Differentially low uniform permutations from the Gold and the Bracken-Leander functions

Marco Calderini

Department of Informatics, University of Bergen, Norway

Abstract

Functions with low differential uniformity can be used in block ciphers as S-boxes since they have good resistance to differential attacks. In this extended abstract, we give two constructions of differentially 6-uniform permutations over $\mathbb{F}_{2^{2m}}$ by modifying the Gold function and the Bracken-Leander function on a subfield.

1 Introduction

Let *n* be a positive integer, we will denote by \mathbb{F}_{2^n} the finite field with 2^n elements and its multiplicative group by $\mathbb{F}_{2^n}^{\star}$. Permutation maps defined over \mathbb{F}_{2^n} are used as S-boxes of some symmetric cryptosystems. So, it is important to construct permutations with good cryptographic properties in order to design a cipher that can resist to the known attacks. In particular, among these properties we have a low differential uniformity for preventing differential attacks [1], high nonlinearity for avoiding linear cryptanalysis [6] and also high algebraic degree to resist to higher order differential attacks [5].

The best differential uniformity of a function F defined over \mathbb{F}_{2^n} is 2. Functions achieving this value are called almost perfect nonlinear (APN). For odd values of n there are known families of APN permutations; while for n even there exists only one example of APN permutation over \mathbb{F}_{2^6} [2] and the existence of more ones remains an open problem. For ease of implementation, usually, the integer n is required to be even in a cryptosystem. Therefore, finding permutations with good cryptographic properties over \mathbb{F}_{2^n} with n even is an interesting research topic for providing more choices for the S-boxes.

The construction of low differentially uniform permutations with the highest nonlinearity over \mathbb{F}_{2^n} (with *n* even) is a difficult task. In Table 1 we give 5 families of primarily constructed differentially 4-uniform permutations with the best known nonlinearity.

In the last years, many constructions of differentially 4-uniform permutations have been found by modifying the inverse function on some subsets of \mathbb{F}_{2^n} (see for instance [7, 8, 9, 10, 11]). In particular, in [7, 10, 11] the authors change the inverse function on some subfields of \mathbb{F}_{2^n} .

Name	$\mathbf{F}(\mathbf{x})$	deg	Conditions
Gold	$x^{2^{i}+1}$	2	n = 2k, k odd gcd(i, n) = 2
Kasami	$x^{2^{2i}-2^i+1}$	i+1	$n = 2k, k \text{ odd } \gcd(i, n) = 2$
Inverse	$x^{2^{n}-2}$	n-1	$n=2k, \ k\geq 1$
Bracken-Leander	$x^{2^{2k}+2^k+1}$	3	n = 4k, k odd
Bracken-Tan-Tan		2	n = 3m, m even, $m/2$ odd,
	$\zeta x^{2^{i+1}} + \zeta^{2^m} x^{2^{-m} + 2^{m+i}}$		gcd(n,i) = 2, 3 m+i
			and ζ is a primitive element of \mathbb{F}_{2^n}

Table 1: Primarily-constructed differentially 4-uniform over \mathbb{F}_{2^n}

In this abstract, we investigate the piecewise construction as in [7, 10, 11] by modifying the image of the Gold and Bracken-Leander function on some subfields of \mathbb{F}_{2^n} . We show that in these cases it is possible to obtain permutations with differential uniformity at most 6. Moreover, if we modify these functions using the inverse function (or a function equivalent to it), then we can obtain permutations with algebraic degree n - 1 (which is the highest possible) and high nonlinearity. These results extend those given in [12], where the authors modified the 4-uniform Gold function for constructing differentially 6-uniform permutations.

2 Preliminaries

Any function F from \mathbb{F}_{2^n} to itself can be represented as a univariate polynomial of degree at most $2^n - 1$, that is

$$F(x) = \sum_{i=0}^{2^n - 1} a_i x^i.$$

The 2-weight of an integer $0 \le i \le 2^n - 1$, denoted by $w_2(i)$, is the (Hamming) weight of its binary representation. The algebraic degree of a function F is given by $\deg(F) = \max\{w_2(i) \mid a_i \ne 0\}$. Functions of algebraic degree 1 are called *affine*. Linear functions are affine functions with constant term equal to zero and they can be represented as $L(x) = \sum_{i=0}^{n-1} a_i x^{2^i}$. For any permutation F it is well known that $\deg(F) \le n-1$.

