APN functions, projective and permutation polynomials

Faruk Göloğlu

Charles University, Prague

BFA 2020 September 17, 2020

Faruk Göloğlu APN functions, projective and permutation polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

Setting:

- $Q = 2^n, \mathbb{F} = \mathbb{F}_Q$
- $f : \mathbb{F} \to \mathbb{F}$

Non-zero derivatives of f

$$D_A f = \{f(X) - f(X + A) : X \in \mathbb{F}\}$$

- (even characteristic) APN if $\#D_A f = \frac{Q}{2}$, i.e., maximal
- (odd characteristic) PN if $\#D_A f = Q$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Family	Monomial	Conditions	Proved by
Gold	$X^{2^{i}+1}$	gcd(i, n) = 1	Gold
Kasami	$X^{2^{2^i}-2^i+1}$	gcd(i, n) = 1	Kasami
Welch	$X^{2^{t}+3}$	n = 2t + 1	Dobbertin
Niho	$X^{2^t+2^{rac{t}{2}}-1}$, <i>t</i> even	n = 2t + 1	Dobbertin
	$X^{2^t+2^{rac{3t+1}{2}-1}}$, t odd		
Inverse	$X^{2^{2t}-1}$	n = 2t + 1	Nyberg
Dobbertin	$X^{2^{4t}+2^{3t}+2^{2t}+2^{t}-1}$	n = 5t	Dobbertin

Table: Known infinite families of APN monomials on \mathbb{F}_{2^n}

• *n* odd: 1-to-1

• *n* even: 3-to-1

▲圖▶ ▲屋▶ ▲屋▶

æ

APN permutations

- Exists for all odd n
- Named "big APN problem" for even n
- Exists for n = 6, the Kim function (Browning-Dillon-McQuistan-Wolfe 2009) on 𝔽₂₆

$$\kappa(X) = X^3 + X^{10} + AX^{24},$$

where A is a generator of $\mathbb{F}_{2^6}^*$, is *equivalent* to a permutation.

• "still big APN problem": Does there exist another APN permutation on even dimensions?

(4回) (4回) (4回)

EA-equivalence

$$g(X) = L_1(f(L_2(X))) + L_3(X)$$

CCZ-equivalence

Define $G_f = \{(X, f(X))\}$. f and g are said to be CCZ-equivalent if G_f and G_g are affine-equivalent.

- APN and Walsh properties invariant
- The Kim function κ is CCZ-equivalent to a permutation

イロン イヨン イヨン イヨン

Walsh transform

The Walsh transform of f

$$\widehat{f}(A,B) = \sum_{X \in \mathbb{F}} \chi (Af(X) + BX)$$

and Walsh zeroes WZ_f of f is

$$WZ_f = \{(X, Y) : \widehat{f}(X, Y) = 0\} \cup \{(0, 0)\}$$

where $\chi(\cdot) = (-1)^{\operatorname{Tr}(\cdot)}$.

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Definition

Let $a_{q+1}, a_q, a_1, a_0 \in \mathbb{F}_{2^m}$ and $q = 2^i$. The polynomials of the form

$$a_{q+1}x^{q+1} + a_qx^q + a_1x + a_0$$

are called projective polynomials.

S. S. Abhyankar, Projective polynomials, Proceedings of the American Mathematical Society 125 (1997), 16431650.

- Generally $a_{q+1} \neq 0$ is assumed.
- Number of zeroes:

$$\{0, 1, 2, 2^{\gcd(i,m)} + 1\}.$$

Antonia W. Bluher: On $x^{q+1} + ax + b$. Finite Fields Their Appl. 10(3): 285-305 (2004)

ヘロン 人間と 人間と 人間と

Projective polynomials

• Let $\mathbb{F} = \mathbb{F}_{2^{2m}}$ and $\mathbb{K} = \mathbb{F}_{2^m}$.

• The vectorial Boolean function

 $F:\mathbb{K}\times\mathbb{K}\to\mathbb{K}\times\mathbb{K}$

We will set

$$F(x,y) = [f(x,y),g(x,y)],$$

with $q = 2^i, r = 2^j, i, j \ge 1$, and

$$f(x, y) = a_0 x^{q+1} + b_0 x^q y + c_0 x y^q + d_0 y^{q+1},$$

$$g(x, y) = a_1 x^{r+1} + b_1 x^r y + c_1 x y^r + d_1 y^{r+1}.$$

- f(x, y) bivariate *q*-projective polynomial
- F(x, y) bivariate (q, r)-projective polynomial pair

•
$$f(x,y) = a_0 x^{q+1} + b_0 x^q y + c_0 x y^q + d_0 y^{q+1} = (a_0, b_0, c_0, d_0)_q$$

