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Vectorial Boolean Functions

Vectorial Boolean Function, or (n,m)-function: F : Fn
2 → Fm

2 ;
substitution of sequences of n bits with sequences of m bits;
core component of cryptographic algorithms;
n = m;
finite field interpretation: F : F2n → F2n ;
unique representation as a univariate polynomial

F (x) =
2n−1∑
i=0

αi x i , αi ∈ F2n ;

algebraic degree deg(F ): maximum binary weight of exponent with
non-zero coefficient in univariate representation;
affine, quadratic, cubic functions: of algebraic degree 1, 2, 3,
respectively.
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Equivalence relations on vectorial Boolean functions
There are (2n)2n functions over F2n ;
classification is done up to an equivalence relation preserving the
properties of interest;
two important cryptographic properties of an (n, n)-function are its
differential uniformity ∆F and its nonlinearity NL(F );
the differential uniformity of F is

∆F = max
a∈F∗

2n ,b∈F2n
#{x ∈ F2n : F (x) + F (a + x) = b};

∆F should be as low as possible to resist differential cryptanalysis;
∆F ≥ 2 for any F , with optimal functions called almost perfect
nonlinear (APN);
the nonlinearity NL(F ) of F is the minimum Hamming distance
between a component function Fc (x) = Tr(cF (x)) of F , and an
affine (n, 1)-function;
nonlineaity should be high to resist linear attacks, and we have
NL(F ) ≤ 2n−1 − 2(n−1)/2, with functions attaining this bound with
equality called almost bent (AB).
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CCZ-equivalence
We say that F1,F2 : F2n → F2n are Carlet-Charpin-Zinoviev
(CCZ)-equivalent if

A(ΓF1 ) = ΓF2

for an affine bijection A : F2
2n → F2

2n , where
ΓF = {(x ,F (x)) : x ∈ F2n} is the graph of F ;
CCZ-equivalence is the most general known equivalence relation that
preserves differential uniformity and nonlinearity;
APN and AB functions are typically classified up to
CCZ-equivalence;
CCZ-equivalence does not preserve e.g. algebraic degree or
bijectivity, and so can be used constructively;
the only known APN permutation for even n was found by
investigating the CCZ-equivalence class of the Kim function1;
can be tested via CCZ-equivalence of given F and G
computationally via linear codes CF and CG associated to F and G .

1K.A. Browning, J.F. Dillon, M.T. McQuistan, A.J. Wolfe. An APN permutation in dimension
six. Finite Fields: theory and applications, 2010, 518, pp.33-42.
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EA-equivalence
We say that F1,F2 : F2n → F2n are extended affine (EA)-equivalent if

A1 ◦ F1 ◦ A2 + A = F2

for A1,A2,A : F2n → F2n affine, with A1,A2 bijective;
EA-equivalence implies CCZ-equivalence;
EA-equivalence (and taking inverses) is strictly less general than
CCZ-equivalence;
the two equivalence relations coincide for certain important classes
of functions, such as for quadratic APN functions;
EA-equivalence is easier to apply constructively, but also leaves more
properties invariant (e.g. algebraic degree), and hence allows less
freedom;
can be tested via via linear codes2 or by guessing A1

3.

2 Y. Edel and A. Pott, On the equivalence of nonlinear functions. In: Enhancing cryptographic
primitives with techniques from error correcting codes. Vol. 23. NATO Sci. Peace Secur. Ser. D
Inf. Commun. Secur. Amsterdam: IOS, 2009, pp. 87-103.

3N. Kaleyski, Deciding EA-equivalence via invariants, to be presented at SETA-2020
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Desirable properties for invariants

1 Simple (not requiring any complicated algorithms or libraries);
2 efficient (fast computation time);
3 useful (taking many different values).
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The Walsh transform
The Walsh transform of F : F2n → F2n is WF : F2

2n → Z defined by

WF (a, b) =
∑

x∈F2n

χ(bF (x) + ax),

where χ(x) = (−1)Tr(x) and Tr(x) =
∑n−1

i=0 x2i is the absolute trace
of F2n ;
various properties, e.g. differential uniformity and nonlinearity, can
be characterized using the Walsh transform;
the multiset

