Invariants for equivalence relations on APN functions

Nikolay S. Kaleyski

University of Bergen

Boolean Functions and their Applications (BFA) 2020

Vectorial Boolean Functions

- Vectorial Boolean Function, or (n, m)-function: $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$;
- substitution of sequences of n bits with sequences of m bits;
- core component of cryptographic algorithms;
- $n=m$;
- finite field interpretation: $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$;
- unique representation as a univariate polynomial

$$
F(x)=\sum_{i=0}^{2^{n}-1} \alpha_{i} x^{i}, \alpha_{i} \in \mathbb{F}_{2^{n}}
$$

- algebraic degree $\operatorname{deg}(F)$: maximum binary weight of exponent with non-zero coefficient in univariate representation;
- affine, quadratic, cubic functions: of algebraic degree 1, 2, 3, respectively.

Equivalence relations on vectorial Boolean functions

- There are $\left(2^{n}\right)^{2^{n}}$ functions over $\mathbb{F}_{2^{n}}$;
- classification is done up to an equivalence relation preserving the properties of interest;
- two important cryptographic properties of an (n, n)-function are its differential uniformity Δ_{F} and its nonlinearity $\mathcal{N} \mathcal{L}(F)$;
- the differential uniformity of F is

$$
\Delta_{F}=\max _{a \in \mathbb{F}_{2^{*}}, b \in \mathbb{F}_{2^{n}}} \#\left\{x \in \mathbb{F}_{2^{n}}: F(x)+F(a+x)=b\right\} ;
$$

- Δ_{F} should be as low as possible to resist differential cryptanalysis;
- $\Delta_{F} \geq 2$ for any F, with optimal functions called almost perfect nonlinear (APN);
- the nonlinearity $\mathcal{N L}(F)$ of F is the minimum Hamming distance between a component function $F_{c}(x)=\operatorname{Tr}(c F(x))$ of F, and an affine ($n, 1$)-function;
- nonlineaity should be high to resist linear attacks, and we have $\mathcal{N} \mathcal{L}(F) \leq 2^{n-1}-2^{(n-1) / 2}$, with functions attaining this bound with equality called almost bent ($A B$).

CCZ-equivalence

- We say that $F_{1}, F_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are Carlet-Charpin-Zinoviev (CCZ)-equivalent if

$$
\mathcal{A}\left(\Gamma_{F_{1}}\right)=\Gamma_{F_{2}}
$$

for an affine bijection $\mathcal{A}: \mathbb{F}_{2^{n}}^{2} \rightarrow \mathbb{F}_{2^{n}}^{2}$, where $\Gamma_{F}=\left\{(x, F(x)): x \in \mathbb{F}_{2^{n}}\right\}$ is the graph of F;

- CCZ-equivalence is the most general known equivalence relation that preserves differential uniformity and nonlinearity;
- APN and AB functions are typically classified up to CCZ-equivalence;
- CCZ-equivalence does not preserve e.g. algebraic degree or bijectivity, and so can be used constructively;
- the only known APN permutation for even n was found by investigating the CCZ-equivalence class of the Kim function ${ }^{1}$;
- can be tested via CCZ-equivalence of given F and G computationally via linear codes \mathcal{C}_{F} and \mathcal{C}_{G} associated to F and G.

[^0]
EA-equivalence

- We say that $F_{1}, F_{2}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are extended affine (EA)-equivalent if

$$
A_{1} \circ F_{1} \circ A_{2}+A=F_{2}
$$

for $A_{1}, A_{2}, A: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ affine, with A_{1}, A_{2} bijective;

- EA-equivalence implies CCZ-equivalence;
- EA-equivalence (and taking inverses) is strictly less general than CCZ-equivalence;
- the two equivalence relations coincide for certain important classes of functions, such as for quadratic APN functions;
- EA-equivalence is easier to apply constructively, but also leaves more properties invariant (e.g. algebraic degree), and hence allows less freedom;
- can be tested via via linear codes ${ }^{2}$ or by guessing $A_{1}{ }^{3}$.

[^1]
Desirable properties for invariants

(1) Simple (not requiring any complicated algorithms or libraries);
(2) efficient (fast computation time);
(3) useful (taking many different values).