• The κ function on \mathbb{F}_{2^6} , for some $b \in \mathbb{F}_{2^3}$:

 $\kappa'(x,y) = [(0, b, b, b+1)_2, (b, 1, 0, b)_2]$

(日) (同) (E) (E) (E)

• The κ function on \mathbb{F}_{2^6} , for some $b \in \mathbb{F}_{2^3}$:

 $\kappa'(x,y) = [(0, b, b, b+1)_2, (b, 1, 0, b)_2]$

• Gold functions $G_i(X) = X^{2^i+1}$. When *m* is odd:

 $G_i(x, y) = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^i}].$

• The κ function on \mathbb{F}_{2^6} , for some $b \in \mathbb{F}_{2^3}$:

 $\kappa'(x,y) = [(0,b,b,b+1)_2,(b,1,0,b)_2]$

• Gold functions $G_i(X) = X^{2^i+1}$. When *m* is odd:

$$G_i(x, y) = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^i}].$$

• Pott-Zhou APN family:

 $F(x,y) = [(1,0,0,d)_{2^{i}}, (0,0,1,0)_{2^{j}}], \quad d \in \mathbb{K}^{\times},$

are APN if and only if gcd(i, m) = 1, *m* is even and $d \neq a^{2^i+1}(b^{2^i}+b)^{1-2^i}$ for some $a, b \in \mathbb{K}$.

- 4 同 ト 4 ヨ ト - 4 ヨ ト

• The κ function on \mathbb{F}_{2^6} , for some $b \in \mathbb{F}_{2^3}$:

 $\kappa'(x,y) = [(0,b,b,b+1)_2,(b,1,0,b)_2]$

• Gold functions $G_i(X) = X^{2^i+1}$. When *m* is odd:

$$G_i(x, y) = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^i}].$$

• Pott-Zhou APN family:

 $F(x,y) = [(1,0,0,d)_{2^{i}}, (0,0,1,0)_{2^{j}}], \quad d \in \mathbb{K}^{\times},$

are APN if and only if gcd(i, m) = 1, *m* is even and $d \neq a^{2^i+1}(b^{2^i}+b)^{1-2^i}$ for some $a, b \in \mathbb{K}$.

• Taniguchi APN family of the form

$$F(x,y) = [(1,0,c,d)_{2^i}, (0,1,0,0)_{2^{2i}}],$$

where gcd(i, m) = 1, $f(x, 1) \neq 0$ for any $x \in \mathbb{K}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We should allow $q = 2^0$ to include the first bivariate construction.

• Carlet family:

$$F(x, y) = [xy, (a_1, b_1, c_1, d_1)_r],$$

Carlet shows that F is APN if and only if $g(x, 1) \neq 0$ for any $x \in \mathbb{K}$. Note that

$$ax^2 + bxy + cy^2$$

is the most general, but can be omitted.

・ロン ・ロン ・ロン ・ロン

- Find APN functions imitating the κ function. That is, using (q, r)-projective APN polynomials.
- Hope that it is equivalent to a permutation.

▲□→ ▲ □→ ▲ □→

Hybrid Gold APN functions

Recall

• Gold functions $G_i(X) = X^{2^i+1}$. When *m* is odd:

$$G_i(x, y) = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^i}].$$

• After an \mathbb{F}_{2^m} -linear transformation:

$$\mathsf{G}'_i(x,y) = [(1,0,1,1)_{2^i},(1,1,0,1)_{2^i}].$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Hybrid Gold APN functions

Recall

• Gold functions $G_i(X) = X^{2^i+1}$. When *m* is odd:

$$G_i(x, y) = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^i}].$$

• After an \mathbb{F}_{2^m} -linear transformation:

$$G'_i(x, y) = [(1, 0, 1, 1)_{2^i}, (1, 1, 0, 1)_{2^i}].$$

Theorem

The following bivariate (q, r)-projective polynomial pairs F(x, y) = [f(x, y), g(x, y)] are APN on $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$. $(\mathcal{F}_1) \ F = [(1, 0, 1, 1)_{2^i}, (1, 1, 0, 1)_{2^{2i}}], \gcd(3i, m) = 1,$ $(\mathcal{F}_2) \ F = [(1, 0, 1, 1)_{2^i}, (0, 1, 1, 0)_{2^{3i}}], \gcd(3i, m) = 1, m \text{ odd},$ $(\mathcal{F}_3) \ F = [(0, 1, 1, 0)_{2^i}, (1, b, c, d)_{2^{3i}}], i \in \{1, 2\}, m = 5, (1, b, c, d) \in S_i.$

Notation:

- $\mathbb{F}_{2^m} = \mathbb{K}$,
- 3 ∤ *m*,
- $q = 2^i$, gcd(i, m) = 1.

