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Abstract

Functions with low differential uniformity can be used in block ciphers as S-boxes since
they have good resistance to differential attacks. In this extended abstract, we give two con-
structions of differentially 6-uniform permutations over F22m by modifying the Gold function
and the Bracken-Leander function on a subfield.

1 Introduction

Let n be a positive integer, we will denote by F2n the finite field with 2n elements and its
multiplicative group by F?

2n . Permutation maps defined over F2n are used as S-boxes of some
symmetric cryptosystems. So, it is important to construct permutations with good cryptographic
properties in order to design a cipher that can resist to the known attacks. In particular, among
these properties we have a low differential uniformity for preventing differential attacks [1], high
nonlinearity for avoiding linear cryptanalysis [6] and also high algebraic degree to resist to higher
order differential attacks [5].

The best differential uniformity of a function F defined over F2n is 2. Functions achieving this
value are called almost perfect nonlinear (APN). For odd values of n there are known families
of APN permutations; while for n even there exists only one example of APN permutation over
F26 [2] and the existence of more ones remains an open problem. For ease of implementation,
usually, the integer n is required to be even in a cryptosystem. Therefore, finding permutations
with good cryptographic properties over F2n with n even is an interesting research topic for
providing more choices for the S-boxes.

The construction of low differentially uniform permutations with the highest nonlinearity
over F2n (with n even) is a difficult task. In Table 1 we give 5 families of primarily constructed
differentially 4-uniform permutations with the best known nonlinearity.

In the last years, many constructions of differentially 4-uniform permutations have been
found by modifying the inverse function on some subsets of F2n (see for instance [7, 8, 9, 10, 11]).
In particular, in [7, 10, 11] the authors change the inverse function on some subfields of F2n .

Table 1: Primarily-constructed differentially 4-uniform over F2n

Name F(x) deg Conditions

Gold x2
i+1 2 n = 2k, k odd gcd(i, n) = 2

Kasami x2
2i−2i+1 i+1 n = 2k, k odd gcd(i, n) = 2

Inverse x2
n−2 n− 1 n = 2k, k ≥ 1

Bracken-Leander x2
2k+2k+1 3 n = 4k, k odd

n = 3m, m even, m/2 odd,

Bracken-Tan-Tan ζx2
i+1 + ζ2

m
x2
−m+2m+i

2 gcd(n, i) = 2, 3|m+ i

and ζ is a primitive element of F2n



In this abstract, we investigate the piecewise construction as in [7, 10, 11] by modifying the
image of the Gold and Bracken-Leander function on some subfields of F2n . We show that in these
cases it is possible to obtain permutations with differential uniformity at most 6. Moreover, if
we modify these functions using the inverse function (or a function equivalent to it), then we
can obtain permutations with algebraic degree n − 1 (which is the highest possible) and high
nonlinearity. These results extend those given in [12], where the authors modified the 4-uniform
Gold function for constructing differentially 6-uniform permutations.

2 Preliminaries

Any function F from F2n to itself can be represented as a univariate polynomial of degree at
most 2n − 1, that is

F (x) =
2n−1∑
i=0

aix
i.

The 2-weight of an integer 0 ≤ i ≤ 2n−1, denoted by w2(i), is the (Hamming) weight of its binary
representation. The algebraic degree of a function F is given by deg(F ) = max{w2(i) | ai 6= 0}.
Functions of algebraic degree 1 are called affine. Linear functions are affine functions with
constant term equal to zero and they can be represented as L(x) =

∑n−1
i=0 aix

2i . For any
permutation F it is well known that deg(F ) ≤ n− 1.

For any m ≥ 1 such that m|n we can define the (linear) trace function from F2n to F2m by

Trnm(x) =
∑n/m−1

i=0 x2
im
. When m = 1 we will denote Trn1 (x) by Tr.

For any function F : F2n → F2n we denote the Walsh transform in a, b ∈ F2n by

WF (a, b) =
∑

x∈F2n

(−1)Tr(ax+bF (x)).

The nonlinearity of a vectorial Boolean function F is given by

NL(F ) = 2n−1 − 1

2
max

a∈F2n ,b∈F?
2n

|WF (a, b)|.

