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Abstract

Finding permutation polynomials with low differential uniformity is an important topic in S-
box designs of many block ciphers. For example, AES chooses the differentially 4-uniform inverse
function as its S-box. This inverse function has good cryptographic properties with high algebraic
degree and nonlinearity. Therefore, many variants of the inverse function has been researched
( [5,6,8–10]). In this paper, we characterize the differential uniformity of a permutation polynomial
having low Carlitz rank. We show that permutation of low Carlitz rank is affine equivalent to
cycle or composition of cycle and the inverse function. As a result, we give a classification of the
differential uniformity of the permutation polynomials of Carlitz rank at most 4 and we present
new classes of differentially 4-uniform permutation polynomials.

1 Introduction

A Boolean function of n variables is a function f : F2n −→ F2 and an vectorial boolean function
((n,m)-function or S-box) is a function F : F2n −→ F2n where F2n is denoted by finite field with
2n elements. For a given function F : F2n −→ F2n , the difference distribution table, denoting
DDTF , whose entries are given as

DDTF (a, b) = #{x ∈ F2n : F (x) + F (x+ a) = b},

where #A denotes the cardinality of a set A. The function F is differential δ-uniform if ∆F ≤ δ
where

∆F = max
a∈F2n\{0}, b∈F2n

DDT(a, b),

and ∆F is called differential uniformity of F . It is clear that the smallest value of ∆F is 2 and
such function is called Almost perfect nonlinear (APN) function. APN permutations play a
important role in designing S-box. But finding an APN permutation is very difficult, so finding
differential 4-uniform permutation has been studied actively. ( [5, 6, 8–10])

Now we introduce the Carlitz rank of permutation. We let denote [a0, a1, . . . , am] continued
fraction

a0 + (a1 + (a2 + · · · (am−1 + a2
n−2
m ) · · · )2n−2)2n−2
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where ai ∈ F2n . We identify x2
n−2 with x−1 over F2n by defining as 0−1 = 0. It is known that for

any permutation F : F2n −→ F2n , there is m ≥ 0 and ai ∈ F2n , 0 ≤ i ≤ m such that

F (x) = [am+1, am, . . . , a2, a1 + a0x]

= (· · · ((a0x+ a1)
−1 + a2)

−1 · · ·+ am)−1 + am+1,
(1)

where a0, a2, · · · , am 6= 0( [4]). For a given F , the above expression is not unique in general. However
there is the least m among all possible expressions of F . The Carlitz rank of F is the least integer
m satisfying the above expression. Suppose that a permutation F : F2n → F2n has Carlitz rank ≤ m.
Then one may write F as the form of Eq.(1). For given F and 0 ≤ k ≤ m, we define

Fk(x) = [ak+1, ak, . . . , a2, a1 + a0x]

= (· · · ((a0x+ a1)
−1 + a2)

−1 · · ·+ ak)
−1 + ak+1

Then one has F0(x) = a0x+a1, F1(x) = (a0x+a1)
2n−2 +a2, · · · , Fm = F . Also we inductively define

Rk(x) for 0 ≤ k ≤ m as follows

Rk(x) =
αk+1x+ βk+1

αkx+ βk
, (2)

where
αk+1 = ak+1αk + αk−1, βk+1 = ak+1βk + βk−1 (1 ≤ k ≤ m)

with the initial conditions α0 = 0, α1 = a0 and β0 = 1, β1 = a1. Then it is known [4] that

Rk(x) = Fk(x) for all x 6∈ Ok

(
Ok =

{
xi =

βi
αi

: i = 1, . . . , k

}
,Ok ⊂ F2n ∪ {∞}

)
where xi

′s are called poles of Fk and xi =∞ if and only if αi = 0.

2 Carlitz rank and inverse function

Two functions F : F2n −→ F2n and F ′ : F2n −→ F2n are called affine equivalent if there exist affine
permutations A1, A2 satisfying F ′ = A1 ◦ F ◦ A2. ( for details, see [1–3]) It is well-known that two
affine equivalent functions have same differential uniformity.

Lemma 2.1. A permutation F : F2n → F2n with Carlitz rank ≤ m is affine equivalent to inverse
function Inv with at most m exceptional points. That is, there is a subset U ⊂ F2n with #U ≤ m
and affine permutations `1, `2 : F2n → F2n satisfying `2 ◦ F ◦ `1(x) = 1

x for all x 6∈ U .