Lemma

$$\phi_q(u) := u^{q+1} + u + 1 \neq 0$$
, for $u \in \mathbb{K}$.

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Notation:

- $\mathbb{F}_{2^m} = \mathbb{K}$,
- 3 ∤ *m*,
- $q = 2^i$, gcd(i, m) = 1.

Lemma

$$\phi_q(u) := u^{q+1} + u + 1 \neq 0$$
, for $u \in \mathbb{K}$.

Note that

$$x\phi_q(x^{q-1}) = x^{q^2} + x^q + x,$$

is a permutation polynomial.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

We get

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

and

$$\psi_{q^2}(x) = x^{q^2} + x = \frac{y^{q^2} + (u+1)^{q^2}y}{\phi_{q^2}(u+1)} =: \nu_u(y).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We get

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

and

$$\psi_{q^2}(x) = x^{q^2} + x = rac{y^{q^2} + (u+1)^{q^2}y}{\phi_{q^2}(u+1)} =: \nu_u(y).$$

Trivial zeroes: $(x, y) \in \{(0, 0), (1, 0)\}.$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

We get

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

and

$$\psi_{q^2}(x) = x^{q^2} + x = \frac{y^{q^2} + (u+1)^{q^2}y}{\phi_{q^2}(u+1)} =: \nu_u(y).$$

Trivial zeroes: $(x, y) \in \{(0, 0), (1, 0)\}$. Note that $(x^q + x) + (x^q + x)^q = x^{q^2} + x$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

We get

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

and

$$\psi_{q^2}(x) = x^{q^2} + x = \frac{y^{q^2} + (u+1)^{q^2}y}{\phi_{q^2}(u+1)} =: \nu_u(y).$$

Trivial zeroes: $(x, y) \in \{(0, 0), (1, 0)\}$. Note that $(x^q + x) + (x^q + x)^q = x^{q^2} + x$. We will show that

$$\lambda_u''(y) := \mu_u(y) + \mu_u(y)^q + \nu_u(y)$$

is a permutation for every $u \in \mathbb{K} \setminus \mathbb{F}_4$, where

$$\phi_q(u) := u^{q+1} + u + 1 \neq 0,$$

 $\phi_{q^2}(u+1) := u^{q^2+1} + u^{q^2} + 1 \neq 0$

(日) (同) (E) (E) (E)

Show $\lambda_u(y)$ is a permutation:

$$\lambda_u(y) = (\phi_q(u))^2 y^{q^2} + (\phi_{q^2}(u+1))^2 y^q + (\phi_q(u))^{2q} y.$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Show $\lambda_u(y)$ is a permutation:

$$\lambda_u(y) = (\phi_q(u))^2 y^{q^2} + (\phi_{q^2}(u+1))^2 y^q + (\phi_q(u))^{2q} y.$$

The projective polynomial defined by

$$\pi(x) = (\phi_q(u))^2 x^{q+1} + (\phi_{q^2}(u+1))^2 x + (\phi_q(u))^{2q}$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Show $\lambda_u(y)$ is a permutation:

$$\lambda_u(y) = (\phi_q(u))^2 y^{q^2} + (\phi_{q^2}(u+1))^2 y^q + (\phi_q(u))^{2q} y.$$

The projective polynomial defined by

$$\pi(x) = (\phi_q(u))^2 x^{q+1} + (\phi_{q^2}(u+1))^2 x + (\phi_q(u))^{2q}$$

satisfies

$$\pi(x) = (\epsilon_3 x + \epsilon_4)^{q+1} \phi_q \left(\frac{\epsilon_1 x + \epsilon_2}{\epsilon_3 x + \epsilon_4} \right),$$

with

$$\begin{pmatrix} \epsilon_1 & \epsilon_2 \\ \epsilon_3 & \epsilon_4 \end{pmatrix} = \begin{pmatrix} 1 & (u+1)^{2q} \\ (u+1)^2 & u^{2q} \end{pmatrix},$$

whose determinant is conveniently

$$\begin{vmatrix} 1 & (u+1)^{2q} \\ (u+1)^2 & u^{2q} \end{vmatrix} = (\phi_q(u))^2 \neq 0,$$

for any $u \in \mathbb{K} \setminus \mathbb{F}_4$.

(日) (四) (三) (三)

We want to count the common solutions of

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

$$\psi_{q^3}(x) = x^{q^3} + x = \frac{uy^{q^3} + u^{q^3}y}{u^{q^3} + u} =: \sigma_u(y).$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

We want to count the common solutions of

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

$$\psi_{q^3}(x) = x^{q^3} + x = \frac{uy^{q^3} + u^{q^3}y}{u^{q^3} + u} =: \sigma_u(y).$$

We are going to show that

$$\tau'_{u}(y) = \mu_{u}(y) + \mu_{u}(y)^{q} + \mu_{u}(y)^{q^{2}} + \sigma_{u}(y)$$

is a 2-to-1 map.

