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Abstract

Bent functions of the form Fy — Z, (K.-U Schmidt, 2006) are known as generalized bent
(gbent) functions. In this paper we study self-dual generalized bent functions and some their
metrical properties for the Hamming and Lee distance. Necessary and sufficient conditions
for self-duality of Maiorana—McFarland gbent functions are given. We find the complete
Hamming and Lee distance spectrums between self-dual Maiorana—McFarland gbent func-
tions and, as a corollary, we obtain minimal distances between considered self-dual gbent
functions. We prove that the set of quaternary self-dual gbent functions is metrically regular
for the Lee distance. The mapping of the set of all generalized Boolean functions in n vari-
ables to itself is called isometric if it preserves the distance between any pair of functions.
We consider the mappings obtained by a generalization of isometric mappings of the set
of all Boolean functions in n variables to itself. Within this generalization we propose an
isometric mapping that preserves both Hamming and Lee distances and transforms the set
of (anti-)self-dual gbent functions to itself.

Let F% be a set of binary vectors of length n. For z,y € F} denote (z,y) = x;vy;, where

n
i=1
the sign & denotes a sum modulo 2.

A generalized Boolean function f in n variables is any map from F3 to Z,, the integers
modulo g. The set of generalized Boolean functions in n variables is denoted by GFY, for the
Boolean case (¢ = 2) we use the notation F,. Let w = e2™/9. A sign function of f € GFY is a
complex valued function wf, we will also refer to it as to a complex vector (wfo,wf 1w 2"*1)
of length 2™, where (fo, f1,..., fon—_1) is a vector of values of the function f.

The Hamming weight wt(x) of the vector x € F4 is the number of nonzero coordinates of
x. The Hamming distance distg (f, g) between generalized Boolean functions f, g in n variables
is the cardinality of the set {z € Fy|f(x) # g(x)}. The Lee weight of the element z € Z,
is wtz,(x) = min {z,q — x}. The Lee distance distz(f, g) between f,g € GFY is

distz(f,9) = Y wtr, (6(x)),

zeFy

where 6 € GFI and §(z) = f(z) + (¢ — 1)g(x) for any = € F5. For Boolean case ¢ = 2 the

n
Hamming distance coincides with the Lee distance.

The (generalized) Walsh-Hadamard transform of f € GFY is the complex-valued function:

Hyly) = Y w91,

zelFy
A generalized Boolean function f in n variables is said to be generalized bent (gbent) if

|Hy(y)| = 2"/,
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for all y € F? [9]. If there exists such f € GFY that Hi(y) = w/W2n/2 for any y € Fy, the
gbent function f is said to be regular and fis called its dual. Note that fis generalized bent as
well. A regular gbent function f in said to be self-dual if f = f, and anti-self-dual if f = f—k 4.
Consequently, it is the case only for even g. So throughout this paper we assume that ¢ is a
natural even number.

A survey on different generalizations of bent functions can be found in [12].

Denote, according to [3], the orthogonal group of index n over the field Fy as

O, ={L e GL(n,Fy)|LL" = I},

where LT denotes the transpose of L and I,, is an identical matrix of order n over the field Fs.
Bent functions in 2k variables which have a representation

flz,y) = (2, 7(y)) © 9(y),

where z,y € IE“]Z“, m: IF’; — IE”ZC is a permutation and g is a Boolean function in k variables, form
the well known Maiorana—McFarland class of bent functions. It is known [I] that a dual of a
Maiorana—McFarland bent function f(z,y) is equal to

flz,y) = (x 7 @), y) @ g (n ().

A generalization of this construction for the case ¢ = 4 was given by Schmidt in [9]. In [I1]
this construction was given for any even ¢, thus, forming the following construction

q
fla,y) = Sl m(y)) +9(y),
where z,y € F&, 7 : F5 — F% is a permutation and g is a generalized Boolean function in k
variables. Its dual is

fle,y) = S @)y) +9 (v (@)

In the article [2] necessary and sufficient conditions of (anti-)self-duality of Maiorana—McFarland
bent functions, were given. In [10] quaternary self-dual Maiorana—McFarland bent functions were
studied and necessary and sufficient conditions of self-duality were obtained for them.

In the current work we generalize these results for any even g. Denote the sets of self-dual
and anti-self-dual generalized Maiorana—McFarland bent functions by SBqu (n) (SBga(n)).
For the Boolean case (¢ = 2) we will use the notation SB},(n) (SBjy,(n)).

Theorem 0.1 A generalized Maiorana—McFarland bent function

q n
fa.y) = 5 @.m(w) +9(w), v,y € By,
is (anti-)self-dual bent if and only if for any y € ]F'g/2
q
m(y) =Ly ®b), 9(y) =3 by +d,

where L € Op2,b € IF;/Q, wt (b) is even (odd), d € Zy,.