When n is odd, it has been proved that NL(F ) ≤ 2n−1 − 2
n−1
2 ; for n even, the best known

nonlinearity is 2n−1 − 2
n
2 , and it is conjectured that NL(F ) ≤ 2n−1 − 2

n
2 .

Definition 2.1 For a function F from F2n to itself, and any a ∈ F?
2n and b ∈ F2n, we denote

by δF (a, b) the number of solutions of the equation F (x+ a) + F (x) = b. The maximum value δ
among the δF (a, b)’s is called the differential uniformity of F , and F is said to be differentially
δ-uniform.

There are several equivalence relations of functions for which the differential uniformity and
the nonlinearity are preserved. Two functions F and F ′ from F2n to itself are called:

• affine equivalent if F ′ = A1 ◦ F ◦ A2 where the mappings A1, A2 : F2n → F2n are affine
permutations;

• extended affine equivalent (EA-equivalent) if F ′ = F ′′+A, where the mappings A : F2n →
F2n is affine and F ′′ is affine equivalent to F ;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation L of
F2n × F2n the image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ , where
GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

Obviously, affine equivalence is included in the EA-equivalence, and it is also well known
that EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZ-
equivalent to its inverse [4]. The algebraic degree is invariant for the affine equivalence and also
for the EA-equivalence for nonlinear functions, but not for the CCZ-equivalence (and inverse
transformation).



3 Constructing differentially 6-uniform permutations

In this section we will study the piecewise construction for the case of Gold and the Bracken-
Leander function. We refer to the full version of the paper [3] for more details on the proofs of
the results given in this section.

The following lemma give a characterisation for the solutions of (x + 1)2
k+1 + x2

k+1 = b,
when b belongs to some specific subfield F2s of F2n .

Lemma 3.1 Let n = sm with s even and m odd. Let k be such that gcd(k, n) = 2. For any
b ∈ F2s the equation

x2
k

+ x = b

does not admit any solution x in F2n \ F2s.

Proof: See [3]. �

Theorem 3.2 Let n = sm with s even such that s/2 is odd and m odd. Let k be such that
gcd(k, n) = 2 and f be at most differentially 6-uniform permutation over F2s. Then

F (x) = f(x) + (f(x) + x2
k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n.

Proof: Using the Lemma 3.1 it is possible to analyse the solutions of the equation

F (x) + F (x+ a) = b,

distinguishing the cases where: both x and x + a are in F2s ; one is in F2s and the other not;
none is contained in F2s . See [3] for a detailed proof. �

Also for the Bracken-Leander function we can characterize the solutions of the equation
(x+ 1)2

2k+2k+1 + x2
2k+2k+1 = b, when b is in some specific subfield.

Lemma 3.3 Let n = 4k = sm with k and m odd. For any b ∈ F2s the equation

x2
2k+2k + x2

2k+1 + x2
k+1 + x2

2k
+ x2

k
+ x = b (1)

does not admit any solution x in F2n \ F2s.

Proof: See [3]. �
Similarly to Theorem 3.2 we obtain:

Theorem 3.4 Let n = 4k = sm, with k, m odd and s even. Let f be at most differentially
6-uniform permutation over F2s. Then

F (x) = f(x) + (f(x) + x2
2k+2k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
2k+2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n.

From Theorem 3.2 and Theorem 3.2 we obtain a general construction for functions with
differential uniformity at most 6. In the following, we will show that using a function f equivalent
to the inverse function we can obtain a permutation of degree n− 1 with high nonlinearity.

We, first, give the following result, which is a necessary and sufficient condition for a permu-
tation to have maximal degree.

Lemma 3.5 Let F be a function defined over F2n. Then, F in its polynomial representation
has a term of algebraic degree n− 1 if and only if there exists a linear monomial x2

j
such that∑

x∈F2n
F (x)x2

j 6= 0. In particular, if F is a permutation then deg(F ) = n− 1.



Proof: See [3]. �

Corollary 3.6 Let n = sm with s even such that s/2 is odd and m. Let k be such that
gcd(k, n) = 2 and f(x) = A1 ◦ Inv ◦ A2(x), where Inv(x) = x−1 and A1, A2 are affine per-
mutations over F2s. Then

F (x) = f(x) + (f(x) + x2
k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n. Moreover, if s > 2 then the algebraic degree
of F is n− 1.