We want to count the common solutions of

$$\psi_q(x) = x^q + x = \frac{(u+1)y^q + y}{\phi_q(u)} =: \mu_u(y),$$

$$\psi_{q^3}(x) = x^{q^3} + x = \frac{uy^{q^3} + u^{q^3}y}{u^{q^3} + u} =: \sigma_u(y).$$

We are going to show that

$$\tau'_{u}(y) = \mu_{u}(y) + \mu_{u}(y)^{q} + \mu_{u}(y)^{q^{2}} + \sigma_{u}(y)$$

is a 2-to-1 map. Simplifying, we get

$$\begin{aligned} \tau_u(y) &= \frac{(\phi_q(u))^{2q}}{(\phi_{q^2}(u+1))^{q-1}(\phi_q(u))^{q^2-1}} y^{q^3} \\ &+ \frac{(\phi_q(u))^q \psi_{q^3}(u)}{(\phi_q(u))^{q^2-1}} y^{q^2} \\ &+ \frac{(\phi_q(u))^q \psi_{q^3}(u)}{(\phi_{q^2}(u+1))^{q-1}} y^q \\ &+ (\phi_q(u))^{2q} y. \end{aligned}$$

글 에 세 글 에

It can be shown that

$$au_u(y) = \lambda_u(y) + \frac{(\lambda_u(y))^q}{C},$$

where

$$C = (\phi_{q^2}(u+1))^{q-1}(\phi_q(u))^{q^2-1},$$

and

$$\lambda_u(y) = (\phi_q(u))^2 y^{q^2} + (\phi_{q^2}(u+1))^2 y^q + (\phi_q(u))^{2q} y,$$

which was defined for Family \mathcal{F}_1 previously.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

It can be shown that

$$au_u(y) = \lambda_u(y) + \frac{(\lambda_u(y))^q}{C},$$

where

$$C = (\phi_{q^2}(u+1))^{q-1}(\phi_q(u))^{q^2-1},$$

and

$$\lambda_u(y) = (\phi_q(u))^2 y^{q^2} + (\phi_{q^2}(u+1))^2 y^q + (\phi_q(u))^{2q} y,$$

which was defined for Family \mathcal{F}_1 previously. Now, the kernel satisfies ker $\tau'_u = \{0, \frac{u^2+u+1}{u}\}$. We then show that:

$$\mu_u\left(\frac{u^2+u+1}{u}\right) = \frac{1}{u^q} + \frac{1}{u} + 1. \quad \Box$$

(ロ) (同) (E) (E) (E)

Inequivalence to known APN functions

Define

$$\mathsf{NB}_F := \{ U \in \mathbb{F}_{2^n} : \widehat{F}(U, V) = 0 \text{ for some } V \in \mathbb{F}_{2^n} \}.$$

An *EA*-invariance vector:

$$\mathsf{N}_{\mathsf{F}} := \big[\eta_d(\mathsf{NB}_{\mathsf{F}}) : 0 \le d \le n\big],$$

where $\eta_d(S)$ is the number of \mathbb{F}_2 -vector spaces of dimension d in S.

・ロン ・日ン ・日ン ・日ン

Inequivalence to known APN functions

Define

$$\mathsf{NB}_F := \{ U \in \mathbb{F}_{2^n} : \widehat{F}(U, V) = 0 \text{ for some } V \in \mathbb{F}_{2^n} \}.$$

An *EA*-invariance vector:

$$\mathsf{N}_{\mathsf{F}} := \big[\eta_d(\mathsf{NB}_{\mathsf{F}}) : 0 \le d \le n\big],$$

where $\eta_d(S)$ is the number of \mathbb{F}_2 -vector spaces of dimension d in S.

Table: EA-invariants N_F for Families $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2$ and \mathcal{F}_3 on $\mathbb{F}_{2^{10}}$

Family	N _F
\mathcal{F}_0	[0, 341, 6820, 3565]
	[0, 341, 6820, 3720, 31]
\mathcal{F}_1	[0, 341, 6820, 3565]†
	[0, 341, 6820, 3720, 31]†
\mathcal{F}_2	[0, 341, 6820, 3720, 62, 1]
	[0, 341, 6820, 4030, 62, 1]
\mathcal{F}_3	[0, 341, 6324, 2573, 62, 2]

イロト イヨト イヨト イヨト

Table: EA-invariants N_F for Families $\mathcal{F}_0, \mathcal{F}_1$ and \mathcal{F}_2 on $\mathbb{F}_{2^{14}}$

