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APN functions

Setting:

Q = 2n,F = FQ

f : F→ F

Non-zero derivatives of f

DAf = {f (X )− f (X + A) : X ∈ F}

(even characteristic) APN if #DAf = Q
2 , i.e., maximal

(odd characteristic) PN if #DAf = Q
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APN exponents and permutations

Family Monomial Conditions Proved by

Gold X 2i+1 gcd(i , n) = 1 Gold

Kasami X 22i−2i+1 gcd(i , n) = 1 Kasami

Welch X 2t+3 n = 2t + 1 Dobbertin

Niho X 2t+2
t
2 −1, t even n = 2t + 1 Dobbertin

X 2t+2
3t+1
2 −1, t odd

Inverse X 22t−1 n = 2t + 1 Nyberg

Dobbertin X 24t+23t+22t+2t−1 n = 5t Dobbertin

Table: Known infinite families of APN monomials on F2n

n odd: 1-to-1

n even: 3-to-1
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APN permutations

Exists for all odd n

Named “big APN problem” for even n

Exists for n = 6, the Kim function
(Browning-Dillon-McQuistan-Wolfe 2009) on F26

κ(X ) = X 3 + X 10 + AX 24,

where A is a generator of F∗26 , is equivalent to a permutation.

“still big APN problem”: Does there exist another APN
permutation on even dimensions?
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Equivalence

EA-equivalence

g(X ) = L1(f (L2(X ))) + L3(X )

CCZ-equivalence

Define Gf = {(X , f (X ))}.
f and g are said to be CCZ-equivalent if Gf and Gg are affine-equivalent.

APN and Walsh properties invariant

The Kim function κ is CCZ-equivalent to a permutation
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Walsh transform

Walsh transform

The Walsh transform of f

f̂ (A,B) =
∑
X∈F

χ (Af (X ) + BX )

and Walsh zeroes WZf of f is

WZf = {(X ,Y ) : f̂ (X ,Y ) = 0} ∪ {(0, 0)}

where χ(·) = (−1)Tr(·).
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Projective polynomials

Definition

Let aq+1, aq, a1, a0 ∈ F2m and q = 2i . The polynomials of the form

aq+1x
q+1 + aqx

q + a1x + a0

are called projective polynomials.

S. S. Abhyankar, Projective polynomials, Proceedings of the American
Mathematical Society 125 (1997), 16431650.

Generally aq+1 6= 0 is assumed.

Number of zeroes:
{0, 1, 2, 2gcd(i,m) + 1}.

Antonia W. Bluher: On xq+1 + ax + b. Finite Fields Their Appl. 10(3):
285-305 (2004)

Faruk Göloğlu APN functions, projective and permutation polynomials



Projective polynomials

Let F = F22m and K = F2m .

The vectorial Boolean function

F : K×K→ K×K

We will set
F (x , y) = [f (x , y), g(x , y)] ,

with q = 2i , r = 2j , i , j ≥ 1, and

f (x , y) = a0x
q+1 + b0x

qy + c0xy
q + d0y

q+1,

g(x , y) = a1x
r+1 + b1x

ry + c1xy
r + d1y

r+1.

f (x , y) bivariate q-projective polynomial

F (x , y) bivariate (q, r)-projective polynomial pair

f (x , y) = a0x
q+1 + b0x

qy + c0xy
q + d0y

q+1 = (a0, b0, c0, d0)q.
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APN functions which are (q, r)-projective

The κ function on F26 , for some b ∈ F23 :

κ′(x , y) = [(0, b, b, b + 1)2, (b, 1, 0, b)2]

Gold functions Gi (X ) = X 2i+1. When m is odd:

Gi (x , y) = [(1, 0, 1, 1)2i , (0, 1, 1, 0)2i ].

Pott-Zhou APN family:

F (x , y) = [(1, 0, 0, d)2i , (0, 0, 1, 0)2j ], d ∈ K×,

are APN if and only if gcd(i ,m) = 1, m is even and

d 6= a2
i+1(b2

i

+ b)1−2
j

for some a, b ∈ K.

Taniguchi APN family of the form

F (x , y) = [(1, 0, c , d)2i , (0, 1, 0, 0)22i ],

where gcd(i ,m) = 1, f (x , 1) 6= 0 for any x ∈ K.