The Walsh transform

- The Walsh transform of $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is $W_{F}: \mathbb{F}_{2^{n}}^{2} \rightarrow \mathbb{Z}$ defined by

$$
W_{F}(a, b)=\sum_{x \in \mathbb{F}_{2^{n}}} \chi(b F(x)+a x),
$$

where $\chi(x)=(-1)^{\operatorname{Tr}(x)}$ and $\operatorname{Tr}(x)=\sum_{i=0}^{n-1} x^{2^{i}}$ is the absolute trace of $\mathbb{F}_{2^{n}}$;

- various properties, e.g. differential uniformity and nonlinearity, can be characterized using the Walsh transform;
- the multiset

$$
\mathcal{W}_{F}=\left\{\left|W_{F}(a, b)\right|: a, b \in \mathbb{F}_{2^{n}}\right\},
$$

called the extended Walsh spectrum, is a CCZ-invariant;

- computation only requires basic arithmetic and bitwise operations (truth table representation);

n	6	7	8	9	10
time	0.023	0.076	0.391	2.863	22.566

The Walsh transform (2)

- The Walsh transform is not very useful for deciding CCZ-equivalence;
- experimentally, the known APN classes fall into only two or three distinct classes based on their extended Walsh spectra.

n	all	classes
5^{4}	3	$2 / 1$
6^{4}	14	$13 / 1$
7^{5}	490	$489 / 1$
8^{5}	8181	$7681 / 487 / 12$
9^{6}	11	$10 / 1$
10^{6}	16	$15 / 1$
11^{6}	13	$12 / 1$

[^2]
Invariants from associated designs ${ }^{7}$

- The set of all pairs $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ can be used as the set of points for two combinatorial designs: $\operatorname{dev}\left(G_{F}\right)$, whose blocks are the sets

$$
\left\{(x+a, F(x)+b): x \in \mathbb{F}_{2^{n}}\right\} ; a, b \in \mathbb{F}_{2^{n}}
$$

and $\operatorname{dev}\left(D_{F}\right)$, whose blocks are the sets

$$
\left\{(x+y+a, F(x)+F(y)+b): x, y \in \mathbb{F}_{2^{n}}, x \neq y\right\} ; a, b \in \mathbb{F}_{2^{n}}
$$

- the rank of the incidence matrix of $\operatorname{dev}\left(G_{F}\right)$, resp. $\operatorname{dev}\left(D_{F}\right)$, is called the Г-rank, resp. Δ-rank of F;
- the Γ - and Δ-rank are useful CCZ-invariants;
- their computations amounts to constructing a large matrix, and computing its rank.

n	time	all	Γ-values	Δ-values
6	2	14	9	3
7	15	490	14	6
8	138	8181	21	11
9	4229	11	10	8
10	899024	16	15	-

[^3]
Invariants from associated designs (2)

- The orders of the automorphism groups of $\operatorname{dev}\left(G_{F}\right)$ and $\operatorname{dev}\left(D_{F}\right)$ are also CCZ-invariant;
- computing these takes a significantly longer time (4 seconds for $n=6,75$ seconds for $n=7$) than the Γ - and Δ-rank, and is only feasible for small dimensions;
- the multiplier group $\mathcal{M}\left(G_{F}\right)$ is the subgroup of the automorphism group of $\operatorname{dev}\left(G_{F}\right)$ consisting of automorphisms of a special form;
- computing the order of $\mathcal{M}\left(G_{F}\right)$ is quite fast, and appears to be useful for discriminating between CCZ-classes;

n	all	$\operatorname{dev}\left(G_{F}\right)$	$\operatorname{dev}\left(D_{F}\right)$	$\mathcal{M}\left(G_{F}\right)$
5	3	2	3	2
6	14	8	6	7
7	490	5	6	5
8	8181	-	-	10
9	11	-	-	5
10	16	-	-	9

The distance invariant ${ }^{8}$

- A lower bound on the Hamming distance between a given APN F and any other APN function G is given in terms of a set Π_{F};
- let

$$
\Pi_{F}^{c}(b)=\left\{a \in \mathbb{F}_{2^{n}}:\left(\exists x \in \mathbb{F}_{2^{n}}\right) F(x)+F(a+x)+F(a+c)=b\right\}
$$

for any $b, c \in \mathbb{F}_{2^{n}}$;

- let Π_{F} be the multiset $\Pi_{F}=\left\{\# \Pi_{F}^{c}(b): b, c \in \mathbb{F}_{2^{n}}\right\}$;
- then the distance between F and G is at least $\left\lceil\min \Pi_{F} / 3\right\rceil+1$;
- more importantly, the multiset Π_{F} is a CCZ-invariant for APN functions;
- the actual minimum distance is not a CCZ-invariant!