It follows that the number of such functions is a function of ¢ and the cardinality of the
orthogonal group.

Corollary 0.2 It holds

[SBssa ()] = [SBgpa(m)] = a- 227 O o]



In paper [4] the possible Hamming distances between (anti-)self-dual Maiorana—McFarland
bent functions for the Boolean case were studied and the complete Hamming distances spectrum
was presented, namely it was shown that for f,g € SB},(n) U SB},(n), then

. _ _ 1
dist(f, g) € {2” L gn-1 <1 + 2r> r=0,1,..,n/2 — 1} .
Moreover, it was shown that if either f, g € SBL (n) or f,g € SB),(n), then all distances given
above are attainable. If f is self-dual bent and g is anti-self-dual bent, then dist(f, g) = 2"~ L.

In the current work we generalize this result for any even ¢ in both Hamming and Lee dis-
tances. Denote the mentioned spectrum for the Hamming distance by Spg (SBqu (n) USBg 4 (n)),
while for the Lee distance the notation Spy, (SBqu (n)U SBqu(n)) is used. The Hamming
distance spectrum is described by the following

Theorem 0.3 It holds

n/2—1

Spr (SBSuga(n) USBg u(n)) = {2} U UO {2”—1 <1 + 21r) } :
r=

Moreover, all given distances are attainable.

The Lee distance spectrum is characterized by

Theorem 0.4 [t holds
q/2 nj2—1 1

Spy, (SBqu(n) U SBan(n)) ={q- 2”_2} U UO TLJO {q L gn—2 <1 + 27,) Fw- 2”_T} .

w=0 r—

Moreover, all given distances are attainable.
It is possible to derive the minimal distances from these spectrums.

Proposition 0.5 The minimal Lee distance between generalized (anti-)self-dual Maiorana—McFarland
bent functions in n variables is equal to 2" 3q, while the minimal Hamming distance is 2" 2.

Recall that RM, (r, m) is the length 2™ linear code over Z, that is generated by the monomials
of order at most r in variables x1, 3, ..., T, its minimal Lee distance is equal to 2™~ " [8]. Hence
for RM, (2, m) minimal Lee distance is equal to 2"~2. From the obtained results it follows that

Corollary 0.6 The minimal Lee distance 22 between quadratic (generalized) bent functions
is attainable on (anti-)self-dual Maiorana—McFarland bent functions from GMZ only for ¢ = 2
while the minimal Hamming distance 272 is attainable on such functions for any even q > 2.

Let X C Zy be an arbitrary set and let y € Zg be an arbitrary vector. Define the distance
between y and X as dist(y, X) = ml)r(_l dist(y, ). The mazximal distance from the set X is
re

d(X) = 11/15% dist(y, X).
q

In coding theory this number is also known as the covering radius of the set X. A vector

z € Zy is called mazimally distant from the set X if dist(z, X) = d(X). The set of all maximally
distant vectors from the set X is called the mgtm'cal complement of the set X and denoted by

X. A set X is said to be metrically reqular if X = X. A subset of Boolean functions is said to
be metrically regular if the set of corresponding vectors of values is metrically regular [13].

In paper [5)] it was proved that the set of Boolean self-dual bent functions is metrically regular
within the Hamming distance. In current work we prove that within Lee distance this statement
holds for the quaternary case ¢ = 4 as well.



Theorem 0.7 The sets of (anti-)self-dual generalized quaternary bent functions are metrically
reqular for the Lee distance.

A mapping ¢ of the set of all (generalized) Boolean functions in n variables to itself is called
isometric if it preserves the distance between functions, that is,

dist(¢(f), ¢(g)) = dist(f, g)

for any f,g € GF,. From Markov’s theorem (1956) [7] it follows that the general form of
isometric mappings of the set of all Boolean functions in n variables to itself is

f(@) — fn(z)) ® g(),

where 7 is a permutation on the set F4 and g € F,, [7]. In [6] all isometric mappings of the set of
all Boolean functions in n variables to itself, that preserve (anti-)self-duality of a bent function
were characterized.

In the current work we consider the mappings of the set of all generalized Boolean functions
in n variables to itself, which have the form

f(x) — f(x(x)) + 9(),

where 7 is a permutation on the set [} and g € GF,,. It is clear that such mappings preserve
both Hamming and Lee distances between generalized Boolean functions.

The following result provides the construction of isometric mappings that preserve both
self-duality anti-self-duality of a gbent function.

Theorem 0.8 The isometric mapping of the set of all generalized Boolean functions in n vari-
ables to itself of the form

f(@) — f(m(2)) + g(2),

with
n(e)=Lx@c), g(@)=3lea)+d,

where L € Oy, ¢ € Fy, wt(c) is even, d € Zg, preserves (anti-)self-duality of a gbent function.
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