

References

- C. Carlet, Relating three nonlinearity parameters of vectorial functions and building APN functions from bent functions. Des. Codes Cryptogr. 59 (2011), 89–109.
- [2] J.F. Dillon, Elementary Hadamard difference sets, Ph.D. dissertation, University of Maryland, 1974.
- [3] S. Hodžić, W. Meidl, E. Pasalic, Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image. IEEE Trans. Inform. Theory 64 (2018), 5432–5440.
- [4] T. Martinsen, W. Meidl, P. Stanica, Generalized bent functions and their gray images. In: Arithmetic of finite fields, Lecture Notes in Comput. Sci., 10064, pp. 160–173, Springer, Cham, 2016.
- [5] T. Martinsen, W. Meidl, P. Stanica, Partial spread and vectorial generalized bent functions. Des. Codes Cryptogr. 85 (2017), 1–13.
- [6] W. Meidl, A secondary construction of bent functions, octal gbent functions and their duals. Math. Comput. Simulation 143 (2018), 57–64.
- [7] W. Meidl, A. Pott, Generalized bent functions into \mathbb{Z}_{p^k} from the partial spread and the Maiorana-McFarland class, Cryptogr. Commun. 11 (2019), 1233–1245.
- [8] S. Mesnager, C. Tang, Y. Qi, L. Wang, B. Wu, K. Feng, Further results on generalized bent functions and their complete characterization. IEEE Trans. Inform. Theory 64 (2018), 5441–5452.
- [9] S. Mesnager, Several new infinite families of bent functions and their duals. IEEE Trans. Inform. Theory 60 (2014), no. 7, 4397–4407.
- [10] K. Nyberg, Perfect nonlinear S-boxes, In: Advances in cryptology-EUROCRYPT '91 (Brighton, 1991), Lecture Notes in Comput. Sci., 547, pp. 378–386, Springer, Berlin, 1991.
- [11] C. Tang, C. Xiang, Y. Qi, K. Feng, Complete characterization of generalized bent and 2^k -bent Boolean functions. IEEE Trans. Inform. Theory 63 (2017), 4668–4674.