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Abstract

We report on work in progress that is motivated by the “Big APN Problem” that concerns
the existence of APN permutations of F2n for even n ≥ 8. Let f be a function from F2n

to F2n . We define a Walsh zero space (WZ space) of f to be any F2-linear n-dimensional
space of Walsh zeros of f . This definition is motivated by the fact that a function is CCZ-
equivalent to a permutation if and only if it possesses a pair of WZ spaces that intersect
trivially. We discuss characterization of Walsh zeros and construction of WZ spaces for
quadratic functions, and we include examples and results for Gold functions and for the
function f(x) = x3 + Tr(x9).

1 Background

Let F2n denote the finite field with 2n elements. A function f : F2n → F2n is almost perfect
nonlinear (APN) if for all a, b ∈ F2n , a 6= 0, the equation f(x + a) − f(x) = b has at most two
solutions x ∈ F2n . Without loss of generality, we can normalize any APN function such that
f(0) = 0, and we will assume this throughout.

APN functions, and more generally functions with low differential uniformity, have been
extensively studied due to their importance in the design of S-boxes of block ciphers in cryptog-
raphy, where they offer the best possible protection against the differential cryptanalysis attack.
In some block cipher designs, such as substitution-permutation networks (SPN), it is required
that S-boxes are invertible mappings. Of special interest are therefore APN functions which are
invertible, that is, they are permutations of F2n . Many APN permutations of F2n are known
for odd n. It is known that APN permutations of F2n do not exist for n = 2, 4. An APN
permutation of F26 was discovered in 2009 [2]. We will briefly describe the method by which it
was found. Our description is somewhat different from [2] but it is equivalent.

Let Trns denote the trace function from F2n to its subfield F2s . The absolute trace Trn1 will
be denoted simply as Tr. Let f be a function from F2n to F2n . For (a, b) ∈ F2n × F2n we define
the Walsh transform of f at (a, b) as Wf (a, b) =

∑
x∈F2n

(−1)Tr(ax+bf(x)). We say that (a, b) is a
Walsh zero of f ifWf (a, b) = 0. The Walsh spectrum of f is the set {Wf (a, b) : a, b ∈ F2n , b 6= 0}.

Definition 1.1 Let f be a function from F2n to F2n. Suppose that S is an F2-linear subspace
of F2n × F2n such that dimF2 S = n and each element of S except (0, 0) is a Walsh zero of f .
We say that S is a WZ space of f .

Note that F2n ×{0} is a WZ space of any function on F2n . We say that two WZ spaces S, T
of the same function intersect trivially if S ∩ T = {(0, 0)}.

The CCZ-equivalence of functions was introduced by Carlet, Charpin and Zinoviev in [4].
It has many important features, in particular it preserves the APN property. The construction
of APN permutation of F26 in [2] consists of choosing a certain APN function κ on F26 , and
then finding a permutation of F26 that is CCZ-equivalent to κ. For the latter task, the following
characterization is used in [2], which we present in a different but equivalent form.

Proposition 1.2 [2] Let f be a function from F2n to F2n such that f(0) = 0. Then f is CCZ-
equivalent to a permutation of F2n if and only if there exist two WZ spaces of f that intersect
trivially.



The existence of APN permutations of F2n for even n ≥ 8 is an important open problem,
and it is called “The Big APN Problem” in [2].

Keeping in mind the approach of [2], one can attack this problem by considering a known
APN function and using Proposition 1.2 to determine if it is CCZ-equivalent to a permutation.
The first general results in this direction (i.e., involving infinite families of functions) were
announced by Göloğlu (joint work with Langevin) in 2015 at the conference Fq12 [6]. Their

work presently exists as preprint [7]. According to [7], Gold APN functions f(x) = x2
k+1,

where gcd(k, n) = 1, are never CCZ-equivalent to permutations of F2n when n is even, and

Kasami APN functions f(x) = x2
2k−2k+1, where gcd(k, n) = 1, are never CCZ-equivalent to

permutations of F2n when n is divisible by 4 (with the case n ≡ 2 (mod 4) remaining open).

2 Characterizing WZ spaces

In order to complement the previous work, we envision a different approach, while still employ-
ing Proposition 1.2. In [7] the non-existence of two trivially intersecting WZ spaces is argued by
assuming the contrary and driving this assumption to a contradiction. Instead, we plan to char-
acterize many (preferably all) WZ spaces for a given APN function, and show the non-existence
of two trivially intersecting WZ spaces in that way. This approach has some advantages. Exam-
ples of WZ spaces can be found with computer aid, which can inform the theoretical proofs. At
the same time, this proof method can also target discovery of a trivially intersecting pair of WZ
spaces should it in fact exist, which is something that the proof by contradiction can not target
as an objective. Furthermore, computer searches suggest that some APN functions (such as
Kasami and Dobbertin functions) may posses only one WZ space, namely the space F2n × {0}.
This assertion can be then set as the proof objective instead of the original objective.