WF = {|WF (a, b)| : a, b ∈ F2n},

called the extended Walsh spectrum, is a CCZ-invariant;
computation only requires basic arithmetic and bitwise operations
(truth table representation);

n 6 7 8 9 10
time 0.023 0.076 0.391 2.863 22.566
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The Walsh transform (2)

The Walsh transform is not very useful for deciding CCZ-equivalence;
experimentally, the known APN classes fall into only two or three
distinct classes based on their extended Walsh spectra.

n all classes
54 3 2/1
64 14 13/1
75 490 489/1
85 8181 7681 / 487 / 12
96 11 10 / 1

106 16 15 / 1
116 13 12 / 1

4 Y. Edel and A. Pott, On the equivalence of nonlinear functions. In: Enhancing cryptographic
primitives with techniques from error correcting codes. Vol. 23. NATO Sci. Peace Secur. Ser. D
Inf. Commun. Secur. Amsterdam: IOS, 2009, pp. 87-103.

5 Y., Yu, M. Wang, and Y., Li. A matrix approach for constructing quadratic APN functions.
Designs, codes and cryptography, 2014, 73(2), pp.587-600.

6Representatives from known infinite families
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Invariants from associated designs 7

The set of all pairs F2n × F2n can be used as the set of points for
two combinatorial designs: dev(GF ), whose blocks are the sets

{(x + a,F (x) + b) : x ∈ F2n}; a, b ∈ F2n ;

and dev(DF ), whose blocks are the sets

{(x + y + a,F (x) + F (y) + b) : x , y ∈ F2n , x 6= y}; a, b ∈ F2n ;

the rank of the incidence matrix of dev(GF ), resp. dev(DF ), is
called the Γ-rank, resp. ∆-rank of F ;
the Γ- and ∆-rank are useful CCZ-invariants;
their computations amounts to constructing a large matrix, and
computing its rank.

n time all Γ-values ∆-values
6 2 14 9 3
7 15 490 14 6
8 138 8181 21 11
9 4229 11 10 8

10 899024 16 15 -

7 Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic.
Advances in Mathematics of Communications, 2009, 3(1), p.59.
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Invariants from associated designs (2)
The orders of the automorphism groups of dev(GF ) and dev(DF )
are also CCZ-invariant;
computing these takes a significantly longer time (4 seconds for
n = 6, 75 seconds for n = 7) than the Γ- and ∆-rank, and is only
feasible for small dimensions;
the multiplier group M(GF ) is the subgroup of the automorphism
group of dev(GF ) consisting of automorphisms of a special form;
computing the order of M(GF ) is quite fast, and appears to be
useful for discriminating between CCZ-classes;

n all dev(GF ) dev(DF ) M(GF )
5 3 2 3 2
6 14 8 6 7
7 490 5 6 5
8 8181 - - 10
9 11 - - 5

10 16 - - 9
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The distance invariant8

A lower bound on the Hamming distance between a given APN F
and any other APN function G is given in terms of a set ΠF ;
let

Πc
F (b) = {a ∈ F2n : (∃x ∈ F2n )F (x) + F (a + x) + F (a + c) = b}

for any b, c ∈ F2n ;
let ΠF be the multiset ΠF = {#Πc

F (b) : b, c ∈ F2n};
then the distance between F and G is at least dmin ΠF/3e+ 1;
more importantly, the multiset ΠF is a CCZ-invariant for APN
functions;
the actual minimum distance is not a CCZ-invariant!

8L. Budaghyan, C. Carlet, T. Helleseth, N. Kaleyski. On the distance between APN functions.
IEEE Transactions on Information Theory, 2020.
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The distance invariant (2)

computation requires only basic arithmetic operations, and can be
efficiently implemented via a truth table
for F quadratic, Πc

F (b) does not depend on c, so computation is
even more efficient.

n time Π0
F time ΠF all values

5 0.002 0.064 3 2
6 0.003 0.192 14 5
7 0.004 0.512 490 2
8 0.004 1.024 8181 6669
9 0.005 2.56 11 2

10 0.031 31.744 16 1
11 0.066 135.168 13 2

all representatives from known infinite families (besides the inverse
function) have the same value of ΠF !
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An EA-invariant from sums of values9

While studying an approach for reconstructing the EA-equivalence of
two given functions, the following EA-invariant is introduced;
let

Tk (t) =
{
{x1, x2, . . . , xk} ⊆ F2n : #{x1, x2, . . . , xk} = k,

k∑
i=1

xi = t
}

;

consider the multiset

ΣF
k (t) =

{ k∑
i=1

F (xi ) : {x1, x2, . . . , xk} ∈ Tk (t)
}

;

the multiplicities with which the elements of ΣF
k (t) occur is an

EA-invariant for even values of k;
if A1 ◦ F ◦ A2 + A = G , then the elements in ΣF

k (t) and in ΣG
k (t)

occur with the same multiplicities, and x and A1(x) must have the
same multiplicity for any x ∈ F2n .