Faruk Göloğlu APN functions, projective and permutation polynomials



APN functions which are (q, r)-projective

The κ function on F26 , for some b ∈ F23 :

κ′(x , y) = [(0, b, b, b + 1)2, (b, 1, 0, b)2]

Gold functions Gi (X ) = X 2i+1. When m is odd:

Gi (x , y) = [(1, 0, 1, 1)2i , (0, 1, 1, 0)2i ].

Pott-Zhou APN family:

F (x , y) = [(1, 0, 0, d)2i , (0, 0, 1, 0)2j ], d ∈ K×,

are APN if and only if gcd(i ,m) = 1, m is even and

d 6= a2
i+1(b2

i

+ b)1−2
j

for some a, b ∈ K.

Taniguchi APN family of the form

F (x , y) = [(1, 0, c , d)2i , (0, 1, 0, 0)22i ],

where gcd(i ,m) = 1, f (x , 1) 6= 0 for any x ∈ K.
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q = 1

We should allow q = 20 to include the first bivariate construction.

Carlet family:
F (x , y) = [xy , (a1, b1, c1, d1)r ],

Carlet shows that F is APN if and only if g(x , 1) 6= 0 for any x ∈ K.
Note that

ax2 + bxy + cy2

is the most general, but can be omitted.
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Our objective

Find APN functions imitating the κ function. That is, using
(q, r)-projective APN polynomials.

Hope that it is equivalent to a permutation.
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Hybrid Gold APN functions

Recall

Gold functions Gi (X ) = X 2i+1. When m is odd:

Gi (x , y) = [(1, 0, 1, 1)2i , (0, 1, 1, 0)2i ].

After an F2m -linear transformation:

G′i (x , y) = [(1, 0, 1, 1)2i , (1, 1, 0, 1)2i ].

Theorem

The following bivariate (q, r)-projective polynomial pairs
F (x , y) = [f (x , y), g(x , y)] are APN on F2m × F2m .

(F1) F = [(1, 0, 1, 1)2i , (1, 1, 0, 1)22i ], gcd(3i ,m) = 1,

(F2) F = [(1, 0, 1, 1)2i , (0, 1, 1, 0)23i ], gcd(3i ,m) = 1, m odd,

(F3) F = [(0, 1, 1, 0)2i , (1, b, c , d)23i ], i ∈ {1, 2}, m = 5, (1, b, c , d) ∈ Si .
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Proof of F1

Notation:

F2m = K,

3 - m,

q = 2i , gcd(i ,m) = 1.

Lemma

φq(u) := uq+1 + u + 1 6= 0, for u ∈ K.

Note that
xφq(xq−1) = xq

2

+ xq + x ,

is a permutation polynomial.
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Proof of F1

We get

ψq(x) = xq + x =
(u + 1)yq + y

φq(u)
=: µu(y),

and

ψq2(x) = xq
2

+ x =
yq2

+ (u + 1)q
2

y

φq2(u + 1)
=: νu(y).

Trivial zeroes: (x , y) ∈ {(0, 0), (1, 0)}. Note that

(xq + x) + (xq + x)q = xq
2

+ x .
We will show that

λ′′u (y) := µu(y) + µu(y)q + νu(y)

is a permutation for every u ∈ K \ F4, where

φq(u) := uq+1 + u + 1 6= 0,

φq2(u + 1) := uq
2+1 + uq

2

+ 1 6= 0.
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Proof of F1

Show λu(y) is a permutation:

λu(y) =(φq(u))2yq2

+ (φq2(u + 1))2yq + (φq(u))2qy .

The projective polynomial defined by

π(x) = (φq(u))2xq+1 + (φq2(u + 1))2x + (φq(u))2q,

satisfies

π(x) = (ε3x + ε4)q+1φq

(
ε1x + ε2
ε3x + ε4

)
,

with (
ε1 ε2
ε3 ε4

)
=

(
1 (u + 1)2q

(u + 1)2 u2q

)
,

whose determinant is conveniently∣∣∣∣ 1 (u + 1)2q

(u + 1)2 u2q

∣∣∣∣ = (φq(u))2 6= 0,

for any u ∈ K \ F4.
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Proof of F2

We want to count the common solutions of

ψq(x) = xq + x =
(u + 1)yq + y

φq(u)
=: µu(y),

ψq3(x) = xq
3

+ x =
uyq3

+ uq
3

y

uq3 + u
=: σu(y).