Family	N _F
\mathcal{F}_0	[0, 5461, 1681988, 13290042, 428625]
	[0, 5461, 1681988, 13313156, 436626]
	[0, 5461, 1681988, 13267817, 401828]
\mathcal{F}_1	$[0, 5461, 1681988, 13250164, 394843]^{\dagger}$
	$[0, 5461, 1681988, 13286867, 438531]^{\dagger}$
	[0, 5461, 1681988, 13238480, 398399]
\mathcal{F}_2	[0, 5461, 1681988, 13293725, 430784, 2667, 127, 1]
	[0, 5461, 1681988, 13219303, 413004, 2667, 127, 1]
	$\left[0, 5461, 1681988, 13290423, 418084, 2667, 127, 1 ight]$

 \dagger corresponds to the cases involving x^3 found independently in: Lilya Budaghyan, Tor Helleseth, Nikolay S. Kaleyski: A new family of APN quadrinomials. IACR Cryptol. ePrint Arch. 2019: 994 (2019)

向下 イヨト イヨト

Inequivalence to known APN functions

Table: EA-invariants N_F for known quadratic APN functions on $\mathbb{F}_{2^{10}}$

Function F	N _F
x ³	[0, 341, 6820, 5115, 341, 11]
x ⁹	[0, 341, 6820, 5115, 341, 11]
$x^6 + x^{33} + u^{31}x^{192}$	[0, 341, 6820, 3720, 31]
$x^{33} + x^{72} + u^{31}x^{258}$	[0, 341, 6820, 3720, 31]
$x^{3} + Tr(x^{9})$	[0, 341, 6820, 4215, 66, 1]
$x^3 + u^{341}x^{36}$	[0, 341, 6820, 4400]
$x^3 + u^{1022} \operatorname{Tr} (u^3 x^9)$	[0, 341, 6820, 4250, 66, 1]
x ⁵⁷	N/A
x ³³⁹	N/A

(4回) (4回) (日)

• Quadratic (more generally plateaued) APN functions with $\eta_m(NB_F) \ge 2$: Kasami, Gold, κ , \mathcal{F}_3 .

・日・ ・ ヨ・ ・ ヨ・

- Quadratic (more generally plateaued) APN functions with $\eta_m(NB_F) \ge 2$: Kasami, Gold, κ , \mathcal{F}_3 .
- Quadratic (more generally plateaued) APN functions with $\eta_m(NB_F) = 1$: $x^3 + u^{-1}Tr(u^3x^9)$, \mathcal{F}_2 .

- Quadratic (more generally plateaued) APN functions with $\eta_m(NB_F) \ge 2$: Kasami, Gold, κ , \mathcal{F}_3 .
- Quadratic (more generally plateaued) APN functions with $\eta_m(NB_F) = 1$: $x^3 + u^{-1}Tr(u^3x^9)$, \mathcal{F}_2 .
- Bivariate functions not employing f(x, y) = xy.

・ 同 ト ・ ヨ ト ・ ヨ ト

• These functions do not seem to be equivalent to permutations.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

æ

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?
- What about (q, r)-projective functions in general?

・ 同 ト ・ ヨ ト ・ ヨ ト

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?
- What about (q, r)-projective functions in general?
- A few observations on the κ function.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Walsh zeroes of a permutation f

$$\mathbb{F} = \mathbb{F}_{2^{2m}}, \quad \mathbb{K} = \mathbb{F}_{2^m}$$

$$\widehat{F}(A,B) = \sum_{X \in \mathbb{F}} \chi \left(AF(X) + BX \right)$$

$A \setminus B$	0	$v_1\mathbb{K}^*$	$v_2\mathbb{K}^*$	• • •	$v_t \mathbb{K}^*$
0					
$u_1\mathbb{K}^*$					
$u_2\mathbb{K}^*$					
1:					
$u_t \mathbb{K}^*$					

ヘロン ヘロン ヘヨン ヘヨン

- An APN function f on F_{2ⁿ} is CCZ-equivalent to a permutation if the Walsh zeroes of f contains two subspaces of dimension n intersecting only trivially.
- Walsh zeroes of κ has more structure with respect to some subspaces, i.e.,

 $\{(u_1x, v_1y) : x, y \in \mathbb{K}\}, \{(u_2x, v_2y) : x, y \in \mathbb{K}\} \subseteq WZ_f$

for some $u_1, u_2, v_1, v_2 \in \mathcal{P}_7$, i.e., 7th powers in \mathbb{F}^* .