For any $m \ge 1$ such that m|n we can define the (linear) trace function from \mathbb{F}_{2^n} to \mathbb{F}_{2^m} by $\operatorname{Tr}_m^n(x) = \sum_{i=0}^{n/m-1} x^{2^{im}}$. When m = 1 we will denote $\operatorname{Tr}_1^n(x)$ by Tr.

For any function $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ we denote the Walsh transform in $a, b \in \mathbb{F}_{2^n}$ by

$$\mathcal{W}_F(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(ax+bF(x))}$$

The *nonlinearity* of a vectorial Boolean function F is given by

$$\mathcal{NL}(F) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_{2^n}^{\star}} |\mathcal{W}_F(a, b)|.$$

When n is odd, it has been proved that $\mathcal{NL}(F) \leq 2^{n-1} - 2^{\frac{n-1}{2}}$; for n even, the best known nonlinearity is $2^{n-1} - 2^{\frac{n}{2}}$, and it is conjectured that $\mathcal{NL}(F) \leq 2^{n-1} - 2^{\frac{n}{2}}$.

Definition 2.1 For a function F from \mathbb{F}_{2^n} to itself, and any $a \in \mathbb{F}_{2^n}^{\star}$ and $b \in \mathbb{F}_{2^n}$, we denote by $\delta_F(a, b)$ the number of solutions of the equation F(x + a) + F(x) = b. The maximum value δ among the $\delta_F(a, b)$'s is called the differential uniformity of F, and F is said to be differentially δ -uniform.

There are several equivalence relations of functions for which the differential uniformity and the nonlinearity are preserved. Two functions F and F' from \mathbb{F}_{2^n} to itself are called:

- affine equivalent if $F' = A_1 \circ F \circ A_2$ where the mappings $A_1, A_2 : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are affine permutations;
- extended affine equivalent (EA-equivalent) if F' = F'' + A, where the mappings $A : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is affine and F'' is affine equivalent to F;
- Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation \mathcal{L} of $\mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$ the image of the graph of F is the graph of F', that is, $\mathcal{L}(G_F) = G_{F'}$, where $G_F = \{(x, F(x)) : x \in \mathbb{F}_{2^n}\}$ and $G_{F'} = \{(x, F'(x)) : x \in \mathbb{F}_{2^n}\}$.

Obviously, affine equivalence is included in the EA-equivalence, and it is also well known that EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZequivalent to its inverse [4]. The algebraic degree is invariant for the affine equivalence and also for the EA-equivalence for nonlinear functions, but not for the CCZ-equivalence (and inverse transformation).

3 Constructing differentially 6-uniform permutations

In this section we will study the piecewise construction for the case of Gold and the Bracken-Leander function. We refer to the full version of the paper [3] for more details on the proofs of the results given in this section.

The following lemma give a characterisation for the solutions of $(x+1)^{2^{k+1}} + x^{2^{k+1}} = b$, when b belongs to some specific subfield $\mathbb{F}_{2^{s}}$ of $\mathbb{F}_{2^{n}}$.

Lemma 3.1 Let n = sm with s even and m odd. Let k be such that gcd(k,n) = 2. For any $b \in \mathbb{F}_{2^s}$ the equation

$$x^{2^k} + x = b$$

does not admit any solution x in $\mathbb{F}_{2^n} \setminus \mathbb{F}_{2^s}$.

Proof: See [3].

Theorem 3.2 Let n = sm with s even such that s/2 is odd and m odd. Let k be such that gcd(k,n) = 2 and f be at most differentially 6-uniform permutation over \mathbb{F}_{2^s} . Then

$$F(x) = f(x) + (f(x) + x^{2^{k}+1})(x^{2^{k}} + x)^{2^{n}-1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2} \\ x^{2^{k}+1} & \text{if } x \notin \mathbb{F}_{2} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} .

Proof: Using the Lemma 3.1 it is possible to analyse the solutions of the equation

$$F(x) + F(x+a) = b,$$

distinguishing the cases where: both x and x + a are in \mathbb{F}_{2^s} ; one is in \mathbb{F}_{2^s} and the other not; none is contained in \mathbb{F}_{2^s} . See [3] for a detailed proof.

Also for the Bracken-Leander function we can characterize the solutions of the equation $(x+1)^{2^{2k}+2^k+1} + x^{2^{2k}+2^k+1} = b$, when b is in some specific subfield.