Proof: We need to prove only that the degree of F is n−1. From Lemma 3.5, since deg(f(x)) =
s− 1 there exists h(x) = x2

j
in F2s [x] (with j ≤ s− 1) such that

∑
x∈F2s

f(x)h(x) 6= 0.

Thus, since deg(x2
k+1) = 2 < s− 1 we obtain∑

x∈F2n

F (x)h(x) =
∑
x∈F2s

f(x)h(x) +
∑

x∈F2n

x2
k+1h(x) +

∑
x∈F2s

x2
k+1h(x) =

∑
x∈F2s

f(x)h(x) 6= 0.

Then, deg(F ) = n− 1 since F is a permutation. �

Similarly we have the following construction using the Bracken-Leander function.

Corollary 3.7 Let n = 4k = sm with k, m odd and s even. Let f(x) = A1 ◦ Inv ◦A2(x), where
Inv(x) = x−1 and A1, A2 are affine permutations over F2s. Then

F (x) = f(x) + (f(x) + x2
2k+2k+1)(x2

s
+ x)2

n−1 =

{
f(x) if x ∈ F2s

x2
2k+2k+1 if x /∈ F2s

is a differentially 6-uniform permutation over F2n. Moreover, if s > 4 then deg(F ) = n− 1.

Remark 3.8 When s = 2 and G(x) = x2
k+1 or s = 4 and G(x) = x2

2k+2k+1 we have deg(G) =
s − 1. Thus, we could obtain a permutation of degree less than n − 1 in Corollary 3.6 and
Corollary 3.7.

For the nonlinearity of the constructed functions we have the following.

Proposition 3.9 The nonlinearity of the functions in Corollary 3.6 and Corollary 3.7 is at
least 2n−1 − 2

n
2 − 2

s
2
+1.

Proof: See [3]. �
It is well known that the algebraic degree is not preserved by the CCZ-equivalence and in

particular by the inverse transformation. However, for any permutation of maximal algebraic
degree we have the following easy observation.

Proposition 3.10 Let F be a permutation defined over F2n. Then, deg(F ) = n− 1 if and only
if deg(F−1) = n− 1.

Proof: Suppose deg(F ) = n−1 and let h(x) a linear monomial for which we have
∑

x∈F2n
F (x)h(x) 6=

0. Since F is a permutation we obtain
∑

x∈F2n
F (x)h(x) =

∑
x∈F2n

xh(F−1(x)), which implies

deg(h ◦ F−1) = n− 1. Since h is linear we have that deg(F−1) = n− 1. �

From this result we have that also the compositional inverses of the functions given in
Corollary 3.6 and Corollary 3.7 are differentially 6-uniform functions with high nonlinearity and
algebraic degree n− 1.



Denoting by ω = ζ
2n−1

3 the primitive element of F4, in Table 2 and Table 3 we give the
CCZ-inequivalent functions that can be obtained by Corollary 3.6 for n = 6, 10 considering
f(x) = A ◦ Inv.

Table 2: CCZ-inequivalent permu-
tations from Corollary 3.6 over F26

A(x) deg N`(G) Bound on N` δ

x 2 24 20 4

x+ ω 4 20 20 6

ωx2 + ω 5 20 20 6

ωx 5 22 20 6

ω2x2 + ω 5 22 20 6

Table 3: CCZ-inequivalent permu-
tations from Corollary 3.6 over F210

A(x) deg N`(G) Bound on N` δ

x 2 480 476 4

x+ ω 8 476 476 6

ωx2 + ω 9 476 476 6

ωx 9 478 476 6

ω2x2 + ω 9 478 476 6

In Table 4 we report some permutations constructed from Corollary 3.7 for n = 12 (in this
case s = 4 and m = 3). As before, we consider f(x) = A ◦ Inv with A affine permutations
defined over F4[x] (for A(x) = x2 we obtain the Bracken-Leander function).

Table 4: CCZ-inequivalent permutations from Corollary 3.7 over F212

A(x) deg N`(G) Bound on N` δ

x2 3 1984 1976 4

x2 + 1 8 1976 1976 6

ω2x2 + ω 11 1976 1976 6

x+ ω 11 1978 1976 6

ωx2 11 1980 1976 6
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