APN functions, projective and permutation polynomials

Faruk Göloğlu

Charles University, Prague

BFA 2020
September 17, 2020

APN functions

Setting:

- $Q=2^{n}, \mathbb{F}=\mathbb{F}_{Q}$
- $f: \mathbb{F} \rightarrow \mathbb{F}$

Non-zero derivatives of f

$$
D_{A} f=\{f(X)-f(X+A): X \in \mathbb{F}\}
$$

- (even characteristic) APN if $\# D_{A} f=\frac{Q}{2}$, i.e., maximal
- (odd characteristic) PN if $\# D_{A} f=Q$

APN exponents and permutations

Family	Monomial	Conditions	Proved by
Gold	$X^{2^{i}+1}$	$\operatorname{gcd}(i, n)=1$	Gold
Kasami	$X^{2^{2 i}-2^{i}+1}$	$\operatorname{gcd}(i, n)=1$	Kasami
Welch	$X^{2^{t}+3}$	$n=2 t+1$	Dobbertin
Niho	$\left.\begin{array}{c}X^{2^{t}+2^{\frac{t}{2}}}-1 \\ X^{2^{t}+2^{\frac{3 t+1}{2}}-1}, t \text { even }\end{array}\right)$	$n=2 t+1$	Dobbertin
Inverse	$X^{2^{2 t}}-1$	$n=2 t+1$	Nyberg
Dobbertin	$X^{2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1}$	$n=5 t$	Dobbertin

Table: Known infinite families of APN monomials on $\mathbb{F}_{2^{n}}$

- n odd: 1-to-1
- n even: 3-to-1

APN permutations

- Exists for all odd n
- Named "big APN problem" for even n
- Exists for $n=6$, the Kim function (Browning-Dillon-McQuistan-Wolfe 2009) on $\mathbb{F}_{2^{6}}$

$$
\kappa(X)=X^{3}+X^{10}+A X^{24}
$$

where A is a generator of $\mathbb{F}_{2^{6}}^{*}$, is equivalent to a permutation.

- "still big APN problem": Does there exist another APN permutation on even dimensions?

Equivalence

EA-equivalence

$$
g(X)=L_{1}\left(f\left(L_{2}(X)\right)\right)+L_{3}(X)
$$

CCZ-equivalence

Define $G_{f}=\{(X, f(X))\}$.
f and g are said to be CCZ-equivalent if G_{f} and G_{g} are affine-equivalent.

- APN and Walsh properties invariant
- The Kim function κ is CCZ-equivalent to a permutation

Walsh transform

The Walsh transform of f

$$
\widehat{f}(A, B)=\sum_{X \in \mathbb{F}} \chi(A f(X)+B X)
$$

and Walsh zeroes $W Z_{f}$ of f is

$$
W Z_{f}=\{(X, Y): \widehat{f}(X, Y)=0\} \cup\{(0,0)\}
$$

where $\chi(\cdot)=(-1)^{\operatorname{Tr}(\cdot)}$.

Projective polynomials

Definition

Let $a_{q+1}, a_{q}, a_{1}, a_{0} \in \mathbb{F}_{2^{m}}$ and $q=2^{i}$. The polynomials of the form

$$
a_{q+1} x^{q+1}+a_{q} x^{q}+a_{1} x+a_{0}
$$

are called projective polynomials.
S. S. Abhyankar, Projective polynomials, Proceedings of the American Mathematical Society 125 (1997), 16431650.

- Generally $a_{q+1} \neq 0$ is assumed.
- Number of zeroes:

$$
\left\{0,1,2,2^{\operatorname{gcd}(i, m)}+1\right\}
$$

Antonia W. Bluher: On $x^{q+1}+a x+b$. Finite Fields Their Appl. 10(3): 285-305 (2004)

Projective polynomials

- Let $\mathbb{F}=\mathbb{F}_{2^{2 m}}$ and $\mathbb{K}=\mathbb{F}_{2^{m}}$.
- The vectorial Boolean function

$$
F: \mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K} \times \mathbb{K}
$$

We will set

$$
F(x, y)=[f(x, y), g(x, y)],
$$

with $q=2^{i}, r=2^{j}, i, j \geq 1$, and

$$
\begin{aligned}
& f(x, y)=a_{0} x^{q+1}+b_{0} x^{q} y+c_{0} x y^{q}+d_{0} y^{q+1} \\
& g(x, y)=a_{1} x^{r+1}+b_{1} x^{r} y+c_{1} x y^{r}+d_{1} y^{r+1} .
\end{aligned}
$$

- $f(x, y)$ bivariate q-projective polynomial
- $F(x, y)$ bivariate (q, r)-projective polynomial pair
- $f(x, y)=a_{0} x^{q+1}+b_{0} x^{q} y+c_{0} x y^{q}+d_{0} y^{q+1}=\left(a_{0}, b_{0}, c_{0}, d_{0}\right)_{q}$.

