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Abstract

Bent functions of the form Fn
2 → Zq (K.-U Schmidt, 2006) are known as generalized bent

(gbent) functions. In this paper we study self-dual generalized bent functions and some their
metrical properties for the Hamming and Lee distance. Necessary and sufficient conditions
for self-duality of Maiorana–McFarland gbent functions are given. We find the complete
Hamming and Lee distance spectrums between self-dual Maiorana–McFarland gbent func-
tions and, as a corollary, we obtain minimal distances between considered self-dual gbent
functions. We prove that the set of quaternary self-dual gbent functions is metrically regular
for the Lee distance. The mapping of the set of all generalized Boolean functions in n vari-
ables to itself is called isometric if it preserves the distance between any pair of functions.
We consider the mappings obtained by a generalization of isometric mappings of the set
of all Boolean functions in n variables to itself. Within this generalization we propose an
isometric mapping that preserves both Hamming and Lee distances and transforms the set
of (anti-)self-dual gbent functions to itself.

Let Fn2 be a set of binary vectors of length n. For x, y ∈ Fn2 denote 〈x, y〉 =
n⊕
i=1

xiyi, where

the sign ⊕ denotes a sum modulo 2.
A generalized Boolean function f in n variables is any map from Fn2 to Zq, the integers

modulo q. The set of generalized Boolean functions in n variables is denoted by GFqn, for the
Boolean case (q = 2) we use the notation Fn. Let ω = e2πi/q. A sign function of f ∈ GFqn is a
complex valued function ωf , we will also refer to it as to a complex vector

(
ωf0 , ωf1 , ..., ωf2n−1

)
of length 2n, where (f0, f1, ..., f2n−1) is a vector of values of the function f .

The Hamming weight wtH(x) of the vector x ∈ Fn2 is the number of nonzero coordinates of
x. The Hamming distance distH(f, g) between generalized Boolean functions f, g in n variables
is the cardinality of the set {x ∈ Fn2 |f(x) 6= g(x)}. The Lee weight of the element x ∈ Zq
is wtL(x) = min {x, q − x}. The Lee distance distL(f, g) between f, g ∈ GFqn is

distL(f, g) =
∑
x∈Fn

2

wtL (δ(x)) ,

where δ ∈ GFqn and δ(x) = f(x) + (q − 1)g(x) for any x ∈ Fn2 . For Boolean case q = 2 the
Hamming distance coincides with the Lee distance.

The (generalized) Walsh–Hadamard transform of f ∈ GFqn is the complex-valued function:

Hf (y) =
∑
x∈Fn

2

ωf(x)(−1)〈x,y〉.

A generalized Boolean function f in n variables is said to be generalized bent (gbent) if

|Hf (y)| = 2n/2,
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for all y ∈ Fn2 [9]. If there exists such f̃ ∈ GFqn that Hf (y) = ωf̃(y)2n/2 for any y ∈ Fn2 , the

gbent function f is said to be regular and f̃ is called its dual. Note that f̃ is generalized bent as
well. A regular gbent function f in said to be self-dual if f = f̃ , and anti-self-dual if f = f̃ + q

2 .
Consequently, it is the case only for even q. So throughout this paper we assume that q is a
natural even number.

A survey on different generalizations of bent functions can be found in [12].
Denote, according to [3], the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) |LLT = In

}
,

where LT denotes the transpose of L and In is an identical matrix of order n over the field F2.
Bent functions in 2k variables which have a representation

f(x, y) = 〈x, π(y)〉 ⊕ g(y),

where x, y ∈ Fk2, π : Fk2 → Fk2 is a permutation and g is a Boolean function in k variables, form
the well known Maiorana–McFarland class of bent functions. It is known [1] that a dual of a
Maiorana–McFarland bent function f(x, y) is equal to

f̃(x, y) = 〈π−1(x), y〉 ⊕ g
(
π−1(x)

)
.

A generalization of this construction for the case q = 4 was given by Schmidt in [9]. In [11]
this construction was given for any even q, thus, forming the following construction

f(x, y) =
q

2
〈x, π(y)〉+ g(y),

where x, y ∈ Fk2, π : Fk2 → Fk2 is a permutation and g is a generalized Boolean function in k
variables. Its dual is

f̃(x, y) =
q

2
〈π−1(x), y〉+ g

(
π−1(x)

)
.

In the article [2] necessary and sufficient conditions of (anti-)self-duality of Maiorana–McFarland
bent functions, were given. In [10] quaternary self-dual Maiorana–McFarland bent functions were
studied and necessary and sufficient conditions of self-duality were obtained for them.

In the current work we generalize these results for any even q. Denote the sets of self-dual
and anti-self-dual generalized Maiorana–McFarland bent functions by SB+

GMq(n) (SB−GMq(n)).

For the Boolean case (q = 2) we will use the notation SB+
M(n) (SB−M(n)).

Theorem 0.1 A generalized Maiorana–McFarland bent function

f(x, y) =
q

2
〈x, π(y)〉+ g(y), x, y ∈ Fn/22 ,

is (anti-)self-dual bent if and only if for any y ∈ Fn/22

π(y) = L (y ⊕ b) , g(y) =
q

2
〈b, y〉+ d,

where L ∈ On/2, b ∈ Fn/22 , wt (b) is even (odd), d ∈ Zq.