Lemma 3.3 Let n = 4k = sm with k and m odd. For any $b \in \mathbb{F}_{2^s}$ the equation

$$x^{2^{2k}+2^k} + x^{2^{2k}+1} + x^{2^k+1} + x^{2^{2k}} + x^{2^k} + x = b$$
(1)

does not admit any solution x in $\mathbb{F}_{2^n} \setminus \mathbb{F}_{2^s}$.

Proof: See [3].

Similarly to Theorem 3.2 we obtain:

Theorem 3.4 Let n = 4k = sm, with k, m odd and s even. Let f be at most differentially 6-uniform permutation over \mathbb{F}_{2^s} . Then

$$F(x) = f(x) + (f(x) + x^{2^{2k} + 2^{k} + 1})(x^{2^{s}} + x)^{2^{n} - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^{s}} \\ x^{2^{2k} + 2^{k} + 1} & \text{if } x \notin \mathbb{F}_{2^{s}} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} .

From Theorem 3.2 and Theorem 3.2 we obtain a general construction for functions with differential uniformity at most 6. In the following, we will show that using a function f equivalent to the inverse function we can obtain a permutation of degree n-1 with high nonlinearity.

We, first, give the following result, which is a necessary and sufficient condition for a permutation to have maximal degree.

Lemma 3.5 Let F be a function defined over \mathbb{F}_{2^n} . Then, F in its polynomial representation has a term of algebraic degree n-1 if and only if there exists a linear monomial x^{2^j} such that $\sum_{x \in \mathbb{F}_{2^n}} F(x) x^{2^j} \neq 0$. In particular, if F is a permutation then $\deg(F) = n-1$.

Proof: See [3].

Corollary 3.6 Let n = sm with s even such that s/2 is odd and m. Let k be such that gcd(k,n) = 2 and $f(x) = A_1 \circ Inv \circ A_2(x)$, where $Inv(x) = x^{-1}$ and A_1, A_2 are affine permutations over \mathbb{F}_{2^s} . Then

$$F(x) = f(x) + (f(x) + x^{2^{k}+1})(x^{2^{s}} + x)^{2^{n}-1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^{s}} \\ x^{2^{k}+1} & \text{if } x \notin \mathbb{F}_{2^{s}} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} . Moreover, if s > 2 then the algebraic degree of F is n - 1.

Proof: We need to prove only that the degree of F is n-1. From Lemma 3.5, since $\deg(f(x)) = s - 1$ there exists $h(x) = x^{2^j}$ in $\mathbb{F}_{2^s}[x]$ (with $j \leq s - 1$) such that $\sum_{x \in \mathbb{F}_{2^s}} f(x)h(x) \neq 0$.

Thus, since $\deg(x^{2^{k+1}}) = 2 < s-1$ we obtain

$$\sum_{x \in \mathbb{F}_{2^n}} F(x)h(x) = \sum_{x \in \mathbb{F}_{2^s}} f(x)h(x) + \sum_{x \in \mathbb{F}_{2^n}} x^{2^k + 1}h(x) + \sum_{x \in \mathbb{F}_{2^s}} x^{2^k + 1}h(x) = \sum_{x \in \mathbb{F}_{2^s}} f(x)h(x) \neq 0.$$

Then, $\deg(F) = n - 1$ since F is a permutation.

Similarly we have the following construction using the Bracken-Leander function.

Corollary 3.7 Let n = 4k = sm with k, m odd and s even. Let $f(x) = A_1 \circ Inv \circ A_2(x)$, where $Inv(x) = x^{-1}$ and A_1, A_2 are affine permutations over \mathbb{F}_{2^s} . Then

$$F(x) = f(x) + (f(x) + x^{2^{2k} + 2^{k} + 1})(x^{2^{s}} + x)^{2^{n} - 1} = \begin{cases} f(x) & \text{if } x \in \mathbb{F}_{2^{s}} \\ x^{2^{2k} + 2^{k} + 1} & \text{if } x \notin \mathbb{F}_{2^{s}} \end{cases}$$

is a differentially 6-uniform permutation over \mathbb{F}_{2^n} . Moreover, if s > 4 then $\deg(F) = n - 1$.

Remark 3.8 When s = 2 and $G(x) = x^{2^k+1}$ or s = 4 and $G(x) = x^{2^{2k}+2^k+1}$ we have $\deg(G) = s - 1$. Thus, we could obtain a permutation of degree less than n - 1 in Corollary 3.6 and Corollary 3.7.