[^4]
The distance invariant (2)

- computation requires only basic arithmetic operations, and can be efficiently implemented via a truth table
- for F quadratic, $\Pi_{F}^{c}(b)$ does not depend on c, so computation is even more efficient.

n	time Π_{F}^{0}	time Π_{F}	all	values
5	0.002	0.064	3	2
6	0.003	0.192	14	5
7	0.004	0.512	490	2
8	0.004	1.024	8181	6669
9	0.005	2.56	11	2
10	0.031	31.744	16	1
11	0.066	135.168	13	2

- all representatives from known infinite families (besides the inverse function) have the same value of Π_{F} !

An EA-invariant from sums of values ${ }^{9}$

- While studying an approach for reconstructing the EA-equivalence of two given functions, the following EA-invariant is introduced;
- let

$$
\mathcal{T}_{k}(t)=\left\{\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq \mathbb{F}_{2^{n}}: \#\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}=k, \sum_{i=1}^{k} x_{i}=t\right\} ;
$$

- consider the multiset

$$
\Sigma_{k}^{F}(t)=\left\{\sum_{i=1}^{k} F\left(x_{i}\right):\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{T}_{k}(t)\right\} ;
$$

- the multiplicities with which the elements of $\Sigma_{k}^{F}(t)$ occur is an EA-invariant for even values of k;
- if $A_{1} \circ F \circ A_{2}+A=G$, then the elements in $\Sigma_{k}^{F}(t)$ and in $\Sigma_{k}^{G}(t)$ occur with the same multiplicities, and x and $A_{1}(x)$ must have the same multiplicity for any $x \in \mathbb{F}_{2^{n}}$.

[^5]
An EA-invariant from sums of values (2)

- The multiplicity of $s \in \mathbb{F}_{2^{n}}$ in $\Sigma_{k}^{F}(t)$ can be computed as

$$
2^{-2 n} \sum_{a \in \mathbb{F}_{2^{n}}} \chi(a t) \sum_{b \in \mathbb{F}_{2^{n}}} \chi(b s) W_{F}^{k}(a, b)
$$

- the complexity does not depend on k;
- computing the number of distinct combinations of multiplicities for small dimensions for e.g. $k=4$ gives the following picture;

n	all	values
6	14	5
7	19	1
8	23	5

- upon closer examination, for APN functions, the multiplicities of $\Sigma_{F}^{k}(t)$ and the set Π_{F}^{0} are exactly the same invariant;
- the partition of the functions from the switching classes looks very similar to the one for Π_{F};
- in fact, the inverse function for odd dimensions has the same value of Π_{F}^{0} as the remaining functions, and only Π_{F}^{c} with $c \neq 0$ can differentiate it.

An EA-invariant from sums of values (3)

- So $\Sigma_{F}^{4}(t)$ partitions the switching class representatives exactly as Π_{F}^{0} does;
- this is no surprise: since
$\Pi_{F}^{0}=\left\{\#\left\{a \in \mathbb{F}_{2^{n}}: F(x)+F(a+x)+F(a)=b\right\}: b \in \mathbb{F}_{2^{n}}\right\}$, for an APN function F, this is the same as counting the number of pairs (a, x) for which $F(x)+F(a+x)+F(a)=b$;
- at the same time, $\Sigma_{3}^{F}(0)$ expresses the multiplicities in

$$
\left\{F\left(x_{1}\right)+F\left(x_{2}\right)+F\left(x_{1}+x_{2}\right): x_{1}, x_{2}\right\}=\left\{F(x)+F(a)+F(x+a): x, a \in \mathbb{F}_{2^{n}}\right\} ;
$$

- for $\Sigma_{4}^{F}(0)$, we are considering sums of the form

$$
F\left(x_{1}\right)+F\left(x_{2}\right)+F\left(x_{3}\right)+F\left(x_{1}+x_{2}+x_{3}\right)=D_{c} F\left(x_{1}\right)+D_{c} F\left(x_{3}\right)
$$

for $c=x_{1}+x_{2}$, that is
$D_{c} F\left(x_{1}+x_{3}\right)+D_{c} F(0)=F\left(x_{1}+x_{2}\right)+F\left(x_{1}+x_{3}\right)+F\left(x_{2}+x_{3}\right)+F(0)$
for quadratic F;

- on the other hand, the multiplicities in $\Sigma_{F}^{4}(0)$ are an EA-invariant regardless of whether F is APN or not.