2.1 Quadratic functions

We give further details for the case when the APN function is quadratic, that is, assuming that
the function is expressed in its unique polynomial form, then the exponent of each monomial has
binary weight at most 2. We note that the function κ used to construct the APN permutation
in dimension 6 is quadratic [2].

To characterize the WZ spaces of an APN function f we first have to characterize the Walsh
zeros of f . One possible way to do this is known as the “squaring method” that computes
(Wf (a, b))2, and it is often used to determine the entire Walsh spectrum of f . It associates a
certain linear form Lb to f and (a, b). As the symbol suggests, the linear form depends on b but
not on a. Then (a, b) is a Walsh zero of f if Tr(f(x)) does not vanish completely on the kernel
of Lb. For the APN function f(x) = x3 + Tr(x9) this computation was carried out in detail by
Bracken et al. in Section 2 of [1], see in particular equation (6) there. This computation was
further generalized by Budaghyan et al. in [3] to compute Walsh spectra (hence, implicitly, also
Walsh zeros) of the more general families of APN functions denoted F0, F1 and F2 in [3]. In
order to upper bound the cardinality of the kernel of the linear form, both [1] and [3] apply an
ad-hoc method developed earlier by Dobbertin [5].

It is worth noting that for investigations of such kernels one can apply a more systematic
theory developed by van der Geer and van der Vlugt [8]. While a more detailed exposition would
exceed the size limit of this abstract, we at least survey the results that one obtains in this way
for two families of quadratic APN functions.

Proposition 2.1 Let n be even, gcd(k, n) = 1, and a, b ∈ F2n. If b 6= 0, then (a, b) is a Walsh

zero of the Gold function f(x) = x2
k+1 if and only if b is a (2k +1)th power in F2n (equivalently,

b is a cube in F2n) and Trn2 (az) 6= 0 for each z ∈ F2n such that bz2
k+1 + 1 = 0.

Proposition 2.2 Let n be even and a, b ∈ F2n.
(i) If b 6= 0 and Tr(b) = 0 then (a, b) is a Walsh zero of f(x) = x3 + Tr(x9) if and only if it is a
Walsh zero of f(x) = x3.



(ii) If Tr(b) = 1, let x∗ be the unique solution of x9 + x3 + bx + 1 = 0 in F2n. Then (a, b) is a
Walsh zero of f(x) = x3 + Tr(x9) if and only if x∗ is a cube in F2n and Trn2 (az) 6= 0 for each
z ∈ F2n such that z3 = x∗.

We note that these characterizations are enabled by the fact that in both cases the kernels
are either trivial or they are cosets of F4, where z denotes any non-zero element of the kernel in
both propositions. This naturally leads to applying trace to F4. While Proposition 2.1 is likely
“folklore” (as remarked in [7]), on the other hand Proposition 2.2 appears to characterize the
kernels more explicitly than in [1].

Equipped with the previous two propositions we can construct some non-trivial WZ spaces
for the two families of APN functions under consideration.

Proposition 2.3 Let n be even and gcd(k, n) = 1. Let u ∈ F∗2n. The set

Gk,u = {(a, 0) : a ∈ F2n | Tr(ua) = 0} ∪ {(a, u−(2k+1)) : a ∈ F2n | Tr(ua) = 1}

is a WZ space of the Gold function f(x) = x2
k+1 on F2n.

Proposition 2.4 Let n be even and f(x) = x3 + Tr(x9). Let b ∈ F∗2n.
(i) If Tr(b) = 0 and b is a cube in F2n, then G1,u is a WZ space of f where u is any of the cube
roots of 1/b.
(ii) If Tr(b) = 1 then let x∗ be the unique solution of x9 +x3 + bx+ 1 = 0 in F2n. If x∗ is a cube
in F2n and u is any of the cube roots of x∗, then the set

Su = {(a, 0) : a ∈ F2n | Tr(ua) = 0} ∪ {(a, b) : a ∈ F2n | Tr(ua) = 1}

is a WZ space of f .

3 Outlook

This work is currently in progress. We hope that it would lead to an alternative and possibly
simpler proof of CCZ-inequivalence of APN Gold functions with permutations in even dimen-
sions. Computer searches suggest that in certain dimensions (e.g., n = 8) the spaces Gk,u given
in Proposition 2.3 and the space F2n ×{0} are the only WZ spaces of the Gold function. While
additional WZ spaces will possibly exist in other dimensions, it seems that a complete classi-
fication of WZ spaces should be within reach for the Gold functions. As well, we will study
Walsh zero sets of other families of quadratic APN functions with the view of possibly finding
functions with richer sets of WZ spaces.
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