9N. Kaleyski. Deciding EA-equivalence via invariants, SETA-2020.
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An EA-invariant from sums of values (2)
The multiplicity of s ∈ F2n in ΣF

k (t) can be computed as

2−2n
∑

a∈F2n

χ(at)
∑

b∈F2n

χ(bs)W k
F (a, b);

the complexity does not depend on k;
computing the number of distinct combinations of multiplicities for
small dimensions for e.g. k = 4 gives the following picture;

n all values
6 14 5
7 19 1
8 23 5

upon closer examination, for APN functions, the multiplicities of
Σk

F (t) and the set Π0
F are exactly the same invariant;

the partition of the functions from the switching classes looks very
similar to the one for ΠF ;
in fact, the inverse function for odd dimensions has the same value
of Π0

F as the remaining functions, and only Πc
F with c 6= 0 can

differentiate it.
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An EA-invariant from sums of values (3)
So Σ4

F (t) partitions the switching class representatives exactly as Π0
F

does;
this is no surprise: since
Π0

F = {#{a ∈ F2n : F (x) + F (a + x) + F (a) = b} : b ∈ F2n}, for an
APN function F , this is the same as counting the number of pairs
(a, x) for which F (x) + F (a + x) + F (a) = b;
at the same time, ΣF

3 (0) expresses the multiplicities in

{F (x1)+F (x2)+F (x1+x2) : x1, x2} = {F (x)+F (a)+F (x+a) : x , a ∈ F2n};

for ΣF
4 (0), we are considering sums of the form

F (x1) + F (x2) + F (x3) + F (x1 + x2 + x3) = Dc F (x1) + Dc F (x3)

for c = x1 + x2, that is

Dc F (x1 + x3) + Dc F (0) = F (x1 + x2) + F (x1 + x3) + F (x2 + x3) + F (0)

for quadratic F ;
on the other hand, the multiplicities in Σ4

F (0) are an EA-invariant
regardless of whether F is APN or not.
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An EA-invariant using dimensions of suspaces10

Let S(F ) = {b ∈ F2n : (∃a ∈ F2n )WF (a, b) = 0};
the elements of b represent the component functions of F that are
not bent;
let NF

i denote the number of i-dimensional subspaces contained in
S(F );
then the numbers Ni for i = 1, 2, 3, . . . n are an EA-invariant;
the computation requires an exhaustive search over all subspaces in
S(F ), which can be fairly large, but does not require any operations
beyond basic arithmetics and algebraic closure;
for n = 6, (Ni )i takes 6 distinct values, so it appears to be
somewhat more discriminating than Π0

F .

10 L. Budaghyan, M. Calderini, C. Carlet, R. Coulter, I. Villa. Generalized Isotopic Shift
Construction for APN Functions. To appear in Designs, Codes and Cryptography.
F. Gologlu, J. Pavlu. Search for APN permutations among known APN functions. BFA-2019.
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Thickness spectrum 11

The thickness spectrum of a function F is defined in terms of
subspaces in the set of Walsh zeros

ZF = {(a, b) : a, b ∈ F2n |WF (a, b) = 0} ∪ {(0, 0)};

the thickness of a subspace V ⊆ ZF is the dimension of the
projection of V on {(0, x) : x ∈ F2n};
let ΣF be the set of n-dimensional subspaces of ZF , for F over F2n ;
for every i , we record the number Ni of V ∈ ΣF such that t(V ) = i ;
the list of Ni for all i , called the thickness spectrum of F , is then
invariant under EA-equivalence;
it can have distinct values for distinct EA-classes within the same
CCZ-equivalence class;
computation involves counting subspaces.

11A. Canteaut, L. Perrin. On CCZ-equivalence, extended-affine equivalence, and
function twisting. Finite Fields and Their Applications, 2019, 56, pp.209-246.
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Thank you!
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