We are going to show that

τ ′u(y) = µu(y) + µu(y)q + µu(y)q
2

+ σu(y)

is a 2-to-1 map. Simplifying, we get

τu(y) =
(φq(u))2q

(φq2(u + 1))q−1(φq(u))q2−1 y
q3

+
(φq(u))qψq3(u)

(φq(u))q2−1 yq2

+
(φq(u))qψq3(u)

(φq2(u + 1))q−1
yq

+ (φq(u))2qy .
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Proof of F2

It can be shown that

τu(y) = λu(y) +
(λu(y))q

C
,

where
C = (φq2(u + 1))q−1(φq(u))q

2−1,

and
λu(y) = (φq(u))2yq2

+ (φq2(u + 1))2yq + (φq(u))2qy ,

which was defined for Family F1 previously.

Now, the kernel satisfies ker τ ′u = {0, u
2+u+1

u }. We then show that:

µu

(
u2 + u + 1

u

)
=

1

uq
+

1

u
+ 1.
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Faruk Göloğlu APN functions, projective and permutation polynomials



Inequivalence to known APN functions

Define

NBF := {U ∈ F2n : F̂ (U,V ) = 0 for some V ∈ F2n}.

An EA-invariance vector:

NF :=
[
ηd(NBF ) : 0 ≤ d ≤ n

]
,

where ηd(S) is the number of F2-vector spaces of dimension d in S .

Table: EA-invariants NF for Families F0,F1,F2 and F3 on F210

Family NF

F0 [0, 341, 6820, 3565]
[0, 341, 6820, 3720, 31]

F1 [0, 341, 6820, 3565]†
[0, 341, 6820, 3720, 31]†

F2 [0, 341, 6820, 3720, 62, 1]
[0, 341, 6820, 4030, 62, 1]

F3 [0, 341, 6324, 2573, 62, 2]

Faruk Göloğlu APN functions, projective and permutation polynomials



Inequivalence to known APN functions

Define

NBF := {U ∈ F2n : F̂ (U,V ) = 0 for some V ∈ F2n}.

An EA-invariance vector:

NF :=
[
ηd(NBF ) : 0 ≤ d ≤ n

]
,

where ηd(S) is the number of F2-vector spaces of dimension d in S .

Table: EA-invariants NF for Families F0,F1,F2 and F3 on F210

Family NF

F0 [0, 341, 6820, 3565]
[0, 341, 6820, 3720, 31]

F1 [0, 341, 6820, 3565]†
[0, 341, 6820, 3720, 31]†

F2 [0, 341, 6820, 3720, 62, 1]
[0, 341, 6820, 4030, 62, 1]

F3 [0, 341, 6324, 2573, 62, 2]
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Inequivalence to known APN functions

Table: EA-invariants NF for Families F0,F1 and F2 on F214

Family NF

F0 [0, 5461, 1681988, 13290042, 428625]
[0, 5461, 1681988, 13313156, 436626]
[0, 5461, 1681988, 13267817, 401828]

F1 [0, 5461, 1681988, 13250164, 394843]†
[0, 5461, 1681988, 13286867, 438531]†
[0, 5461, 1681988, 13238480, 398399]

F2 [0, 5461, 1681988, 13293725, 430784, 2667, 127, 1]
[0, 5461, 1681988, 13219303, 413004, 2667, 127, 1]
[0, 5461, 1681988, 13290423, 418084, 2667, 127, 1]

† corresponds to the cases involving x3 found independently in: Lilya
Budaghyan, Tor Helleseth, Nikolay S. Kaleyski: A new family of APN
quadrinomials. IACR Cryptol. ePrint Arch. 2019: 994 (2019)
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Inequivalence to known APN functions

Table: EA-invariants NF for known quadratic APN functions on F210

Function F NF

x3 [0, 341, 6820, 5115, 341, 11]
x9 [0, 341, 6820, 5115, 341, 11]
x6 + x33 + u31x192 [0, 341, 6820, 3720, 31]
x33 + x72 + u31x258 [0, 341, 6820, 3720, 31]
x3 + Tr

(
x9
)

[0, 341, 6820, 4215, 66, 1]
x3 + u341x36 [0, 341, 6820, 4400]
x3 + u1022Tr

(
u3x9

)
[0, 341, 6820, 4250, 66, 1]

x57 N/A
x339 N/A
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Some properties of the new functions

Quadratic (more generally plateaued) APN functions with
ηm(NBF ) ≥ 2: Kasami, Gold, κ, F3.

