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APN functions

Setting:
e Q=2"F=Fq
e f:F—F

Non-zero derivatives of f

Daf = {f(X) - f(X + A) : X € F}

@ (even characteristic) APN if #Daf = % i.e., maximal

@ (odd characteristic) PN if #Daf = Q
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APN exponents and permutations

Family Monomial Conditions Proved by
Gold Gz ged(i,n) =1 Gold
Kasami X =21 ged(i,n) =1 Kasami
Welch X2+ n=2t+1 | Dobbertin

T
Niho X2 +22 1t even n=2t+1 Dobbertin
X2 T 1 ¢ odd
Inverse XT1 n=2t+1 Nyberg
Dobbertin | X2 27 +27+2"-1 n=>5t Dobbertin

Table: Known infinite families of APN monomials on Fa»

@ n odd: 1-to-1

@ n even: 3-to-1
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APN permutations

@ Exists for all odd n
@ Named “big APN problem” for even n

@ Exists for n = 6, the Kim function
(Browning-Dillon-McQuistan-Wolfe 2009) on Fos

K(X) = X3 + X0+ AX?*,

where A is a generator of F%. is equivalent to a permutation.

@ “still big APN problem”: Does there exist another APN
permutation on even dimensions?
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Equivalence

EA-equivalence

g(X) = Li(f(L2(X))) + Ls(X)

CCZ-equivalence
Define Gr = {(X, f(X))}.
f and g are said to be CCZ-equivalent if G¢ and G, are affine-equivalent.

@ APN and Walsh properties invariant

@ The Kim function  is CCZ-equivalent to a permutation
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Walsh transform

Walsh transform
The Walsh transform of f

(A, B) =D x(Af(X)+ BX)
XeF

and Walsh zeroes WZ; of £ is

~

Wz = {(X,Y) : f(X,Y)=0}U{(0,0)}

where x(-) = (=1)T0).
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Projective polynomials

Definition

Let agy1,aq, a1, a0 € Fom and g = 2/ The polynomials of the form
ag+1x9T + agx9 4 a;x + a
q+1 q 1 0

are called projective polynomials.

S. S. Abhyankar, Projective polynomials, Proceedings of the American
Mathematical Society 125 (1997), 16431650.

@ Generally ag41 # 0 is assumed.

@ Number of zeroes: .
{0,1,2,2edlbm) 4 13

Antonia W. Bluher: On x9%1 4 ax + b. Finite Fields Their Appl. 10(3):
285-305 (2004)
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Projective polynomials

@ Let F =Fymn and K = Fom.

@ The vectorial Boolean function

F: KxK—-KxK

We will set
F(x,y) = [f(x,y),&(x,¥)],
with g=2".r=2,j>1, and
f(x,y) = aox®™ + box%y + coxy? + dquJr1

g(x,y) = aix T+ bix"y + axy” + diy’ "

@ f(x,y) bivariate g-projective polynomial
@ F(x,y) bivariate (g, r)-projective polynomial pair

o f(X y) = aoX‘H—1 + bquy + Coxyq + dqu+1 (ao, bo, Co, do)
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APN functions which are (g, r)-projective

@ The k function on Foys, for some b € [Fps:

K'(x,y) = [(0,b,b,b+1)2,(b, 1,0, b)o]
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APN functions which are (g, r)-projective

@ The k function on Foys, for some b € [Fps:

K'(x,y) = [(0,b,b,b+1)2,(b, 1,0, b)o]

@ Gold functions G;(X) = X2+, When m is odd:

Gf(va) - [(1707 17 l)2ia (07 17 17 0)2i]~
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APN functions which are (g, r)-projective

@ The k function on Foys, for some b € [Fps:

K'(x,y) = [(0,b,b,b+1)2,(b, 1,0, b)o]

@ Gold functions G;(X) = X2+, When m is odd:
Gi(x,y) =[(1,0,1,1),,(0,1,1,0),].
@ Pott-Zhou APN family:
F(x,y) =[(1,0,0,d)5,(0,0,1,0)5], d €KX,

are APN if and only if ged(/, m) =1, m is even and
d # a®t(b* + b)'~? for some a, b € K.
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APN functions which are (g, r)-projective

@ The k function on Foys, for some b € [Fps:

K'(x,y) = [(0,b,b,b+1)2,(b, 1,0, b)o]

@ Gold functions G;(X) = X2+, When m is odd:
Gi(x,y) =[(1,0,1,1),,(0,1,1,0),].
@ Pott-Zhou APN family:
F(x,y) =[(1,0,0,d)5,(0,0,1,0)5], d €KX,

are APN if and only if ged(/, m) =1, m is even and
d # a®t(b* + b)'~? for some a, b € K.