APN functions which are (q, r)-projective

- The κ function on $\mathbb{F}_{2^{6}}$, for some $b \in \mathbb{F}_{2^{3}}$:

$$
\kappa^{\prime}(x, y)=\left[(0, b, b, b+1)_{2},(b, 1,0, b)_{2}\right]
$$

APN functions which are (q, r)-projective

- The κ function on $\mathbb{F}_{2^{6}}$, for some $b \in \mathbb{F}_{2^{3}}$:

$$
\kappa^{\prime}(x, y)=\left[(0, b, b, b+1)_{2},(b, 1,0, b)_{2}\right]
$$

- Gold functions $\mathrm{G}_{i}(X)=X^{2^{i}+1}$. When m is odd:

$$
\mathrm{G}_{i}(x, y)=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{i}}\right] .
$$

APN functions which are (q, r)-projective

- The κ function on $\mathbb{F}_{2^{6}}$, for some $b \in \mathbb{F}_{2^{3}}$:

$$
\kappa^{\prime}(x, y)=\left[(0, b, b, b+1)_{2},(b, 1,0, b)_{2}\right]
$$

- Gold functions $\mathrm{G}_{i}(X)=X^{2^{i}+1}$. When m is odd:

$$
\mathrm{G}_{i}(x, y)=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{i}}\right] .
$$

- Pott-Zhou APN family:

$$
F(x, y)=\left[(1,0,0, d)_{2^{i}},(0,0,1,0)_{2^{j}}\right], \quad d \in \mathbb{K}^{\times},
$$

are APN if and only if $\operatorname{gcd}(i, m)=1, m$ is even and $d \neq a^{2^{i}+1}\left(b^{2^{i}}+b\right)^{1-2^{j}}$ for some $a, b \in \mathbb{K}$.

APN functions which are (q, r)-projective

- The κ function on $\mathbb{F}_{2^{6}}$, for some $b \in \mathbb{F}_{2^{3}}$:

$$
\kappa^{\prime}(x, y)=\left[(0, b, b, b+1)_{2},(b, 1,0, b)_{2}\right]
$$

- Gold functions $\mathrm{G}_{i}(X)=X^{2^{i}+1}$. When m is odd:

$$
\mathrm{G}_{i}(x, y)=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{i}}\right] .
$$

- Pott-Zhou APN family:

$$
F(x, y)=\left[(1,0,0, d)_{2^{i}},(0,0,1,0)_{2^{j}}\right], \quad d \in \mathbb{K}^{\times},
$$

are APN if and only if $\operatorname{gcd}(i, m)=1, m$ is even and $d \neq a^{2^{i}+1}\left(b^{2^{i}}+b\right)^{1-2^{j}}$ for some $a, b \in \mathbb{K}$.

- Taniguchi APN family of the form

$$
F(x, y)=\left[(1,0, c, d)_{2^{i}},(0,1,0,0)_{2^{2 i}}\right]
$$

where $\operatorname{gcd}(i, m)=1, f(x, 1) \neq 0$ for any $x \in \mathbb{K}$.

We should allow $q=2^{0}$ to include the first bivariate construction.

- Carlet family:

$$
F(x, y)=\left[x y,\left(a_{1}, b_{1}, c_{1}, d_{1}\right)_{r}\right],
$$

Carlet shows that F is APN if and only if $g(x, 1) \neq 0$ for any $x \in \mathbb{K}$. Note that

$$
a x^{2}+b x y+c y^{2}
$$

is the most general, but can be omitted.

Our objective

- Find APN functions imitating the κ function. That is, using (q, r)-projective APN polynomials.
- Hope that it is equivalent to a permutation.

Hybrid Gold APN functions

Recall

- Gold functions $\mathrm{G}_{i}(X)=X^{2^{i}+1}$. When m is odd:

$$
\mathrm{G}_{i}(x, y)=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{i}}\right] .
$$

- After an $\mathbb{F}_{2^{m}}$-linear transformation:

$$
\mathrm{G}_{i}^{\prime}(x, y)=\left[(1,0,1,1)_{2^{i}},(1,1,0,1)_{2^{i}}\right] .
$$

Hybrid Gold APN functions

Recall

- Gold functions $\mathrm{G}_{i}(X)=X^{2^{i}+1}$. When m is odd:

$$
\mathrm{G}_{i}(x, y)=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{i}}\right] .
$$

- After an $\mathbb{F}_{2^{m}}$-linear transformation:

$$
\mathrm{G}_{i}^{\prime}(x, y)=\left[(1,0,1,1)_{2^{i}},(1,1,0,1)_{2^{i}}\right] .
$$

Theorem

The following bivariate (q, r)-projective polynomial pairs
$F(x, y)=[f(x, y), g(x, y)]$ are $A P N$ on $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$.
$\left(\mathcal{F}_{1}\right) F=\left[(1,0,1,1)_{2^{i}},(1,1,0,1)_{2^{2}}\right], \operatorname{gcd}(3 i, m)=1$,
$\left(\mathcal{F}_{2}\right) \quad F=\left[(1,0,1,1)_{2^{i}},(0,1,1,0)_{2^{3 i}}\right], \operatorname{gcd}(3 i, m)=1, m$ odd,
$\left.\left(\mathcal{F}_{3}\right) \quad F=[(0,1,1,0))_{2^{i}},(1, b, c, d)_{2^{3}}\right], i \in\{1,2\}, m=5,(1, b, c, d) \in S_{i}$.

Proof of \mathcal{F}_{1}

Notation:

- $\mathbb{F}_{2^{m}}=\mathbb{K}$,
- $3 \nmid m$,
- $q=2^{i}, \operatorname{gcd}(i, m)=1$.

Lemma

$\phi_{q}(u):=u^{q+1}+u+1 \neq 0$, for $u \in \mathbb{K}$.