It follows that the number of such functions is a function of q and the cardinality of the
orthogonal group.

Corollary 0.2 It holds ∣∣SB+
GMq(n)

∣∣ =
∣∣SB−GMq(n)

∣∣ = q · 2n/2−1
∣∣On/2∣∣ .



In paper [4] the possible Hamming distances between (anti-)self-dual Maiorana–McFarland
bent functions for the Boolean case were studied and the complete Hamming distances spectrum
was presented, namely it was shown that for f, g ∈ SB+

M(n) ∪ SB−M(n), then

dist(f, g) ∈
{

2n−1, 2n−1
(

1± 1

2r

)
, r = 0, 1, ..., n/2− 1

}
.

Moreover, it was shown that if either f, g ∈ SB+
M(n) or f, g ∈ SB−M(n), then all distances given

above are attainable. If f is self-dual bent and g is anti-self-dual bent, then dist(f, g) = 2n−1.
In the current work we generalize this result for any even q in both Hamming and Lee dis-

tances. Denote the mentioned spectrum for the Hamming distance by SpH
(
SB+
GMq(n) ∪ SB−GMq(n)

)
,

while for the Lee distance the notation SpL
(
SB+
GMq(n) ∪ SB−GMq(n)

)
is used. The Hamming

distance spectrum is described by the following

Theorem 0.3 It holds

SpH
(
SB+
GMq(n) ∪ SB−GMq(n)

)
=
{

2n−1
}
∪
n/2−1⋃
r=0

{
2n−1

(
1± 1

2r

)}
.

Moreover, all given distances are attainable.

The Lee distance spectrum is characterized by

Theorem 0.4 It holds

SpL
(
SB+
GMq(n) ∪ SB−GMq(n)

)
=
{
q · 2n−2

}
∪

q/2⋃
w=0

n/2−1⋃
r=0

{
q · 2n−2

(
1± 1

2r

)
∓ w · 2n−r

}
.

Moreover, all given distances are attainable.

It is possible to derive the minimal distances from these spectrums.

Proposition 0.5 The minimal Lee distance between generalized (anti-)self-dual Maiorana–McFarland
bent functions in n variables is equal to 2n−3q, while the minimal Hamming distance is 2n−2.

Recall that RMq (r,m) is the length 2m linear code over Zq that is generated by the monomials
of order at most r in variables x1, x2, ..., xm, its minimal Lee distance is equal to 2m−r [8]. Hence
for RMq (2,m) minimal Lee distance is equal to 2n−2. From the obtained results it follows that

Corollary 0.6 The minimal Lee distance 2n−2 between quadratic (generalized) bent functions
is attainable on (anti-)self-dual Maiorana–McFarland bent functions from GMq

n only for q = 2
while the minimal Hamming distance 2n−2 is attainable on such functions for any even q > 2.

Let X ⊆ Znq be an arbitrary set and let y ∈ Znq be an arbitrary vector. Define the distance
between y and X as dist(y,X) = min

x∈X
dist(y, x). The maximal distance from the set X is

d(X) = max
y∈Zn

q

dist(y,X).

In coding theory this number is also known as the covering radius of the set X. A vector
z ∈ Znq is called maximally distant from the set X if dist(z,X) = d(X). The set of all maximally
distant vectors from the set X is called the metrical complement of the set X and denoted by

X̂. A set X is said to be metrically regular if
̂̂
X = X. A subset of Boolean functions is said to

be metrically regular if the set of corresponding vectors of values is metrically regular [13].
In paper [5] it was proved that the set of Boolean self-dual bent functions is metrically regular

within the Hamming distance. In current work we prove that within Lee distance this statement
holds for the quaternary case q = 4 as well.



Theorem 0.7 The sets of (anti-)self-dual generalized quaternary bent functions are metrically
regular for the Lee distance.

A mapping ϕ of the set of all (generalized) Boolean functions in n variables to itself is called
isometric if it preserves the distance between functions, that is,

dist(ϕ(f), ϕ(g)) = dist(f, g)

for any f, g ∈ GFn. From Markov’s theorem (1956) [7] it follows that the general form of
isometric mappings of the set of all Boolean functions in n variables to itself is

f(x) −→ f(π(x))⊕ g(x),

where π is a permutation on the set Fn2 and g ∈ Fn [7]. In [6] all isometric mappings of the set of
all Boolean functions in n variables to itself, that preserve (anti-)self-duality of a bent function
were characterized.

In the current work we consider the mappings of the set of all generalized Boolean functions
in n variables to itself, which have the form

f(x) −→ f(π(x)) + g(x),

where π is a permutation on the set Fn2 and g ∈ GFn. It is clear that such mappings preserve
both Hamming and Lee distances between generalized Boolean functions.

The following result provides the construction of isometric mappings that preserve both
self-duality anti-self-duality of a gbent function.

Theorem 0.8 The isometric mapping of the set of all generalized Boolean functions in n vari-
ables to itself of the form

f(x) −→ f(π(x)) + g(x),

with
π(x) = L (x⊕ c) , g(x) =

q

2
〈c, x〉+ d,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ Zq, preserves (anti-)self-duality of a gbent function.
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