@ Taniguchi APN family of the form
F(X’y) = [(17 0,c, d)2"v (0, 1510 O)in]a
where ged(i, m) =1, f(x,1) # 0 for any x € K.

Faruk Gologlu APN functions, projective and permutation polynomials



We should allow g = 2° to include the first bivariate construction.
@ Carlet family:
F(Xa.y) = [Xy7 (317 bla C1, dl)r]7

Carlet shows that F is APN if and only if g(x,1) # 0 for any x € K.
Note that

ax?® + bxy + cy?

is the most general, but can be omitted.

Faruk Gologlu
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@ Find APN functions imitating the s function. That is, using
(g, r)-projective APN polynomials.

@ Hope that it is equivalent to a permutation.
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Hybrid Gold APN functions

Recall

@ Gold functions G;(X) = X2+ When m is odd:
Gi(Xay) = [(1707 17 1)2ia (07 17 170)2i]~

@ After an Fym-linear transformation:

G:(va) = [(1) 07 17 l)2’a (]'a 1707 1)2’]'
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Hybrid Gold APN functions

Recall

@ Gold functions G;(X) = X2+ When m is odd:
Gi(va) = [(1707 17 1)2ia (07 17 170)2i]~

@ After an Fym-linear transformation:

G:(va) = [(1) 07 17 l)2’a (]'a 1707 1)2’]'

The following bivariate (q, r)-projective polynomial pairs
F(x,y) =[f(x,y),g(x,y)] are APN on Fom X Fam.

(.7:1) F = [(17 0,1, 1)2;, (17 1,0, 1)22;], gcd(3i, m) =1,
() F=1](1,0,1,1)5,(0,1,1,0)0s], gcd(3i, m) = 1, m odd,
(F3) F=1(0,1,1,0)y,(1, b,c,d)pi], i € {1,2}, m=5, (1,b,c,d) € S;.

<
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Proof of F;

Notation:
o [Fom =K,
@ 31m,
@ g=2 gcd(i,m) = 1.

Bg(u) == vt +u+1+#0, forue K.
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Proof of F;

Notation:
o [Fom =K,
@ 31m,
@ g=2 gcd(i,m) = 1.

Bg(u) == vt +u+1+#0, forue K.

Note that i
Xgi)q(xq*l) =x7 +x9+ x,

is a permutation polynomial.
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Proof of F;

We get
(u+1)yi+y

l/fq(x):XqJFX: ¢q(u)

and , ,
y T+ (u+1)7y

Yl =t 4 x= g )
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Proof of F;

We get

gy Wtyity
¢q(X) - + ¢q(u) .

and , ,

YT W)y
(qu(u + 1) .

Trivial zeroes: (x,y) € {(0,0),(1,0)}.

bap(x) = x7 +x =
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Proof of F;

We get
1 q
o) = x5 = LY ),
and , ,
2 q q
bolx) = x@ 4 x= X FWH DTy

(qu(u + 1)
Trivial zeroes: (x,y) € {(0,0),(1,0)}. Note that
(x9+x)+ (xT+x)9 = X7 + x.
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Proof of F;

We get
1 q
o) = x5 = LY ),
and , ,
2 q q
bolx) = x@ 4 x= X FWH DTy

(qu(u + 1)
Trivial zeroes: (x,y) € {(0,0),(1,0)}. Note that
(x9+x)+ (xT+x)9 = X% + x.
We will show that

Au(y) = pa(y) + pu(y)? + vu(y)
is a permutation for every u € K\ Fy4, where

pglu) = Ut u+ 140,
dp(u+1):= w4y 1 # 0.

Faruk Gologlu APN functions, projective and permutation polynomials



Proof of F;

Show A, (y) is a permutation:

Xa(y) =(0q()2y T + (dq2(u + 1))2y7 + (dg(u))Xy.
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Proof of F;

Show A, (y) is a permutation:

Xa(y) =(0q()2y T + (dq2(u + 1))2y7 + (dg(u))Xy.

