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Abstract

Properties of a secondary bent function construction, that inverts values of a given bent
function on an affine subspace, are obtained. Some results regarding normal and weakly
normal bent functions are generalized. Bent functions and their dual functions are considered
in the construction context.

1 Preliminaries

Let us recall some definitions. A bent function is a Boolean function in even number of variables
that is at the maximal possible Hamming distance from the set of all affine Boolean functions.
Bent functions were introduced by O. Rothaus [1]. Additional information regarding them can
be found in [2, 3]. Let 〈x, y〉 = x1y1 ⊕ . . . ⊕ xnyn, where x, y ∈ Fn2 . Let us denote by IndS the
characteristic function of a set S ⊆ Fn2 and by Dαf(x) = f(x) ⊕ f(x ⊕ α) the derivative of a
Boolean function f in the direction α. For x ∈ Fn2 and k ≤ n, let us define

Projk(x) = (x1, . . . , xk),

P rojk(S) = {Projk(x) | x ∈ S},
Elemk(S) = {x ∈ Fk2 | (x, 0, . . . , 0︸ ︷︷ ︸

n−k

) ∈ S}.

Hereinafter we suppose that n is even. By Bn we denote the set of all bent functions in n
variables, by f̃ the dual bent function of f ∈ Bn.

In this work, we consider properties of a bent function construction

f ⊕ IndU ,

where f ∈ Bn is a given bent function and U is an affine subspace of an arbitrary dimen-
sion. Necessary and sufficient conditions for f ⊕ IndU to be a bent function were proven by
C. Carlet [4].

Theorem 1.1 (C. Carlet, 1994) Let f ∈ Bn, L ⊆ Fn2 be a linear subspace and a ∈ Fn2 . Then

f ⊕ Inda⊕L is a bent function if and only if any of the following equivalent conditions hold:

• Dαf is balanced on a⊕ L for all α ∈ Fn2 \ L;

• f̃(x)⊕ 〈a, x〉 is either constant or balanced on each coset of L⊥.

We will use the second condition. The next two sections describe properties of a dual bent
function f̃ .



2 A balanced representation

Let us introduce the following notion.

Definition 2.1 A Boolean function f in n variables has a balanced representation by a linear
subspace L ⊆ Fn2 if f is either constant or balanced on each coset of L.

Note that any function has a balanced representation by the 0-dimensional linear subspace
(“either constant or balanced” case allows us to ignore its odd cardinality). The same situation
holds for a 1-dimensional linear subspace.

First of all, there are some additional details regarding balanced representations of bent
functions.

Theorem 2.2 Let f ∈ Bn and L be a linear subspace, dimL ≤ n/2. Then

• f has a balanced representation by L if and only if f is constant on each of some 2n−2 dimL

distinct cosets of L;

• f can not be constant on more than 2n−2 dimL distinct cosets of L.

Note that the case dimL = n/2 is especially interesting for bent functions. A large class of
normal bent functions for this representation was introduced by H. Dobbertin [5].

3 A balanced representation of iterative constructed functions

Let us consider the simplest iterative construction of a bent function f+2 by f ∈ Bn:

f+2(x1, . . . , xn+2) = f(x1, . . . , xn)⊕ xn+1xn+2.

Recall that f+2 ∈ Bn+2 if and only if f ∈ Bn. Also, it holds

f̃+2(x1, . . . , xn+2) = f̃(x1, . . . , xn)⊕ xn+1xn+2.

The question is the following: whether the balanced representations for f and f+2 are con-
nected or not.

Proposition 3.1 Let f ∈ Bn have a balanced representation by L ⊆ Fn2 . Then the bent function
f+2 has balanced representations by

• L0 = {(x, 0, 0) | x ∈ L}, i. e. dimL0 = dimL;

• L1 = {(x, y, 0) | x ∈ L, y ∈ F2}, i. e. dimL1 = dimL+ 1.

Moreover, there is a “feedback” from the f+2 to f .

Theorem 3.2 Let f ∈ Bn and suppose that f+2 have a balanced representation by a linear
subspace L ⊆ Fn+2

2 . Then there exists a linear subspace L′ ⊆ Fn2 with

dimL− 1 ≤ dimL′ ≤ dimL

such that f has a balanced representation by L′. Moreover, it holds

Elemn(L) ⊆ L′ ⊆ Projn(L).