イロト イポト イヨト イヨト

Walsh zeroes of the Kim function

$$\kappa(X) = X^3 + X^{10} + AX^{24}$$
$$\widehat{f}(A, B) = \sum_{X \in \mathbb{F}} \chi \left(Af(X) + BX \right)$$

	0	$v_1\mathbb{K}^*$	$v_2\mathbb{K}^*$	 $v_t \mathbb{K}^*$
0				
$u_1\mathbb{K}^*$				
$u_2\mathbb{K}^*$				
÷				
$u_t \mathbb{K}^*$				

・ロ・・ 日・ ・ 田・ ・ 田・ ・ 日・ うらぐ

CCZ-equivalence

 $F \sim_{CCZ} G$ means: Bijective \mathcal{L}

$$\mathcal{L}(X,Y) = (A(X) + B(Y) + a, C(X) + D(Y) + b)$$

such that $\mathcal{L}(\mathcal{G}_{\mathcal{F}})=\mathcal{G}_{\mathcal{G}}.$ That is to say $\mathcal{G}=\pi_2\circ\pi_1^{-1}$, with

$$A(X) + B(f(X)) + a = \pi_1(X),$$

 $C(X) + D(f(X)) + b = \pi_2(X),$

where A, B, C, D are \mathbb{F}_2 -linear maps and π_1 is a permutation.

◆□> ◆□> ◆ヨ> ◆ヨ> ▲ヨ ● のへで

K-CCZ equivalence

In the case of the κ function, A, B, C, D are K-linear maps (with rank *m*), hence the "square" structure of Walsh-zero spaces.

Definition

If F is CCZ equivalent to G with \mathbb{K} -linear maps (with rank m) A, B, C, D, then we say F is \mathbb{K} -CCZ equivalent to G.

K-CCZ equivalence

In the case of the κ function, A, B, C, D are \mathbb{K} -linear maps (with rank *m*), hence the "square" structure of Walsh-zero spaces.

Definition

If F is CCZ equivalent to G with \mathbb{K} -linear maps (with rank m) A, B, C, D, then we say F is \mathbb{K} -CCZ equivalent to G.

Proposition

If a (q,q)-projective APN polynomial F = [f(x,y), g(x,y)] is \mathbb{K} -CCZ equivalent to a permutation then

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{q+1} + (c_1x + d_1y)^{q+1},$$

for some "nonsingular" coefficients.

Hence we can assume w.l.o.g. $f(x, y) = (1, 0, 0, 1)_q$.

・ロン ・回と ・ヨン ・ヨン

Equivalence problem to APN permutations

If for some $a, b, c, d \in \mathbb{K}$ the function $F = [(1, 0, 0, 1)_q, (a, b, c, d)_q]$ is APN, then:

$$U^{q+1}(X + X^q) + (Y + Y^q) = 0,$$

$$aU^q(X + X^q) + bU^q(Y + X^q) + cU(X + Y^q) + d(Y + Y^q) = 0.$$

should hold only for X = Y = 0 and X = Y = 1 for all non-zero $U \in \mathbb{F}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

If for some $a, b, c, d \in \mathbb{K}$ the function $F = [(1, 0, 0, 1)_q, (a, b, c, d)_q]$ is APN, then:

$$U^{q+1}(X + X^q) + (Y + Y^q) = 0,$$

$$aU^q(X + X^q) + bU^q(Y + X^q) + cU(X + Y^q) + d(Y + Y^q) = 0.$$

should hold only for X = Y = 0 and X = Y = 1 for all non-zero $U \in \mathbb{F}$. Equivalently, there is no (q, q)-projective bivariate APN polynomial which is equivalent to a permutation, if

$$\left(\frac{Y+Y^{q}}{X+X^{q}}\right)\left(\frac{X+Y^{q}}{Y+Y^{q}}\right)^{q+1} = A$$

is satisfied for all $A \in \mathbb{K}$ by some $X, Y \in \mathbb{K} \setminus \{0, 1\}$.

イロト イポト イヨト イヨト

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K} -CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$ such that

$$X^{q+1} + X + A \frac{(\beta^2 + \beta)^q}{(\beta^q + \beta)^{q+1}} = 0$$

has exactly two solutions (x_0, β_0) and (x_0, β_1) for $x \in \mathbb{K}^{\times}$ and $\beta \in \mathbb{K}^{\times \times}$.

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K} -CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$ such that

$$X^{q+1} + X + A \frac{(\beta^2 + \beta)^q}{(\beta^q + \beta)^{q+1}} = 0$$

has exactly two solutions (x_0, β_0) and (x_0, β_1) for $x \in \mathbb{K}^{\times}$ and $\beta \in \mathbb{K}^{\times \times}$.

Theorem (Helleseth,Kholosha 2008)

The projective polynomial $X^{q+1} + X + C$ has exactly one solution if and only if $C \in DD := \left\{ \frac{(\beta^2 + \beta)^q}{(\beta^q + \beta)^{q+1}} : \beta \in \mathbb{K}^{\times \times} \right\}$.