The projective polynomial defined by

(x) = ($q())’xT + (62 (u + 1))°x + (¢g(u))*,
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Proof of F;

Show A, (y) is a permutation:

Xa(y) =(0q()2y T + (dq2(u + 1))2y7 + (dg(u))Xy.

The projective polynomial defined by
(%) = ($q(u))*x 7" + (Pg2(u + 1))°x + (dq())*,

satisfies

7(x) = (e3x + 64)q+1¢q (€1X + €2)

€3X + €4

(& &)= (s W)

whose determinant is conveniently

with

1 (u+1)%

(u+ 1)2 u2a = (qu(u))2 # 0,

for any u € K\ Fy. O
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Proof of />

We want to count the common solutions of

1)y
Palx) = x4 x = T Hy (bq)(yu ]
5 T q
Y3 (x) =xT +x = % =:o,(y).
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Proof of />

We want to count the common solutions of

1)y
Palx) = x4 x = T Hy (bq)(yu ]
5 T q
Y3 (x) =xT +x = % =:o,(y).

We are going to show that

() = a(y) + 1u(¥)? + ()T + ouly)

is a 2-to-1 map.
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Proof of />

We want to count the common solutions of

1)y
ha(x) = x9 + x = (”"'%)(};)ﬂ’ = pa(y),
5 T q
Y3 (x) =xT +x = % =:o,(y).

We are going to show that

2
Tu(y) = tu(y) + 1Y) + pa(y)” + ou(y)
is a 2-to-1 map. Simplifying, we get

(Pg(u))™
(02 (u + 1))7 2 (hg(u))~
(Gg(1))Tbgs(u) 2
(Gg(u))?T 7
T (qu(u))qwq (U)
(¢g2(u + 1))a1
+ (dg(1))Xy.

3
Tu(y): 1yq

+
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Proof of />

It can be shown that

where
C = (¢g(u+1))I(dg(u))T Y,
and
M(y) = (Dg(u))yT + (de(u + 1))y + (¢g())?y,

which was defined for Family F; previously.
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Proof of />

It can be shown that

where
€ = (92 (v +1)7 M ((u)T ",
and
() = (@a(0)PyT + (9 (u+ 1)y + (9q(u)) 7,
which was defined for Family F; previously.
Now, the kernel satisfies ker 7,, = {0, “2+75+1} We then show that:

2
+u+1 1 1
NG .

u ud
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Inequivalence to known APN functions

Define
NBf := {U € Fon : F(U, V) =0 for some V € Fp}.
An EA-invariance vector:
Ng := [nd(NBF) 1 0<d< n],

where 14(S) is the number of Fy-vector spaces of dimension d in S.
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Inequivalence to known APN functions

Define
NBf := {U € Fon : F(U, V) =0 for some V € Fp}.
An EA-invariance vector:
Ng := [nd(NBF) 1 0<d< n],

where 14(S) is the number of Fy-vector spaces of dimension d in S.

Table: EA-invariants Ng for Families Fq, F1, F> and F3 on Foun

Family | Ng

Fo [0,341,6820, 3565]
[0,341,6820, 3720, 31]

Fi [0,341,6820, 3565]}
[0,341,6820, 3720, 31]f

Fo [0,341,6820, 3720, 62, 1]
[0,341,6820, 4030, 62, 1]

F3 [0,341,6324,2573,62, 2]
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Inequivalence to known APN functions

Table: EA-invariants Ng for Families g, 71 and 5 on Fou

Family | Ng

Fo [0,5461, 1681988, 13290042, 428625]

[0,5461, 1681988, 13313156, 436626]
[0,5461,1681988,13267817,401828]

Fi1 [0,5461,1681988, 13250164, 394843t

[0,5461, 1681988, 13286867, 438531]f

[0,5461, 1681988, 13238480, 398399]

Fa [0,5461,1681988,13293725, 430784, 2667, 127, 1]
[0,5461, 1681988, 13219303, 413004, 2667, 127, 1]
[0,5461, 1681988, 13290423, 418084, 2667, 127, 1]