As a consequence of the above result, cryptographic properties of a permutation of low Carlitz
rank are closely related with those of inverse function modified at some small set of points. In
subsequent sections, we discuss cryptographic properties of a permutation of low Carlitz rank.

3 Differential uniformity

Before finding the differential uniformity of F (x) = [am+1, am, . . . , a2, a1 + a0x] on F2n , we can set
a0 = 1, a1 = 0, a2 = 1 without loss of generality by the follwing proposition.
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Proposition 3.1. Let F (x) = [am+1, am, . . . , a2, a1 + a0x] on F2n where a0, a2, · · · , am 6= 0.
(i) If m = 1 then F is affine equivalent to G, given by G(x) = x−1 on F2n.
(ii) If m ≥ 2 then F is affine equivalent to G, given by

G(x) = [0, γm, . . . , γ1, x] = (· · · ((x2n−2 + γ1)
2n−2 + γ2)

2n−2 · · ·+ γm)2
n−2

where γ1 = 1 and γi = a
(−1)i
2 ai+1 for i ≥ 2.

From now on we set
F (x) = [0, am, . . . , a3, 1, x], (3)

Now we denote
Ai = [0, 1, a3, · · · , ai] for 1 ≤ i ≤ m, (4)

i.e. A1 = [0], A2 = [0, 1], A3 = [0, 1, a3], · · · , Am = [0, 1, a3, . . . , am], and

A′u = [0, 1, a3, . . . , am, u]. (5)

Then we have the following lemma:

Lemma 3.2. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Then

DDTF (a, b) = DDTF−1(b, a) = #{u ∈ F2n : A′u +A′u+b = a}.

For given a, b ∈ F2n \ {0}, we now define 4 partitions of {u ∈ F2n : A′u + A′u+b = a}, denoted by
P (a, b), as follows :

PA(a, b) = P (a, b) ∩ {u ∈ F2n : ∃ 1 ≤ i, j ≤ m A′u = Ai, A
′
u+b = Aj}

PB(a, b) = P (a, b) ∩ {u ∈ F2n : @ 1 ≤ i ≤ m A′u = Ai, ∃ 1 ≤ j ≤ m A′u+b = Aj}
PB′(a, b) = P (a, b) ∩ {u ∈ F2n : ∃ 1 ≤ i ≤ m A′u = Ai, @ 1 ≤ j ≤ m A′u+b = Aj}
PC(a, b) = P (a, b) ∩ {u ∈ F2n : @ 1 ≤ i, j ≤ m A′u = Ai, A

′
u+b = Aj}

(6)

It is clear that

DDTF (a, b) = #P (a, b) = #PA(a, b) + #PB(a, b) + #PB′(a, b) + #PC(a, b).

Moreover we have #PB(a, b) = #PB′(a, b), so

DDTF (a, b) = #P (a, b) = #PA(a, b) + 2#PB(a, b) + #PC(a, b).

We now use the notation
ui = [0, am, am−1, . . . , ai+1],

which is the root of [0, 1, a3, . . . , am, u] = [0, 1, . . . , ai], i.e A′u = Ai. The following theorem implies
how PA(a, b), PB(a, b) and PC(a, b) are constructed.

Theorem 3.3. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Let U = {ui : 1 ≤ i ≤ m}
of cardinality m′ and we have 1 ≤ i1 < i2 < · · · < im′ ≤ m such that U = {ui1 , ui2 , . . . , uim′}. Then
the followings are satisfied:
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(i) #PA(a, b) =

{
2 if (a, b) ∈ {(Aij +Aik , uij + uik) : 1 ≤ j < k ≤ m′}
0 otherwise

(ii) #PB(a, b) = #

{
1 ≤ j ≤ m′ : b+ uij =

(a+Aij )αm−1 + βm−1

(a+Aij )αm + βm
, b+ uij /∈ U

}

(iii) If αm 6= 0 then #PC(a, b) =

{
0 if Tr( 1

abα2
m

) = 1 or p(u) = 0 for some u ∈ U
2 otherwise

; and

If αm = 0 then #PC(a, b) =

{
2n − 2m′ + #{(j, k) : uij + uik = b} if b = aα2

m−1
0 otherwise.

where p(u) = aα2
mu

2 + abα2
mu+ abαmαm−1 + aα2

m−1 + b.

By using the previous thoerem, we get the upper or lower bound of the differential uniformity of
F .