Proof of \mathcal{F}_{1}

Notation:

- $\mathbb{F}_{2^{m}}=\mathbb{K}$,
- $3 \nmid m$,
- $q=2^{i}, \operatorname{gcd}(i, m)=1$.

Lemma

$\phi_{q}(u):=u^{q+1}+u+1 \neq 0$, for $u \in \mathbb{K}$.
Note that

$$
x \phi_{q}\left(x^{q-1}\right)=x^{q^{2}}+x^{q}+x
$$

is a permutation polynomial.

Proof of \mathcal{F}_{1}

We get

$$
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y),
$$

and

$$
\psi_{q^{2}}(x)=x^{q^{2}}+x=\frac{y^{q^{2}}+(u+1)^{q^{2}} y}{\phi_{q^{2}}(u+1)}=: \nu_{u}(y) .
$$

Proof of \mathcal{F}_{1}

We get

$$
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y),
$$

and

$$
\psi_{q^{2}}(x)=x^{q^{2}}+x=\frac{y^{q^{2}}+(u+1)^{q^{2}} y}{\phi_{q^{2}}(u+1)}=: \nu_{u}(y) .
$$

Trivial zeroes: $(x, y) \in\{(0,0),(1,0)\}$.

Proof of \mathcal{F}_{1}

We get

$$
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y),
$$

and

$$
\psi_{q^{2}}(x)=x^{q^{2}}+x=\frac{y^{q^{2}}+(u+1)^{q^{2}} y}{\phi_{q^{2}}(u+1)}=: \nu_{u}(y) .
$$

Trivial zeroes: $(x, y) \in\{(0,0),(1,0)\}$. Note that $\left(x^{q}+x\right)+\left(x^{q}+x\right)^{q}=x^{q^{2}}+x$.

Proof of \mathcal{F}_{1}

We get

$$
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y),
$$

and

$$
\psi_{q^{2}}(x)=x^{q^{2}}+x=\frac{y^{q^{q^{2}}}+(u+1)^{q^{2}} y}{\phi_{q^{2}}(u+1)}=: \nu_{u}(y) .
$$

Trivial zeroes: $(x, y) \in\{(0,0),(1,0)\}$. Note that $\left(x^{q}+x\right)+\left(x^{q}+x\right)^{q}=x^{q^{2}}+x$.
We will show that

$$
\lambda_{u}^{\prime \prime}(y):=\mu_{u}(y)+\mu_{u}(y)^{q}+\nu_{u}(y)
$$

is a permutation for every $u \in \mathbb{K} \backslash \mathbb{F}_{4}$, where

$$
\begin{gathered}
\phi_{q}(u):=u^{q+1}+u+1 \neq 0, \\
\phi_{q^{2}}(u+1):=u^{q^{2}+1}+u^{q^{2}}+1 \neq 0 .
\end{gathered}
$$

Proof of \mathcal{F}_{1}

Show $\lambda_{u}(y)$ is a permutation:

$$
\lambda_{u}(y)=\left(\phi_{q}(u)\right)^{2} y^{q^{2}}+\left(\phi_{q^{2}}(u+1)\right)^{2} y^{q}+\left(\phi_{q}(u)\right)^{2 q} y .
$$

Proof of \mathcal{F}_{1}

Show $\lambda_{u}(y)$ is a permutation:

$$
\lambda_{u}(y)=\left(\phi_{q}(u)\right)^{2} y^{q^{2}}+\left(\phi_{q^{2}}(u+1)\right)^{2} y^{q}+\left(\phi_{q}(u)\right)^{2 q} y
$$

The projective polynomial defined by

$$
\pi(x)=\left(\phi_{q}(u)\right)^{2} x^{q+1}+\left(\phi_{q^{2}}(u+1)\right)^{2} x+\left(\phi_{q}(u)\right)^{2 q},
$$

Show $\lambda_{u}(y)$ is a permutation:

$$
\lambda_{u}(y)=\left(\phi_{q}(u)\right)^{2} y^{q^{2}}+\left(\phi_{q^{2}}(u+1)\right)^{2} y^{q}+\left(\phi_{q}(u)\right)^{2 q} y
$$

The projective polynomial defined by

$$
\pi(x)=\left(\phi_{q}(u)\right)^{2} x^{q+1}+\left(\phi_{q^{2}}(u+1)\right)^{2} x+\left(\phi_{q}(u)\right)^{2 q}
$$

satisfies

$$
\pi(x)=\left(\epsilon_{3} x+\epsilon_{4}\right)^{q+1} \phi_{q}\left(\frac{\epsilon_{1} x+\epsilon_{2}}{\epsilon_{3} x+\epsilon_{4}}\right)
$$

with

$$
\left(\begin{array}{ll}
\epsilon_{1} & \epsilon_{2} \\
\epsilon_{3} & \epsilon_{4}
\end{array}\right)=\left(\begin{array}{cc}
1 & (u+1)^{2 q} \\
(u+1)^{2} & u^{2 q}
\end{array}\right)
$$

whose determinant is conveniently

$$
\left|\begin{array}{cc}
1 & (u+1)^{2 q} \\
(u+1)^{2} & u^{2 q}
\end{array}\right|=\left(\phi_{q}(u)\right)^{2} \neq 0,
$$

for any $u \in \mathbb{K} \backslash \mathbb{F}_{4}$.