Quadratic (more generally plateaued) APN functions with
ηm(NBF ) = 1: x3 + u−1Tr

(
u3x9

)
, F2.

Bivariate functions not employing f (x , y) = xy .
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CCZ-equivalence to permutations

These functions do not seem to be equivalent to permutations.

What about (q, q)-projective functions?

What about (q, r)-projective functions in general?

A few observations on the κ function.
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Walsh zeroes of a permutation f

F = F22m , K = F2m

F̂ (A,B) =
∑
X∈F

χ (AF (X ) + BX )

A\B 0 v1K∗ v2K∗ · · · vtK∗
0

u1K∗

u2K∗

...

utK∗
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Properties of κ

An APN function f on F2n is CCZ-equivalent to a permutation if
the Walsh zeroes of f contains two subspaces of dimension n
intersecting only trivially.

Walsh zeroes of κ has more structure with respect to some
subspaces, i.e.,

{(u1x , v1y) : x , y ∈ K}, {(u2x , v2y) : x , y ∈ K} ⊆WZf

for some u1, u2, v1, v2 ∈ P7, i.e., 7th powers in F∗.
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Walsh zeroes of the Kim function

κ(X ) = X 3 + X 10 + AX 24

f̂ (A,B) =
∑
X∈F

χ (Af (X ) + BX )

0 v1K∗ v2K∗ · · · vtK∗
0

u1K∗

u2K∗

...

utK∗
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CCZ-equivalence

CCZ-equivalence

F ∼CCZ G means:
Bijective L

L(X ,Y ) = (A(X ) + B(Y ) + a,C (X ) + D(Y ) + b)

such that L(GF ) = GG . That is to say G = π2 ◦ π−11 , with

A(X ) + B(f (X )) + a = π1(X ),

C (X ) + D(f (X )) + b = π2(X ),

where A,B,C ,D are F2-linear maps and π1 is a permutation.
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K-CCZ equivalence

In the case of the κ function, A,B,C ,D are K-linear maps (with rank
m), hence the “square” structure of Walsh-zero spaces.

Definition

If F is CCZ equivalent to G with K-linear maps (with rank m)
A,B,C ,D, then we say F is K-CCZ equivalent to G .

Proposition

If a (q, q)-projective APN polynomial F = [f (x , y), g(x , y)] is K-CCZ
equivalent to a permutation then

f (x , y) = (a0x + b0y)q+1 + (c0x + d0y)q+1,

g(x , y) = (a1x + b1y)q+1 + (c1x + d1y)q+1,

for some “nonsingular” coefficients.

Hence we can assume w.l.o.g. f (x , y) = (1, 0, 0, 1)q.
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Equivalence problem to APN permutations

If for some a, b, c , d ∈ K the function F = [(1, 0, 0, 1)q, (a, b, c , d)q] is
APN, then:

Uq+1(X + X q) + (Y + Y q) = 0,

aUq(X + X q) + bUq(Y + X q) + cU(X + Y q) + d(Y + Y q) = 0.

should hold only for X = Y = 0 and X = Y = 1 for all non-zero U ∈ F.

Equivalently, there is no (q, q)-projective bivariate APN polynomial which
is equivalent to a permutation, if

(
Y + Y q

X + X q

)(
X + Y q

Y + Y q

)q+1

= A

is satisfied for all A ∈ K by some X ,Y ∈ K \ {0, 1}.
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Equivalence problem

After some modifications we get the equivalent condition: If a
(q, q)-projective APN function is K-CCZ equivalent to a permutation
then there exists A ∈ K× such that

X q+1 + X + A
(β2 + β)q

(βq + β)q+1
= 0

has exactly two solutions (x0, β0) and (x0, β1) for x ∈ K× and β ∈ K××.

Theorem (Helleseth,Kholosha 2008)

The projective polynomial X q+1 + X + C has exactly one solution if and

only if C ∈ DD :=
{

(β2+β)q

(βq+β)q+1 : β ∈ K××
}

.