+ corresponds to the cases involving x3 found independently in: Lilya
Budaghyan, Tor Helleseth, Nikolay S. Kaleyski: A new family of APN
quadrinomials. IACR Cryptol. ePrint Arch. 2019: 994 (2019)
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Inequivalence to known APN functions

Table: EA-invariants Ng for known quadratic APN functions on Fauo

Function F Ng
x3 [0,341,6820,5115,341, 11]
X2 [0,341,6820,5115,341, 11]

x5+ x33 + u31x192 1[0, 341, 6820, 3720, 31]
x3 £ x? + u3Tx%8 | [0,341, 6820, 3720, 31]

x>+ Tr (x%) [0,341,6820, 4215, 66, 1]
X3+ 330 [0, 341, 6820, 4400]

x® + u'%Tr (ux°) | [0, 341, 6820, 4250, 66, 1]
x°7 N/A

X339 N/A
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Some properties of the new functions

@ Quadratic (more generally plateaued) APN functions with
Nm(NBg) > 2: Kasami, Gold, &, Fs3.
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Some properties of the new functions

@ Quadratic (more generally plateaued) APN functions with
Nm(NBg) > 2: Kasami, Gold, &, Fs3.

@ Quadratic (more generally plateaued) APN functions with
Nm(NBg) = 1: x3 + u=1Tr (u3x9), Fo.
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Some properties of the new functions

@ Quadratic (more generally plateaued) APN functions with
Nm(NBg) > 2: Kasami, Gold, &, Fs3.

@ Quadratic (more generally plateaued) APN functions with
Nm(NBg) = 1: x3 + u=1Tr (u3x9), Fo.

@ Bivariate functions not employing f(x,y) = xy.
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CCZ-equivalence to permutations

@ These functions do not seem to be equivalent to permutations.
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CCZ-equivalence to permutations

@ These functions do not seem to be equivalent to permutations.

@ What about (g, g)-projective functions?
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CCZ-equivalence to permutations

@ These functions do not seem to be equivalent to permutations.
@ What about (g, g)-projective functions?

@ What about (g, r)-projective functions in general?
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CCZ-equivalence to permutations

@ These functions do not seem to be equivalent to permutations.
@ What about (g, g)-projective functions?
@ What about (g, r)-projective functions in general?

@ A few observations on the x function.
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Walsh zeroes of a permutation f

F =TFpn, K=Fm

F(A,B) =Y X (AF(X) + BX)

U2K*

UtK*
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Properties of k

@ An APN function f on Fan is CCZ-equivalent to a permutation if
the Walsh zeroes of f contains two subspaces of dimension n
intersecting only trivially.

@ Walsh zeroes of k has more structure with respect to some
subspaces, i.e.,

{(UIX, VIY) : X,yéK},{(UQX, V2y) : vaeK} g WZf

for some uy, up, v1, vo € Pz, i.e., Tth powers in [F*.
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Walsh zeroes of the Kim function

p(X) = X34 X104 Ax*

F(A, B) = X (Af(X) + BX)

0 | iK*| nK*| --- v K*
0 !

UlK*

ol ]
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CCZ-equivalence

CCZ-equivalence

F ~ccz G means:
Bijective £

L(X,Y) = (AX) + B(Y) + a, C(X) + D(Y) + b)

such that £(Gr) = Gg. Thatistosay G =m0 7r1_1, with

A(X) + B(f(X)) + a = m1(X),
C(X) + D(F(X)) + b = ma(X),

where A, B, C, D are Fj-linear maps and 7 is a permutation.
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K-CCZ equivalence

In the case of the x function, A, B, C, D are K-linear maps (with rank
m), hence the “square” structure of Walsh-zero spaces.

Definition

If Fis CCZ equivalent to G with K-linear maps (with rank m)
A, B, C, D, then we say F is K-CCZ equivalent to G.
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K-CCZ equivalence

In the case of the x function, A, B, C, D are K-linear maps (with rank
m), hence the “square” structure of Walsh-zero spaces.

Definition

If Fis CCZ equivalent to G with K-linear maps (with rank m)
A, B, C, D, then we say F is K-CCZ equivalent to G.

Proposition

If a (g, q)-projective APN polynomial F = [f(x,y), g(x,y)] is K-CCZ
equivalent to a permutation then

f(x,y) = (a0x + boy) Tt + (cox + doy) 7,
g(x,y) = (a1x + bry)T™ + (cx + diy) 7T,

for some “nonsingular” coefficients.