イロト イポト イヨト イヨト

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K} -CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$ such that

$$X^{q+1} + X + A \frac{(\beta^2 + \beta)^q}{(\beta^q + \beta)^{q+1}} = 0$$

has exactly two solutions (x_0, β_0) and (x_0, β_1) for $x \in \mathbb{K}^{\times}$ and $\beta \in \mathbb{K}^{\times \times}$.

Theorem (Helleseth, Kholosha 2008)

The projective polynomial $X^{q+1} + X + C$ has exactly one solution if and only if $C \in DD := \left\{ \frac{(\beta^2 + \beta)^q}{(\beta^q + \beta)^{q+1}} : \beta \in \mathbb{K}^{\times \times} \right\}$.

Thus we have a lot of solutions for A = 1. This is also easy to see from the original equation.

ヘロン 人間と 人間と 人間と

Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in \mathbb{K}^* with Singer parameters $(|\mathbb{K}| - 1, \frac{|\mathbb{K}|}{2} - 1, \frac{|\mathbb{K}|}{4} - 1).$

Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in \mathbb{K}^* with Singer parameters $(|\mathbb{K}| - 1, \frac{|\mathbb{K}|}{2} - 1, \frac{|\mathbb{K}|}{4} - 1).$

That is to say, when x, y runs through DD,

$$\frac{x}{y} = c$$

holds $\frac{|\mathbb{K}|}{4} - 1$ times for each $\alpha \in \mathbb{K}^{\times \times}$. Or, equivalently $|DD \cap \alpha DD| = \frac{|\mathbb{K}|}{4} - 1.$

(日) (同) (E) (E) (E)

Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in \mathbb{K}^* with Singer parameters $(|\mathbb{K}| - 1, \frac{|\mathbb{K}|}{2} - 1, \frac{|\mathbb{K}|}{4} - 1).$

That is to say, when x, y runs through DD,

$$\frac{x}{y} = a$$

holds $\frac{|\mathbb{K}|}{4} - 1$ times for each $\alpha \in \mathbb{K}^{\times \times}$. Or, equivalently $|DD \cap \alpha DD| = \frac{|\mathbb{K}|}{4} - 1.$

Therefore, our equation holds exactly twice, only if

$$\frac{|\mathbb{K}|}{4} - 1 = 1,$$

 $\mathbb{K} = \mathbb{F}_{2^3}$.

thus,

・ロン ・回と ・ヨン ・ヨン

The result

Theorem

If a (q, q)-projective APN polynomial F is \mathbb{K} -CCZ equivalent to a permutation then $F \sim \kappa : \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$.

・ロシ ・回 シ ・ヨ シ ・ ヨ と

The result

Theorem

If a (q,q)-projective APN polynomial F is \mathbb{K} -CCZ equivalent to a permutation then $F \sim \kappa : \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$.

A related result:

Theorem (Canteaut, Perrin, Tian 2019)

If a generalized butterfly

$$F = [(x + ay)^{q+1} + by^{q+1}, (ax + y)^{q+1} + bx^{q+1}]$$

is APN then $F \sim \kappa : \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$.

イロン イヨン イヨン イヨン

The result

Theorem

If a (q,q)-projective APN polynomial F is \mathbb{K} -CCZ equivalent to a permutation then $F \sim \kappa : \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$.

A related result:

Theorem (Canteaut, Perrin, Tian 2019)

If a generalized butterfly

$$F = [(x + ay)^{q+1} + by^{q+1}, (ax + y)^{q+1} + bx^{q+1}]$$

is APN then $F \sim \kappa : \mathbb{F}_{2^6} \to \mathbb{F}_{2^6}$.

Recall

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{q+1} + (c_1x + d_1y)^{q+1}.$$

Anne Canteaut, Lo Perrin, Shizhu Tian: If a generalised butterfly is APN then it operates on 6 bits. Cryptogr. Commun. 11(6): 1147-1164 (2019)

• One can choose F = [f, g] where

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{r+1} + (c_1x + d_1y)^{r+1}.$$

 Note that the "square" Walsh-zero structure of *f* is independent of the way we combine it with another function *g*. Thus these functions are (most of the time) K-CCZ equivalent to permutations.

• One can choose F = [f, g] where

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{r+1} + (c_1x + d_1y)^{r+1}.$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) K-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K} -linear combinations $\alpha f + \beta g$ are not anymore projective.

イロト イポト イヨト イヨト 二日

• One can choose F = [f, g] where

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{r+1} + (c_1x + d_1y)^{r+1}.$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) K-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K} -linear combinations $\alpha f + \beta g$ are not anymore projective.
- Equations are extremely complicated.

イロト イポト イヨト イヨト 二日

• One can choose F = [f, g] where

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{r+1} + (c_1x + d_1y)^{r+1}.$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) K-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K} -linear combinations $\alpha f + \beta g$ are not anymore projective.
- Equations are extremely complicated.
- Partial theoretical results.