Proof of \mathcal{F}_{2}

We want to count the common solutions of

$$
\begin{gathered}
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y) \\
\psi_{q^{3}}(x)=x^{q^{3}}+x=\frac{u y^{q^{3}}+u^{q^{3}} y}{u^{q^{3}}+u}=: \sigma_{u}(y)
\end{gathered}
$$

Proof of \mathcal{F}_{2}

We want to count the common solutions of

$$
\begin{gathered}
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y), \\
\psi_{q^{3}}(x)=x^{q^{3}}+x=\frac{u y^{q^{3}}+u^{q^{3}} y}{u^{q^{3}}+u}=: \sigma_{u}(y) .
\end{gathered}
$$

We are going to show that

$$
\tau_{u}^{\prime}(y)=\mu_{u}(y)+\mu_{u}(y)^{q}+\mu_{u}(y)^{q^{2}}+\sigma_{u}(y)
$$

is a 2-to-1 map.

Proof of \mathcal{F}_{2}

We want to count the common solutions of

$$
\begin{gathered}
\psi_{q}(x)=x^{q}+x=\frac{(u+1) y^{q}+y}{\phi_{q}(u)}=: \mu_{u}(y), \\
\psi_{q^{3}}(x)=x^{q^{3}}+x=\frac{u y^{q^{3}}+u^{q^{3}} y}{u^{q^{3}}+u}=: \sigma_{u}(y) .
\end{gathered}
$$

We are going to show that

$$
\tau_{u}^{\prime}(y)=\mu_{u}(y)+\mu_{u}(y)^{q}+\mu_{u}(y)^{q^{2}}+\sigma_{u}(y)
$$

is a 2-to-1 map. Simplifying, we get

$$
\begin{aligned}
\tau_{u}(y) & =\frac{\left(\phi_{q}(u)\right)^{2 q}}{\left(\phi_{q^{2}}(u+1)\right)^{q-1}\left(\phi_{q}(u)\right)^{q^{2}-1}} y^{q^{3}} \\
& +\frac{\left(\phi_{q}(u)\right)^{q} \psi_{q^{3}}(u)}{\left(\phi_{q}(u)\right)^{q^{2}-1}} y^{q^{2}} \\
& +\frac{\left(\phi_{q}(u)\right)^{q} \psi_{q^{3}}(u)}{\left(\phi_{q^{2}}(u+1)\right)^{q-1}} y^{q} \\
& +\left(\phi_{q}(u)\right)^{2 q} y .
\end{aligned}
$$

Proof of \mathcal{F}_{2}

It can be shown that

$$
\tau_{u}(y)=\lambda_{u}(y)+\frac{\left(\lambda_{u}(y)\right)^{q}}{C}
$$

where

$$
C=\left(\phi_{q^{2}}(u+1)\right)^{q-1}\left(\phi_{q}(u)\right)^{q^{2}-1},
$$

and

$$
\lambda_{u}(y)=\left(\phi_{q}(u)\right)^{2} y^{q^{2}}+\left(\phi_{q^{2}}(u+1)\right)^{2} y^{q}+\left(\phi_{q}(u)\right)^{2 q} y,
$$

which was defined for Family \mathcal{F}_{1} previously.

It can be shown that

$$
\tau_{u}(y)=\lambda_{u}(y)+\frac{\left(\lambda_{u}(y)\right)^{q}}{C}
$$

where

$$
C=\left(\phi_{q^{2}}(u+1)\right)^{q-1}\left(\phi_{q}(u)\right)^{q^{2}-1}
$$

and

$$
\lambda_{u}(y)=\left(\phi_{q}(u)\right)^{2} y^{q^{2}}+\left(\phi_{q^{2}}(u+1)\right)^{2} y^{q}+\left(\phi_{q}(u)\right)^{2 q} y,
$$

which was defined for Family \mathcal{F}_{1} previously.
Now, the kernel satisfies $\operatorname{ker} \tau_{u}^{\prime}=\left\{0, \frac{u^{2}+u+1}{u}\right\}$. We then show that:

$$
\mu_{u}\left(\frac{u^{2}+u+1}{u}\right)=\frac{1}{u^{q}}+\frac{1}{u}+1 .
$$

Inequivalence to known APN functions

Define

$$
\mathrm{NB}_{F}:=\left\{U \in \mathbb{F}_{2^{n}}: \widehat{F}(U, V)=0 \text { for some } V \in \mathbb{F}_{2^{n}}\right\}
$$

An $E A$-invariance vector:

$$
\mathrm{N}_{F}:=\left[\eta_{d}\left(\mathrm{NB}_{F}\right): 0 \leq d \leq n\right],
$$

where $\eta_{d}(S)$ is the number of \mathbb{F}_{2}-vector spaces of dimension d in S.

Inequivalence to known APN functions

Define

$$
\mathrm{NB}_{F}:=\left\{U \in \mathbb{F}_{2^{n}}: \widehat{F}(U, V)=0 \text { for some } V \in \mathbb{F}_{2^{n}}\right\} .
$$

An $E A$-invariance vector:

$$
\mathrm{N}_{F}:=\left[\eta_{d}\left(\mathrm{NB}_{F}\right): 0 \leq d \leq n\right],
$$

where $\eta_{d}(S)$ is the number of \mathbb{F}_{2}-vector spaces of dimension d in S.