Thus we have a lot of solutions for A = 1. This is also easy to see from
the original equation.
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Equivalence problem

Theorem (Dillon, Dobbertin 1999)

The set DD is a difference set in K∗ with Singer parameters

(|K| − 1, |K|2 − 1, |K|4 − 1).

That is to say, when x , y runs through DD,

x

y
= α

holds |K|4 − 1 times for each α ∈ K××. Or, equivalently

|DD ∩ αDD| =
|K|
4
− 1.

Therefore, our equation holds exactly twice, only if

|K|
4
− 1 = 1,

thus,
K = F23 .
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The result

Theorem

If a (q, q)-projective APN polynomial F is K-CCZ equivalent to a
permutation then F ∼ κ : F26 → F26 .

A related result:

Theorem (Canteaut,Perrin,Tian 2019)

If a generalized butterfly

F = [(x + ay)q+1 + byq+1, (ax + y)q+1 + bxq+1]

is APN then F ∼ κ : F26 → F26 .

Recall

f (x , y) = (a0x + b0y)q+1 + (c0x + d0y)q+1,

g(x , y) = (a1x + b1y)q+1 + (c1x + d1y)q+1.

Anne Canteaut, Lo Perrin, Shizhu Tian: If a generalised butterfly is APN
then it operates on 6 bits. Cryptogr. Commun. 11(6): 1147-1164 (2019)
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What happens when q 6= r

One can choose F = [f , g ] where

f (x , y) = (a0x + b0y)q+1 + (c0x + d0y)q+1,

g(x , y) = (a1x + b1y)r+1 + (c1x + d1y)r+1.

Note that the “square” Walsh-zero structure of f is independent of
the way we combine it with another function g . Thus these
functions are (most of the time) K-CCZ equivalent to permutations.

One difficulty lies in the fact that the K-linear combinations
αf + βg are not anymore projective.

Equations are extremely complicated.

Partial theoretical results.

Computer data suggest no such APN function up to dimension 30.
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Non-projective extensions

Find bivariate functions

g := K×K→ K

with an n-dimensional Walsh-zero space (all 2m components should
be involved) and good differential properties (2|K|-differential
uniform, so that it can be extended to an APN function) and
combine it with a q-projective f , hoping to get an APN function.

Combine a projective f with a non-quadratic function, possibly a
monomial or a homogenous function.

For instance try quartic homogenous functions

ax3y + bx2y2 + cxy3.

Non-classical Walsh spectrum problem can be attacked similarly.
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Non-classical Walsh spectrum

Walsh spectrum of an APN function is defined as the set

{F̂ (u, v) : u ∈ F, v ∈ F×}.

All quadratic APN functions on an odd dimension n have the same
Walsh spectrum

{0,±2
n+1
2 }.

Majority of the quadratic APN functions (also plateaued ones) on
an even dimension n = 2m have the spectrum

{0,±2m,±2m+1},

which is called the classical spectrum.

On F26 , up to equivalence, one function, namely

F (X ) = X 3 + U11X 5 + U13X 9 + X 17 + U11X 33 + X 48

introduced in Browning, Dillon, Kibler, and McQuistan (2009) with
a non-classical spectrum:

{0,±2m,±2m+1, 2m+2},
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Non-classical Walsh spectrum

We observe that (joint work with Michal Mařsalek) the function

f := F23 × F23 → F23

defined as
f (x , y) = x2y + y2x + xy

contains non-classical Walsh value 2m+2 if n is odd. Using bivariate maps
we can write

F = [x2y + xy2 + xy , x3 + ay3 + L(x , y)].

Question

Can this be generalized?
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Non-classical Walsh spectrum

Theorem

If n is odd, a function F : F2n → F2n of the type

F = [x2y + xy2 + xy , x3 + ay3 + L(x , y)].

is not APN if n ≥ 9.

We prove after lengthy analysis that L should satisfy (polynomially)

Tr

(
L(x , x + 1)

x3

)
=

2n−2∑
i=1

x i .

Counting the number of terms, we see that

n(n2 + n)/2 ≥ 2n − 2

should hold, which is impossible if n ≥ 9.
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Thanks for your attention.
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