In case dimL = n/2 + 1 Theorem 3.2 can be easily transformed to “f is normal if and only if
f+2 is normal” that was proven in [6]. I. e. it is a generalization of weakly normal and normal
bent function properties.



4 Subspaces for iterative constructed functions

Using Theorem 1.1, the results of Section 3 can be generalized to the construction properties.

Proposition 4.1 Let f ∈ Bn and f ⊕ IndU ∈ Bn, where U is an affine subspace of Fn2 . Then
for the bent function f+2 the following statements hold:

• f+2 ⊕ IndU1 ∈ Bn+2, where U1 = {(x, y, 0) | x ∈ U, y ∈ F2}, i. e. dimU1 = dimU + 1;

• f+2 ⊕ IndU2 ∈ Bn+2, where U2 = {(x, y, z) | x ∈ U, y, z ∈ F2}, i. e. dimU2 = dimU + 2.

Theorem 4.2 Let f+2 ∈ Bn+2 and f+2⊕ Inda⊕L ∈ Bn+2, where L ⊆ Fn+2
2 is a linear subspace,

a ∈ Fn+2
2 . Then there exists a linear subspace L′ ⊆ Fn2 with

dimL− 2 ≤ dimL′ ≤ dimL− 1

such that f ⊕ IndProjn(a)⊕L′ ∈ Bn. Moreover, it holds

Elemn(L) ⊆ L′ ⊆ Projn(L).

Similarly to Theorem 3.2, in case dimL = n/2 + 1, Theorem 4.2 can be reformulated in terms
of weakly normal bent function properties.

Trivial subspace dimensions for f ∈ Bn are n (just negation of the function) and n− 1 (ad-
dition of an affine function). We can naturally exclude these dimensions from the construction.

Computational experiments (see Section 5) show that for the non-weakly normal bent func-
tion f10 ∈ B10 found in [7] (Fact 14) the following fact holds.

Fact 4.3 For any affine subspace U ⊆ F10
2 , dimU ≤ 8, it holds that f10 ⊕ IndU /∈ B10.

Corollary 4.4 For any n ≥ 10, there exists a bent function f ∈ Bn such that f ⊕ IndU /∈ Bn
for any affine subspace U ⊆ Fn2 of dimension at most n/2 + 3.

5 Search subspaces

For a given f ∈ Bn, the algorithm described in [6] can help to construct all affine subspaces
U ⊆ Fn2 (of an arbitrary dimension) such that f ⊕ IndU ∈ Bn. Though it constructs affine
subspaces such that f is affine on each of them, it “sorts” cosets for a convenient usage in a
balanced representation.

The algorithm complexity can be calculated in the following way:

n

n/2∑
m=1

(
|Lm(f̃)|+ (2m − 2)|L0

m(f̃)|
)

+O(n2n),

where Lm(f) (L0
m(f)) is the set of an m-dimensional affine subspaces such that f is affine

(constant) on them.

6 Count of the constructed functions

For f ∈ Bn and 0 ≤ m ≤ n, we define

Constrm(f) = {f ⊕ IndU | U is an m-dimensional affine subspace of Fn2} ∩ Bn.

Theorem 6.1 Let f ∈ Bn and f⊕IndU ∈ Bn, where U is an affine subspace of Fn2 of dimension
at most n/2 + 1. Then

supp{f̃ ⊕ ˜(f ⊕ IndU )}

is an affine subspace too.



Corollary 6.2 |Constrm(f)| = |Constrm(f̃)| for m ≤ n/2 + 1.

Unlike n/2 and n/2 + 1 dimensions, for other cases we have

• supp{f̃ ⊕ ˜(f ⊕ IndU )} may not be an affine subspace;

• |Constrm(f)| and |Constrm(f̃)| may not be equal; such bent functions in 8 variables exist,
for instance, in Maiorana–McFarland class [8].

Thus, for an arbitrary subspace dimensions, some construction properties differ from the case
m = n/2.

It is well known that |Constrm(f)| = 0 for m < n/2. The following theorem estimates
cardinalities of all other Constrm(f).

Theorem 6.3 For f ∈ Bn and m ≥ n/2, it holds

|Constrm(f)| ≤ 2n−m
n−m∏
i=1

22m+2i−n − 1

2i − 1
.

Moreover, for m ≤ n− 2, the bound is reached if and only if f is quadratic.

This estimate generalizes the bound from [9] for the case m = n/2.
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