Table: EA-invariants N_{F} for Families $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3} on $\mathbb{F}_{2^{10}}$

Family	N_{F}
\mathcal{F}_{0}	$[0,341,6820,3565]$
	$[0,341,6820,3720,31]$
\mathcal{F}_{1}	$[0,341,6820,3565] \dagger$
	$[0,341,6820,3720,31] \dagger$
\mathcal{F}_{2}	$[0,341,6820,3720,62,1]$
	$[0,341,6820,4030,62,1]$
\mathcal{F}_{3}	$[0,341,6324,2573,62,2]$

Inequivalence to known APN functions

Table: EA-invariants N_{F} for Families $\mathcal{F}_{0}, \mathcal{F}_{1}$ and \mathcal{F}_{2} on $\mathbb{F}_{2^{14}}$

Family	N_{F}
\mathcal{F}_{0}	$[0,5461,1681988,13290042,428625]$
	$[0,5461,1681988,13313156,436626]$
	$[0,5461,1681988,13267817,401828]$
\mathcal{F}_{1}	$[0,5461,1681988,13250164,394843] \dagger$
	$[0,5461,1681988,13286867,438531] \dagger$
	$[0,5461,1681988,13238480,398399]$
\mathcal{F}_{2}	$[0,5461,1681988,13293725,430784,2667,127,1]$
	$[0,5461,1681988,13219303,413004,2667,127,1]$
	$[0,5461,1681988,13290423,418084,2667,127,1]$

\dagger corresponds to the cases involving x^{3} found independently in: Lilya Budaghyan, Tor Helleseth, Nikolay S. Kaleyski: A new family of APN quadrinomials. IACR Cryptol. ePrint Arch. 2019: 994 (2019)

Inequivalence to known APN functions

Table: EA-invariants N_{F} for known quadratic APN functions on $\mathbb{F}_{2^{10}}$

Function F	$\mathrm{~N}_{F}$
x^{3}	$[0,341,6820,5115,341,11]$
x^{9}	$[0,341,6820,5115,341,11]$
$x^{6}+x^{33}+u^{31} x^{192}$	$[0,341,6820,3720,31]$
$x^{33}+x^{72}+u^{31} x^{258}$	$[0,341,6820,3720,31]$
$x^{3}+\operatorname{Tr}\left(x^{9}\right)$	$[0,341,6820,4215,66,1]$
$x^{3}+u^{341} x^{36}$	$[0,341,6820,4400]$
$x^{3}+u^{1022} \operatorname{Tr}\left(u^{3} x^{9}\right)$	$[0,341,6820,4250,66,1]$
x^{57}	N/A
x^{339}	N/A

Some properties of the new functions

- Quadratic (more generally plateaued) APN functions with $\eta_{m}\left(\mathrm{NB}_{F}\right) \geq 2$: Kasami, Gold, κ, \mathcal{F}_{3}.

Some properties of the new functions

- Quadratic (more generally plateaued) APN functions with $\eta_{m}\left(\mathrm{NB}_{F}\right) \geq 2$: Kasami, Gold, κ, \mathcal{F}_{3}.
- Quadratic (more generally plateaued) APN functions with $\eta_{m}\left(\mathrm{NB}_{F}\right)=1: x^{3}+u^{-1} \operatorname{Tr}\left(u^{3} x^{9}\right), \mathcal{F}_{2}$.

Some properties of the new functions

- Quadratic (more generally plateaued) APN functions with $\eta_{m}\left(\mathrm{NB}_{F}\right) \geq 2$: Kasami, Gold, κ, \mathcal{F}_{3}.
- Quadratic (more generally plateaued) APN functions with $\eta_{m}\left(\mathrm{NB}_{F}\right)=1: x^{3}+u^{-1} \operatorname{Tr}\left(u^{3} x^{9}\right), \mathcal{F}_{2}$.
- Bivariate functions not employing $f(x, y)=x y$.

CCZ-equivalence to permutations

- These functions do not seem to be equivalent to permutations.

CCZ-equivalence to permutations

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?

CCZ-equivalence to permutations

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?
- What about (q, r)-projective functions in general?

CCZ-equivalence to permutations

- These functions do not seem to be equivalent to permutations.
- What about (q, q)-projective functions?
- What about (q, r)-projective functions in general?
- A few observations on the κ function.

$$
\begin{aligned}
\mathbb{F} & =\mathbb{F}_{2^{2 m}}, \quad \mathbb{K}=\mathbb{F}_{2^{m}} \\
\widehat{F}(A, B) & =\sum_{X \in \mathbb{F}} \chi(A F(X)+B X)
\end{aligned}
$$

$A \backslash B$	0	$v_{1} \mathbb{K}^{*}$	$v_{2} \mathbb{K}^{*}$	\cdots	$v_{t} \mathbb{K}^{*}$
0					
$u_{1} \mathbb{K}^{*}$					
$u_{2} \mathbb{K}^{*}$					
\vdots					
$u_{t} \mathbb{K}^{*}$					

Properties of κ

- An APN function f on $\mathbb{F}_{2^{n}}$ is CCZ-equivalent to a permutation if the Walsh zeroes of f contains two subspaces of dimension n intersecting only trivially.
- Walsh zeroes of κ has more structure with respect to some subspaces, i.e.,

$$
\left\{\left(u_{1} x, v_{1} y\right): x, y \in \mathbb{K}\right\},\left\{\left(u_{2} x, v_{2} y\right): x, y \in \mathbb{K}\right\} \subseteq W Z_{f}
$$

for some $u_{1}, u_{2}, v_{1}, v_{2} \in \mathcal{P}_{7}$, i.e., 7 th powers in \mathbb{F}^{*}.