An EA-invariant using dimensions of suspaces ${ }^{10}$

- Let $\mathcal{S}(F)=\left\{b \in \mathbb{F}_{2^{n}}:\left(\exists a \in \mathbb{F}_{2^{n}}\right) W_{F}(a, b)=0\right\}$;
- the elements of b represent the component functions of F that are not bent;
- let N_{i}^{F} denote the number of i-dimensional subspaces contained in $\mathcal{S}(F)$;
- then the numbers N_{i} for $i=1,2,3, \ldots n$ are an EA-invariant;
- the computation requires an exhaustive search over all subspaces in $\mathcal{S}(F)$, which can be fairly large, but does not require any operations beyond basic arithmetics and algebraic closure;
- for $n=6,\left(N_{i}\right)_{i}$ takes 6 distinct values, so it appears to be somewhat more discriminating than Π_{F}^{0}.

[^6]
Thickness spectrum ${ }^{11}$

- The thickness spectrum of a function F is defined in terms of subspaces in the set of Walsh zeros

$$
Z_{F}=\left\{(a, b): a, b \in \mathbb{F}_{2^{n}} \mid W_{F}(a, b)=0\right\} \cup\{(0,0)\} ;
$$

- the thickness of a subspace $V \subseteq Z_{F}$ is the dimension of the projection of V on $\left\{(0, x): x \in \mathbb{F}_{2^{n}}\right\}$;
- let Σ_{F} be the set of n-dimensional subspaces of Z_{F}, for F over $\mathbb{F}_{2^{n}}$;
- for every i, we record the number N_{i} of $V \in \Sigma_{F}$ such that $t(V)=i$;
- the list of N_{i} for all i, called the thickness spectrum of F, is then invariant under EA-equivalence;
- it can have distinct values for distinct EA-classes within the same CCZ-equivalence class;
- computation involves counting subspaces.

[^7]
Thank you!

[^0]: ${ }^{1}$ K.A. Browning, J.F. Dillon, M.T. McQuistan, A.J. Wolfe. An APN permutation in dimension six. Finite Fields: theory and applications, 2010, 518, pp.33-42.

[^1]: ${ }^{2}$ Y. Edel and A. Pott, On the equivalence of nonlinear functions. In: Enhancing cryptographic primitives with techniques from error correcting codes. Vol. 23. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Amsterdam: IOS, 2009, pp. 87-103.
 ${ }^{3}$ N. Kaleyski, Deciding EA-equivalence via invariants, to be presented at SETA-2020

[^2]: ${ }^{4}$ Y. Edel and A. Pott, On the equivalence of nonlinear functions. In: Enhancing cryptographic primitives with techniques from error correcting codes. Vol. 23. NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Amsterdam: IOS, 2009, pp. 87-103.
 ${ }^{5}$ Y., Yu, M. Wang, and Y., Li. A matrix approach for constructing quadratic APN functions. Designs, codes and cryptography, 2014, 73(2), pp.587-600.
 ${ }^{6}$ Representatives from known infinite families

[^3]: ${ }^{7}$ Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3(1), p.59.

[^4]: ${ }^{8}$ L. Budaghyan, C. Carlet, T. Helleseth, N. Kaleyski. On the distance between APN functions. IEEE Transactions on Information Theory, 2020.

[^5]: ${ }^{9}$ N. Kaleyski. Deciding EA-equivalence via invariants, SETA-2020.

[^6]: 10 L. Budaghyan, M. Calderini, C. Carlet, R. Coulter, I. Villa. Generalized Isotopic Shift Construction for APN Functions. To appear in Designs, Codes and Cryptography.
 F. Gologlu, J. Pavlu. Search for APN permutations among known APN functions. BFA-2019.

[^7]: ${ }^{11}$ A. Canteaut, L. Perrin. On CCZ-equivalence, extended-affine equivalence, and function twisting. Finite Fields and Their Applications, 2019, 56, pp.209-246.