A\

Hence we can assume w.l.o.g. f(x,y)=(1,0,0,1),.
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Equivalence problem to APN permutations

If for some a, b, ¢, d € K the function F = [(1,0,0, 1), (a, b, c,d)] is
APN, then:

UTTHX + X9) + (Y + Y9) =0,
al9(X + X9) +bUI(Y + X))+ cUX + YI)+d(Y + Y9) =0.

should hold only for X =Y =0 and X = Y =1 for all non-zero U € F.
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Equivalence problem to APN permutations

If for some a, b, ¢, d € K the function F = [(1,0,0, 1), (a, b, c,d)] is
APN, then:

UTTHX + X9) + (Y + Y9) =0,
al9(X + X9) +bUI(Y + X))+ cUX + YI)+d(Y + Y9) =0.

should hold only for X =Y =0 and X = Y =1 for all non-zero U € F.
Equivalently, there is no (q, g)-projective bivariate APN polynomial which
is equivalent to a permutation, if

Y4 YO\ (X YN
X+Xa)\Y+Yd -

is satisfied for all A € K by some X,Y € K\ {0,1}.
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Equivalence problem

After some modifications we get the equivalent condition: If a
(g, q)-projective APN function is K-CCZ equivalent to a permutation
then there exists A € K* such that

(82 + )7
(89 + B)att

has exactly two solutions (xg, 50) and (xg, 81) for x € K* and 8 € K**.

XL X+ A =0
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Equivalence problem

After some modifications we get the equivalent condition: If a
(g, q)-projective APN function is K-CCZ equivalent to a permutation
then there exists A € K* such that

(82 + )7
(89 + B)att

has exactly two solutions (xg, 50) and (xg, 81) for x € K* and 8 € K**.

XL X+ A =0

Theorem (Helleseth,Kholosha 2008)

The projective polynomial X9t1 + X + C has exactly one solution if and

only if C € DD := {ﬁ%:ﬁewﬁ.
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Equivalence problem

After some modifications we get the equivalent condition: If a
(g, q)-projective APN function is K-CCZ equivalent to a permutation
then there exists A € K* such that

(82 + )7
(89 + B)att

has exactly two solutions (xg, 50) and (xg, 81) for x € K* and 8 € K**.

XL X+ A =0

Theorem (Helleseth,Kholosha 2008)

The projective polynomial X9t1 + X + C has exactly one solution if and

only if C € DD := {ﬁ%:ﬁewﬁ.

Thus we have a lot of solutions for A= 1. This is also easy to see from
the original equation.
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Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in K* with Singer parameters
(|K|_17@ _17@_1)'
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Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in K* with Singer parameters
(|K|_17@ _17@_1)'

That is to say, when x, y runs through DD,

Z_a
y

holds @ — 1 times for each a € K**. Or, equivalently

K
|DD N aDD| = %—
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Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in K* with Singer parameters

K K
(|K|_17%_17%_1)

That is to say, when x, y runs through DD,

Z_a
y

holds @ — 1 times for each a € K**. Or, equivalently

K
|DD N aDD| = % —
Therefore, our equation holds exactly twice, only if
K
M,
4
thus,
K = ]F23.
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The result

If a (g, q)-projective APN polynomial F is K-CCZ equivalent to a
permutation then F ~ k : Fos — Fos.
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The result

If a (g, q)-projective APN polynomial F is K-CCZ equivalent to a
permutation then F ~ k : Fos — Fos.

A related result:

Theorem (Canteaut,Perrin, Tian 2019)

If a generalized butterfly
F=[(x+ay)"™" + by?™, (ax + y) 7" + bx9H]

is APN then F ~ Kk : Fos — 6.
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The result

If a (g, q)-projective APN polynomial F is K-CCZ equivalent to a
permutation then F ~ k : Fos — Fos.

A related result:

Theorem (Canteaut,Perrin, Tian 2019)

If a generalized butterfly
F=[(x+ay)"™" + by?™, (ax + y) 7" + bx9H]

is APN then F ~ Kk : Fos — 6.

Recall
f(x,y) = (a0x + boy) Tt + (cox + doy) 7,
g(x,y) = (arx + bry) T + (cax + diy)9t.