$$
\begin{aligned}
\kappa(X) & =X^{3}+X^{10}+A X^{24} \\
\widehat{f}(A, B) & =\sum_{X \in \mathbb{F}} X(A f(X)+B X)
\end{aligned}
$$

	0	$v_{1} \mathbb{K}^{*}$	$v_{2} \mathbb{K}^{*}$	\cdots	$v_{t} \mathbb{K}^{*}$
0					
$u_{1} \mathbb{K}^{*}$					
$u_{2} \mathbb{K}^{*}$					
\vdots					
$u_{t} \mathbb{K}^{*}$					

CCZ-equivalence

CCZ-equivalence

$F \sim c c z G$ means:
Bijective \mathcal{L}

$$
\mathcal{L}(X, Y)=(A(X)+B(Y)+a, C(X)+D(Y)+b)
$$

such that $\mathcal{L}\left(G_{F}\right)=G_{G}$. That is to say $G=\pi_{2} \circ \pi_{1}^{-1}$, with

$$
\begin{aligned}
& A(X)+B(f(X))+a=\pi_{1}(X), \\
& C(X)+D(f(X))+b=\pi_{2}(X)
\end{aligned}
$$

where A, B, C, D are \mathbb{F}_{2}-linear maps and π_{1} is a permutation.

\mathbb{K}-CCZ equivalence

In the case of the κ function, A, B, C, D are \mathbb{K}-linear maps (with rank m), hence the "square" structure of Walsh-zero spaces.

Definition

If F is CCZ equivalent to G with \mathbb{K}-linear maps (with rank m) A, B, C, D, then we say F is \mathbb{K}-CCZ equivalent to G.

\mathbb{K}-CCZ equivalence

In the case of the κ function, A, B, C, D are \mathbb{K}-linear maps (with rank m), hence the "square" structure of Walsh-zero spaces.

Definition

If F is CCZ equivalent to G with \mathbb{K}-linear maps (with rank m) A, B, C, D, then we say F is \mathbb{K}-CCZ equivalent to G.

Proposition

If a (q, q)-projective $A P N$ polynomial $F=[f(x, y), g(x, y)]$ is \mathbb{K}-CCZ equivalent to a permutation then

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{q+1}+\left(c_{1} x+d_{1} y\right)^{q+1},
\end{aligned}
$$

for some "nonsingular" coefficients.
Hence we can assume w.l.o.g. $f(x, y)=(1,0,0,1)_{q}$.

Equivalence problem to APN permutations

If for some $a, b, c, d \in \mathbb{K}$ the function $F=\left[(1,0,0,1)_{q},(a, b, c, d)_{q}\right]$ is APN, then:

$$
\begin{aligned}
U^{q+1}\left(X+X^{q}\right)+\left(Y+Y^{q}\right) & =0, \\
a U^{q}\left(X+X^{q}\right)+b U^{q}\left(Y+X^{q}\right)+c U\left(X+Y^{q}\right)+d\left(Y+Y^{q}\right) & =0 .
\end{aligned}
$$

should hold only for $X=Y=0$ and $X=Y=1$ for all non-zero $U \in \mathbb{F}$.

Equivalence problem to APN permutations

If for some $a, b, c, d \in \mathbb{K}$ the function $F=\left[(1,0,0,1)_{q},(a, b, c, d)_{q}\right]$ is APN, then:

$$
\begin{aligned}
U^{q+1}\left(X+X^{q}\right)+\left(Y+Y^{q}\right) & =0, \\
a U^{q}\left(X+X^{q}\right)+b U^{q}\left(Y+X^{q}\right)+c U\left(X+Y^{q}\right)+d\left(Y+Y^{q}\right) & =0 .
\end{aligned}
$$

should hold only for $X=Y=0$ and $X=Y=1$ for all non-zero $U \in \mathbb{F}$. Equivalently, there is no (q, q)-projective bivariate APN polynomial which is equivalent to a permutation, if

$$
\left(\frac{Y+Y^{q}}{X+X^{q}}\right)\left(\frac{X+Y^{q}}{Y+Y^{q}}\right)^{q+1}=A
$$

is satisfied for all $A \in \mathbb{K}$ by some $X, Y \in \mathbb{K} \backslash\{0,1\}$.

Equivalence problem

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K}-CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$such that

$$
X^{q+1}+X+A \frac{\left(\beta^{2}+\beta\right)^{q}}{\left(\beta^{q}+\beta\right)^{q+1}}=0
$$

has exactly two solutions $\left(x_{0}, \beta_{0}\right)$ and $\left(x_{0}, \beta_{1}\right)$ for $x \in \mathbb{K}^{\times}$and $\beta \in \mathbb{K}^{\times \times}$.

Equivalence problem

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K}-CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$such that

$$
X^{q+1}+X+A \frac{\left(\beta^{2}+\beta\right)^{q}}{\left(\beta^{q}+\beta\right)^{q+1}}=0
$$

has exactly two solutions $\left(x_{0}, \beta_{0}\right)$ and $\left(x_{0}, \beta_{1}\right)$ for $x \in \mathbb{K}^{\times}$and $\beta \in \mathbb{K}^{\times \times}$.