• One can choose F = [f, g] where

$$f(x,y) = (a_0x + b_0y)^{q+1} + (c_0x + d_0y)^{q+1},$$

$$g(x,y) = (a_1x + b_1y)^{r+1} + (c_1x + d_1y)^{r+1}.$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) K-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K} -linear combinations $\alpha f + \beta g$ are not anymore projective.
- Equations are extremely complicated.
- Partial theoretical results.
- Computer data suggest no such APN function up to dimension 30.

$$g := \mathbb{K} \times \mathbb{K} \to \mathbb{K}$$

with an *n*-dimensional Walsh-zero space (all 2^m components should be involved) and good differential properties ($2|\mathbb{K}|$ -differential uniform, so that it can be extended to an APN function) and combine it with a *q*-projective *f*, hoping to get an APN function.

通 とう ほう う ひょう

$$g := \mathbb{K} \times \mathbb{K} \to \mathbb{K}$$

with an *n*-dimensional Walsh-zero space (all 2^m components should be involved) and good differential properties ($2|\mathbb{K}|$ -differential uniform, so that it can be extended to an APN function) and combine it with a *q*-projective *f*, hoping to get an APN function.

• Combine a projective *f* with a non-quadratic function, possibly a monomial or a homogenous function.

伺 と く き と く き とう

$$g := \mathbb{K} \times \mathbb{K} \to \mathbb{K}$$

with an *n*-dimensional Walsh-zero space (all 2^m components should be involved) and good differential properties ($2|\mathbb{K}|$ -differential uniform, so that it can be extended to an APN function) and combine it with a *q*-projective *f*, hoping to get an APN function.

- Combine a projective *f* with a non-quadratic function, possibly a monomial or a homogenous function.
- For instance try quartic homogenous functions

$$ax^3y + bx^2y^2 + cxy^3.$$

向下 イヨト イヨト

$$g := \mathbb{K} \times \mathbb{K} \to \mathbb{K}$$

with an *n*-dimensional Walsh-zero space (all 2^m components should be involved) and good differential properties ($2|\mathbb{K}|$ -differential uniform, so that it can be extended to an APN function) and combine it with a *q*-projective *f*, hoping to get an APN function.

- Combine a projective *f* with a non-quadratic function, possibly a monomial or a homogenous function.
- For instance try quartic homogenous functions

$$ax^3y + bx^2y^2 + cxy^3.$$

• Non-classical Walsh spectrum problem can be attacked similarly.

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-classical Walsh spectrum

• Walsh spectrum of an APN function is defined as the set

$$\{\widehat{F}(u,v): u \in \mathbb{F}, v \in \mathbb{F}^{\times}\}.$$

• All quadratic APN functions on an odd dimension *n* have the same Walsh spectrum

$$\{0,\pm 2^{\frac{n+1}{2}}\}.$$

• Majority of the quadratic APN functions (also plateaued ones) on an even dimension n = 2m have the spectrum

$$\{0,\pm 2^m,\pm 2^{m+1}\},\,$$

which is called the classical spectrum.

 \bullet On $\mathbb{F}_{2^6},$ up to equivalence, one function, namely

$$F(X) = X^{3} + U^{11}X^{5} + U^{13}X^{9} + X^{17} + U^{11}X^{33} + X^{48}$$

introduced in Browning, Dillon, Kibler, and McQuistan (2009) with a non-classical spectrum:

$$\{0,\pm 2^m,\pm 2^{m+1},2^{m+2}\},$$

向下 イヨト イヨト

We observe that (joint work with Michal Maršalek) the function

$$f:=\mathbb{F}_{2^3}\times\mathbb{F}_{2^3}\to\mathbb{F}_{2^3}$$

defined as

$$f(x,y) = x^2y + y^2x + xy$$

contains non-classical Walsh value 2^{m+2} if n is odd. Using bivariate maps we can write

$$F = [x^2y + xy^2 + xy, x^3 + ay^3 + L(x, y)].$$

Question

Can this be generalized?

Theorem

If n is odd, a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ of the type

$$F = [x^2y + xy^2 + xy, x^3 + ay^3 + L(x, y)].$$

is not APN if $n \ge 9$.

We prove after lengthy analysis that L should satisfy (polynomially)

$$\operatorname{Tr}\left(\frac{L(x,x+1)}{x^3}\right) = \sum_{i=1}^{2^n-2} x^i.$$

Counting the number of terms, we see that

$$n(n^2+n)/2 \ge 2^n-2$$

should hold, which is impossible if $n \ge 9$.

・ロン ・回と ・ヨン・モン・

Thanks for your attention.

・ 同 ト ・ 臣 ト ・ 臣 ト

크