Corollary 3.4. Let F (x) = [0, am, . . . , a3, 1, x] on F2n with a3, . . . , am 6= 0. Let m′ = #{Ai : 1 ≤
i ≤ m}. Then the followings are satisfied :

(i) If αm 6= 0 then ∆F ≤ 2m′ + 4.

(ii) If αm = 0 then ∆F ≥ 2n − 2m′ + 2.

3.1 Carlitz rank of 3

Throughout this section, let F (x) = [0, c, 1, x] on F2n , which is obtained by setting m = 3 and a3 = c
in (3). Note that in case c = 1, we can easily show that ∆F = 2n. Now we consider c 6= 1 case, then
we obtain the coefficients given by Table 1.

Table 1: The coefficients related with F (x) = [0, c, 1, x] on F2n with c 6= 1.

i 0 1 2 3

αi 0 1 1 c+ 1

βi 1 0 1 c

Ai 0 1 c
c+1

ui
1
c+1

1
c 0

Then by theorem 3.3 and Table 1 with U = {u1, u2, u3} = { 1
c+1 ,

1
c , 0}, we have
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(i) #PA(a, b) =

{
2 if (a, b) ∈ {(1, 1

c(c+1)), (
1
c+1 ,

1
c ), (

c
c+1 ,

1
c+1)}

0 otherwise

(ii) #PB(a, b) =


3 if (a, b) ∈ C1 := B1 ∩B2 ∩B3

2 if (a, b) ∈ C2 := ((B1 ∩B2) ∪ (B2 ∩B3) ∪ (B3 ∩B1)) \ C1

1 if (a, b) ∈ C3 := (B1 ∪B2 ∪B3) \ (C1 ∪ C2)

0 otherwise

(iii) #PC(a, b) =

{
0 if Tr( 1

ab(c2+1)
) = 1, b = a

(c+1)a+1 or b = a
(c2+c)a+c2

2 otherwise

(7)

where B1 = {(a, b) : b = 1
(c2+1)a+c2+c

, (a, b) 6= (1, 1
c+1), (0, 1

c2+c
), ( c

c+1 , 0)}, B2 = {(a, b) : b =

a+1
(c2+c)a+c

, (a, b) 6= (0, 1c ), (1, 0)} and B3 = {(a, b) : b = (c+1)a+1
(c2+1)a

, (a, b) 6= (0, 1
c+1), ( 1

c+1 , 0)}.
The next lemma makes it easier to find (a, b) which makes DDTF (a, b) maximum.

Lemma 3.5. In (7) with F (x) = [0, c, 1, x] on F2n with n ≥ 3 and c 6= 1, the followings are satisfied:
(i) ∆F ≥ 4.
(ii) c 6∈ F4 \ F2 if and only if #PA(a, b)#PB(a, b) = 0 for all a, b ∈ F2n \ {0}, in other words neither
#PA(a, b) nor #PB(a, b) can be positive for all a, b ∈ F2n \ {0}.
(iii) Let us assume that c 6∈ F4 \ F2. Then

∆F = max
(a,b)∈B′

DDTF (a, b)

where B′ = {(a, b) : #PB(a, b) = max
a,b

#PB(a, b)}.

By using this lemma, we can induce the following proposition and theorem.

Proposition 3.6. Let F (x) = [0, c, 1, x] on F2n with c 6= 1. Then the followings are satisfied :
(i) If c3 + c2 + 1 = 0 then ∆F = 8.

(ii) If c ∈ F4 \ F2 then ∆F =

{
6 if n ≡ 0 (mod 4)

4 if n ≡ 2 (mod 4)
.

Proof. (Sketch of (i)) We first consider c3 + c2 + 1 = 0 case. If c3 + c2 + 1 = 0 then we get for

B1 ∩B2 ∩B3 = {( 1

c2 + c
, 1)}.

It is obvious that c 6∈ F4, so ∆F = DDTF ( 1
c2+c

, 1) by lemma 3.5. Hence we obtain ∆F = DDTF ( 1
c2+c

, 1) =

6 + #PC( 1
c2+c

, 1) = 8.

Theorem 3.7. Let F (x) = [0, c, 1, x] on F2n with c 6∈ F4 and c3 + c2 + 1 6= 0. Then ∆F ≤ 6 and the
followings are satisifed:

(i) If Tr( c
c+1) = Tr(1c ) = 1 then ∆F = 4.
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(ii) If Tr( c
c+1) = 1,Tr(1c ) = 0 then, letting β2 + β = 1

c with β ∈ F2n,

– If n is odd then Tr( 1
β ) = Tr( 1

β+1) = 0 if and only if ∆F = 4.