Theorem (Helleseth,Kholosha 2008)

The projective polynomial $X^{q+1}+X+C$ has exactly one solution if and only if $C \in D D:=\left\{\frac{\left(\beta^{2}+\beta\right)^{q}}{\left(\beta^{q}+\beta\right)^{q+1}}: \beta \in \mathbb{K}^{\times \times}\right\}$.

Equivalence problem

After some modifications we get the equivalent condition: If a (q, q)-projective APN function is \mathbb{K}-CCZ equivalent to a permutation then there exists $A \in \mathbb{K}^{\times}$such that

$$
X^{q+1}+X+A \frac{\left(\beta^{2}+\beta\right)^{q}}{\left(\beta^{q}+\beta\right)^{q+1}}=0
$$

has exactly two solutions $\left(x_{0}, \beta_{0}\right)$ and $\left(x_{0}, \beta_{1}\right)$ for $x \in \mathbb{K}^{\times}$and $\beta \in \mathbb{K}^{\times \times}$.

Theorem (Helleseth,Kholosha 2008)

The projective polynomial $X^{q+1}+X+C$ has exactly one solution if and only if $C \in D D:=\left\{\frac{\left(\beta^{2}+\beta\right)^{q}}{\left(\beta^{q}+\beta\right)^{q+1}}: \beta \in \mathbb{K}^{\times \times}\right\}$.

Thus we have a lot of solutions for $A=1$. This is also easy to see from the original equation.

Equivalence problem

Theorem (Dillon, Dobbertin 1999)
The set $D D$ is a difference set in \mathbb{K}^{*} with Singer parameters $\left(|\mathbb{K}|-1, \frac{|\mathbb{K}|}{2}-1, \frac{|\mathbb{K}|}{4}-1\right)$.

Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set $D D$ is a difference set in \mathbb{K}^{*} with Singer parameters $\left(|\mathbb{K}|-1, \frac{|\mathbb{K}|}{2}-1, \frac{|\mathbb{K}|}{4}-1\right)$.

That is to say, when x, y runs through $D D$,

$$
\frac{x}{y}=\alpha
$$

holds $\frac{|\mathbb{K}|}{4}-1$ times for each $\alpha \in \mathbb{K}^{\times \times}$. Or, equivalently

$$
|D D \cap \alpha D D|=\frac{|\mathbb{K}|}{4}-1
$$

Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set $D D$ is a difference set in \mathbb{K}^{*} with Singer parameters $\left(|\mathbb{K}|-1, \frac{|\mathbb{K}|}{2}-1, \frac{|\mathbb{K}|}{4}-1\right)$.

That is to say, when x, y runs through $D D$,

$$
\frac{x}{y}=\alpha
$$

holds $\frac{|\mathbb{K}|}{4}-1$ times for each $\alpha \in \mathbb{K}^{\times \times}$. Or, equivalently

$$
|D D \cap \alpha D D|=\frac{|\mathbb{K}|}{4}-1
$$

Therefore, our equation holds exactly twice, only if

$$
\frac{|\mathbb{K}|}{4}-1=1
$$

thus,

$$
\mathbb{K}=\mathbb{F}_{2^{3}} .
$$

The result

Theorem

If a (q, q)-projective APN polynomial F is \mathbb{K}-CCZ equivalent to a permutation then $F \sim \kappa: \mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$.

The result

Theorem

If a (q, q)-projective $A P N$ polynomial F is \mathbb{K}-CCZ equivalent to a permutation then $F \sim \kappa: \mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$.

A related result:

Theorem (Canteaut,Perrin, Tian 2019)

If a generalized butterfly

$$
F=\left[(x+a y)^{q+1}+b y^{q+1},(a x+y)^{q+1}+b x^{q+1}\right]
$$

is APN then $F \sim \kappa: \mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$.

The result

Theorem

If a (q, q)-projective APN polynomial F is \mathbb{K}-CCZ equivalent to a permutation then $F \sim \kappa: \mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$.

A related result:

Theorem (Canteaut,Perrin, Tian 2019)

If a generalized butterfly

$$
F=\left[(x+a y)^{q+1}+b y^{q+1},(a x+y)^{q+1}+b x^{q+1}\right]
$$

is APN then $F \sim \kappa: \mathbb{F}_{2^{6}} \rightarrow \mathbb{F}_{2^{6}}$.
Recall

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1} \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{q+1}+\left(c_{1} x+d_{1} y\right)^{q+1} .
\end{aligned}
$$

Anne Canteaut, Lo Perrin, Shizhu Tian: If a generalised butterfly is APN then it operates on 6 bits. Cryptogr. Commun. 11(6): 1147-1164 (2019)

What happens when $q \neq r$

- One can choose $F=[f, g]$ where

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{r+1}+\left(c_{1} x+d_{1} y\right)^{r+1} .
\end{aligned}
$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) \mathbb{K}-CCZ equivalent to permutations.

What happens when $q \neq r$

- One can choose $F=[f, g]$ where

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{r+1}+\left(c_{1} x+d_{1} y\right)^{r+1} .
\end{aligned}
$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) \mathbb{K}-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K}-linear combinations $\alpha f+\beta g$ are not anymore projective.

What happens when $q \neq r$

- One can choose $F=[f, g]$ where

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{r+1}+\left(c_{1} x+d_{1} y\right)^{r+1} .
\end{aligned}
$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) \mathbb{K}-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K}-linear combinations $\alpha f+\beta g$ are not anymore projective.
- Equations are extremely complicated.