Anne Canteaut, Lo Perrin, Shizhu Tian: If a generalised butterfly is APN
then it operates on 6 bits. Cryptogr. Commun. 11(6): 1147-1164 (2019)
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What happens when g # r

@ One can choose F = [f, g] where

F(x,) = (a0x + boy)¥** + (cox + doy) ™,
g(x,y) = (aix + bry)™* + (crx + duy) .
@ Note that the “square” Walsh-zero structure of f is independent of

the way we combine it with another function g. Thus these
functions are (most of the time) K-CCZ equivalent to permutations.
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What happens when g # r

@ One can choose F = [f, g] where

f(x,y) = (aox + boy)T™" + (cox + doy)?*,
g(x,y) = (arx + bry)™™ + (cix + dy)" .

@ Note that the “square” Walsh-zero structure of f is independent of
the way we combine it with another function g. Thus these
functions are (most of the time) K-CCZ equivalent to permutations.

@ One difficulty lies in the fact that the K-linear combinations
af + Bg are not anymore projective.
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What happens when g # r

@ One can choose F = [f, g] where

F(x,) = (a0x + boy)¥** + (cox + doy) ™,
g(x,y) = (aix + bry)™* + (crx + duy) .
@ Note that the “square” Walsh-zero structure of f is independent of

the way we combine it with another function g. Thus these
functions are (most of the time) K-CCZ equivalent to permutations.

@ One difficulty lies in the fact that the K-linear combinations
af + Bg are not anymore projective.

@ Equations are extremely complicated.
@ Partial theoretical results.

@ Computer data suggest no such APN function up to dimension 30.
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Non-projective extensions

@ Find bivariate functions
g =KxK-—>K

with an n-dimensional Walsh-zero space (all 2™ components should
be involved) and good differential properties (2|K|-differential
uniform, so that it can be extended to an APN function) and
combine it with a g-projective f, hoping to get an APN function.

Faruk Gologlu
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be involved) and good differential properties (2|K|-differential
uniform, so that it can be extended to an APN function) and
combine it with a g-projective f, hoping to get an APN function.

@ Combine a projective f with a non-quadratic function, possibly a
monomial or a homogenous function.

@ For instance try quartic homogenous functions

ax3y + bx%y? + cxy®.
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Non-projective extensions

@ Find bivariate functions
g =KxK-—>K

with an n-dimensional Walsh-zero space (all 2™ components should
be involved) and good differential properties (2|K|-differential
uniform, so that it can be extended to an APN function) and
combine it with a g-projective f, hoping to get an APN function.

@ Combine a projective f with a non-quadratic function, possibly a
monomial or a homogenous function.

@ For instance try quartic homogenous functions

ax3y + bx%y? + cxy®.

@ Non-classical Walsh spectrum problem can be attacked similarly.
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Non-classical Walsh spectrum

@ Walsh spectrum of an APN function is defined as the set
{F(u,v):ueF,veF*}

@ All quadratic APN functions on an odd dimension n have the same

Walsh spectrum
n+1

{0,42%}.,

@ Majority of the quadratic APN functions (also plateaued ones) on
an even dimension n = 2m have the spectrum

{0, £2™, £2™ 1Y
which is called the classical spectrum.
@ On Fys, up to equivalence, one function, namely
F(X) = X3+ UMX5 4+ UBBX® 4+ X7 4 (l1x33 4 x48

introduced in Browning, Dillon, Kibler, and McQuistan (2009) with
a non-classical spectrum:

{0, 42m 42m+1 om+2y
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Non-classical Walsh spectrum

We observe that (joint work with Michal Mar%alek) the function
f= FQS X ]F23 — ]F23

defined as
f(x,y) =Xy + y°x+ xy

contains non-classical Walsh value 2™+2 if n is odd. Using bivariate maps
we can write

F =[Py +xy* + xy, x> + ay> + L(x, y)].

Can this be generalized?
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Non-classical Walsh spectrum

If n is odd, a function F : Fan — Fon of the type

F =[x +xy> +xy, x> + ay® + L(x, y)].

is not APN if n > 9.

We prove after lengthy analysis that L should satisfy (polynomially)

2"-2

L 1)
T ( box + ) > ¥
Counting the number of terms, we see that

n(n® 4 n)/2>2" -2

should hold, which is impossible if n > 9.
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Thanks for your attention.