– If n is even then Tr( 1
β ) = Tr( 1

β+1) = 1 if and only if ∆F = 4.

(iii) If Tr( c
c+1) = 0,Tr(1c ) = 1 then, letting γ2 + γ = 1

c+1 with γ ∈ F2n,

it holds that Tr( 1γ ) = Tr( 1
γ+1) = 1 if and only if ∆F = 4.

(iv) If Tr( c
c+1) = Tr(1c ) = 0 then, β2 + β = 1

c and γ2 + γ = 1
c+1 with β, γ ∈ F2n,

– If n is odd then Tr( 1
β ) = Tr( 1

β+1) = 0 and Tr( 1γ ) = Tr( 1
γ+1) = 1 if and only if ∆F = 4.

– If n is even then Tr( 1
β ) = Tr( 1

β+1) = Tr( 1γ ) = Tr( 1
γ+1) = 1 if and only if ∆F = 4.

Proof. (Sketch) Since c 6∈ F4 and c3 + c2 + 1 6= 0, max
a,b

#PB(a, b) ≤ 2, so ∆F ≤ 6 by lemma 3.5.

We now consider claim (i). The assumption implies that B1 ∩B2 = B2 ∩B3 = B3 ∩B1 = φ, so that
#PB(a, b) ≤ 1. By lemma 3.5-(i), (iii), we have ∆F = 4.

We next consider the claim (ii). The assumption implies that B1 ∩ B2 = B2 ∩ B3 = φ and

B3 ∩B1 = {(a, b) : b = (c+1)a+1
(c2+1)a

, a2 + c
c+1a+ c

c2+1
= 0}, so we get

B′ = {( c
c+1β,

cβ+1
(c2+c)β

), ( c
c+1(β + 1), c(β+1)+1

(c2+c)(β+1)
)} = {( β

β2+β+1
, β3+β2

β2+β+1
), ( β+1

β2+β+1
, β3+β
β2+β+1

)}.

where β2 + β = 1
c . For (a, b) = ( β

β2+β+1
, β+1
β2+β+1

) ∈ B′, we get

#PC(a, b) =

{
2 if Tr(β+1

β ) = 0

0 if Tr(β+1
β ) = 1

by (7). For (a, b) = ( β+1
β2+β+1

, β3+β
β2+β+1

) ∈ B′, Therefore

#PC(a, b) =

{
2 if Tr( β

β+1) = 0

0 if Tr( β
β+1) = 1.

by (7). Since ∆F = max(a,b)∈B′ DDTF (a, b) by lemma 3.5, ∆F = 4 if and only if Tr(β+1
β ) = 1 and

Tr( β
β+1) = 1. Note that Tr(1) = 0 if and only if n is even, so we get the claim (ii). The claim (iii)

and (iv) is simlar to the proof of claim (ii).

Note that Theorem 3.7-(i) has been constructed in [5] but the others are new classes of differen-
tially 4-uniform permutation polynomials.

3.2 Special case on Carlitz rank of 4

Throughout this section, let F (x) = [0, d, 1, 1, x] on F2n , which is obtained by setting m = 4, a3 = 1
and a4 = d in (3). Similarly to the proof of Carlitz rank 3, we get the following theorem.

Theorem 3.8. Let F (x) = [0, d, 1, 1, x] on F2n with d 6∈ F4. Then ∆F = 4 or ∆F = 6. Moreover we
get:
(i) If n is odd then ∆F = 4.
(ii) If n is even then Tr( 1

d+1) = Tr(1d) = 1 if and only if ∆F = 4.

Note that Theorem 3.8-(ii) has been constructed in [5] but the other is new class of differentially
4-uniform permutation polynomials.
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4 Conclusion

In this paper, we presented a methodology for calculating differential uniformity for low carlitz rank.
As a result we found the bound of differential uniformity, so it was confirmed that the low carlitz
rank guarantees a rather low differential uniformity.

We also gave a partial classification of the differential uniformity of the permutation polynomials
of Carlitz rank at most 4. As a result, new classes of differentially 4-uniform permutations have been
discovered. Since the permutation polynomials of low Carlitz rank are affine equivalent to inverse
function except on a small subset in F2n , and since the other cryptographic properties of the inverse
function are well known, we can also find the other cryptographic invariants such as nonlinearity and
Walsh spectrum of permutation polynomials with low Carlitz rank in a similar manner.
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