What happens when $q \neq r$

- One can choose $F=[f, g]$ where

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{r+1}+\left(c_{1} x+d_{1} y\right)^{r+1} .
\end{aligned}
$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) \mathbb{K}-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K}-linear combinations $\alpha f+\beta g$ are not anymore projective.
- Equations are extremely complicated.
- Partial theoretical results.

What happens when $q \neq r$

- One can choose $F=[f, g]$ where

$$
\begin{aligned}
& f(x, y)=\left(a_{0} x+b_{0} y\right)^{q+1}+\left(c_{0} x+d_{0} y\right)^{q+1}, \\
& g(x, y)=\left(a_{1} x+b_{1} y\right)^{r+1}+\left(c_{1} x+d_{1} y\right)^{r+1} .
\end{aligned}
$$

- Note that the "square" Walsh-zero structure of f is independent of the way we combine it with another function g. Thus these functions are (most of the time) \mathbb{K}-CCZ equivalent to permutations.
- One difficulty lies in the fact that the \mathbb{K}-linear combinations $\alpha f+\beta g$ are not anymore projective.
- Equations are extremely complicated.
- Partial theoretical results.
- Computer data suggest no such APN function up to dimension 30.

Non-projective extensions

- Find bivariate functions

$$
g:=\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}
$$

with an n-dimensional Walsh-zero space (all 2^{m} components should be involved) and good differential properties ($2|\mathbb{K}|$-differential uniform, so that it can be extended to an APN function) and combine it with a q-projective f, hoping to get an APN function.

Non-projective extensions

- Find bivariate functions

$$
g:=\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}
$$

with an n-dimensional Walsh-zero space (all 2^{m} components should be involved) and good differential properties ($2|\mathbb{K}|$-differential uniform, so that it can be extended to an APN function) and combine it with a q-projective f, hoping to get an APN function.

- Combine a projective f with a non-quadratic function, possibly a monomial or a homogenous function.

Non-projective extensions

- Find bivariate functions

$$
g:=\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}
$$

with an n-dimensional Walsh-zero space (all 2^{m} components should be involved) and good differential properties (2|K్K|-differential uniform, so that it can be extended to an APN function) and combine it with a q-projective f, hoping to get an APN function.

- Combine a projective f with a non-quadratic function, possibly a monomial or a homogenous function.
- For instance try quartic homogenous functions

$$
a x^{3} y+b x^{2} y^{2}+c x y^{3}
$$

Non-projective extensions

- Find bivariate functions

$$
g:=\mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K}
$$

with an n-dimensional Walsh-zero space (all 2^{m} components should be involved) and good differential properties (2|K్K|-differential uniform, so that it can be extended to an APN function) and combine it with a q-projective f, hoping to get an APN function.

- Combine a projective f with a non-quadratic function, possibly a monomial or a homogenous function.
- For instance try quartic homogenous functions

$$
a x^{3} y+b x^{2} y^{2}+c x y^{3}
$$

- Non-classical Walsh spectrum problem can be attacked similarly.

Non-classical Walsh spectrum

- Walsh spectrum of an APN function is defined as the set

$$
\left\{\widehat{F}(u, v): u \in \mathbb{F}, v \in \mathbb{F}^{\times}\right\} .
$$

- All quadratic APN functions on an odd dimension n have the same Walsh spectrum

$$
\left\{0, \pm 2^{\frac{n+1}{2}}\right\}
$$

- Majority of the quadratic APN functions (also plateaued ones) on an even dimension $n=2 m$ have the spectrum

$$
\left\{0, \pm 2^{m}, \pm 2^{m+1}\right\}
$$

which is called the classical spectrum.

- On $\mathbb{F}_{2^{6}}$, up to equivalence, one function, namely

$$
F(X)=X^{3}+U^{11} X^{5}+U^{13} X^{9}+X^{17}+U^{11} X^{33}+X^{48}
$$

introduced in Browning, Dillon, Kibler, and McQuistan (2009) with a non-classical spectrum:

$$
\left\{0, \pm 2^{m}, \pm 2^{m+1}, 2^{m+2}\right\}
$$

Non-classical Walsh spectrum

We observe that (joint work with Michal Maršalek) the function

$$
f:=\mathbb{F}_{2^{3}} \times \mathbb{F}_{2^{3}} \rightarrow \mathbb{F}_{2^{3}}
$$

defined as

$$
f(x, y)=x^{2} y+y^{2} x+x y
$$

contains non-classical Walsh value 2^{m+2} if n is odd. Using bivariate maps we can write

$$
F=\left[x^{2} y+x y^{2}+x y, x^{3}+a y^{3}+L(x, y)\right] .
$$

Question

Can this be generalized?

Non-classical Walsh spectrum

Theorem

If n is odd, a function $F: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ of the type

$$
F=\left[x^{2} y+x y^{2}+x y, x^{3}+a y^{3}+L(x, y)\right] .
$$

is not $A P N$ if $n \geq 9$.
We prove after lengthy analysis that L should satisfy (polynomially)

$$
\operatorname{Tr}\left(\frac{L(x, x+1)}{x^{3}}\right)=\sum_{i=1}^{2^{n}-2} x^{i}
$$

Counting the number of terms, we see that

$$
n\left(n^{2}+n\right) / 2 \geq 2^{n}-2
$$

should hold, which is impossible if $n \geq 9$.

Thanks for your attention.