For the nonlinearity of the constructed functions we have the following.

Proposition 3.9 The nonlinearity of the functions in Corollary 3.6 and Corollary 3.7 is at least $2^{n-1} - 2^{\frac{n}{2}} - 2^{\frac{s}{2}+1}$.

Proof: See [3].

It is well known that the algebraic degree is not preserved by the CCZ-equivalence and in particular by the inverse transformation. However, for any permutation of maximal algebraic degree we have the following easy observation.

Proposition 3.10 Let F be a permutation defined over \mathbb{F}_{2^n} . Then, $\deg(F) = n - 1$ if and only if $\deg(F^{-1}) = n - 1$.

Proof: Suppose deg(F) = n-1 and let h(x) a linear monomial for which we have $\sum_{x \in \mathbb{F}_{2^n}} F(x)h(x) \neq 0$. Since F is a permutation we obtain $\sum_{x \in \mathbb{F}_{2^n}} F(x)h(x) = \sum_{x \in \mathbb{F}_{2^n}} xh(F^{-1}(x))$, which implies deg $(h \circ F^{-1}) = n-1$. Since h is linear we have that deg $(F^{-1}) = n-1$.

From this result we have that also the compositional inverses of the functions given in Corollary 3.6 and Corollary 3.7 are differentially 6-uniform functions with high nonlinearity and algebraic degree n - 1.

Denoting by $\omega = \zeta^{\frac{2^n-1}{3}}$ the primitive element of \mathbb{F}_4 , in Table 2 and Table 3 we give the CCZ-inequivalent functions that can be obtained by Corollary 3.6 for n = 6, 10 considering $f(x) = A \circ Inv$.

Table 2: CCZ-inequivalent permutations from Corollary 3.6 over \mathbb{F}_{2^6}

Table 3: CCZ-inequivalent permutations from Corollary 3.6 over $\mathbb{F}_{2^{10}}$

A(x)	deg	$\mathcal{N}\ell(G)$	Bound on $\mathcal{N}\ell$	δ	A(x)	deg	$\mathcal{N}\ell(G)$	Bound on $\mathcal{N}\ell$	Τ
x	2	24	20	4	x	2	480	476	4
$x + \omega$	4	20	20	6	$x + \omega$	8	476	476	6
$\omega x^2 + \omega$	5	20	20	6	$\omega x^2 + \omega$	9	476	476	6
ωx	5	22	20	6	ωx	9	478	476	6
$\omega^2 x^2 + \omega$	5	22	20	6	$\omega^2 x^2 + \omega$	9	478	476	6

In Table 4 we report some permutations constructed from Corollary 3.7 for n = 12 (in this case s = 4 and m = 3). As before, we consider $f(x) = A \circ Inv$ with A affine permutations defined over $\mathbb{F}_4[x]$ (for $A(x) = x^2$ we obtain the Bracken-Leander function).

Tab	le 4	: CCZ-	-inequivalent	permutations	from	Corollary	3.7	over $\mathbb{F}_{2^{12}}$
-----	------	--------	---------------	--------------	------	-----------	-----	----------------------------

A(x)	deg	$\mathcal{N}\ell(G)$	Bound on $\mathcal{N}\ell$	δ
x^2	3	1984	1976	4
$x^2 + 1$	8	1976	1976	6
$\omega^2 x^2 + \omega$	11	1976	1976	6
$x + \omega$	11	1978	1976	6
ωx^2	11	1980	1976	6

References

- E. Biham, A.Shamir, Differential cryptanalysis of DES-like cryptosystems. J. Cryptology 4(1), 3–72 (1991)
- [2] K. A. Browning, J. F. Dillon, M. T. McQuistan, A. J. Wolfe, An APN permutation in dimension six. In: Contemporary Mathematics, Vol. 518, Am. Math Soc., pp. 33–42 (2010).
- [3] M. Calderini, Differentially low uniform permutations from known 4-uniform functions. arXiv preprint arXiv:1910.14337 (2019).
- [4] C. Carlet, P. Charpin, V. Zinoviev, Bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15, 125–156 (1998).
- [5] L. Knudsen, Truncated and higher order differentials. FSE 1994, Lecture Notes in Computer Sciences, vol. 1008, 196–211 (1995).
- [6] L. Matsui, *Linear cryptanalysis method for DES cipher*. Advances in Cryptology EURO-CRYPT93, Lecture Notes in Computer Science, vol. 765, Springer, Berlin Heidelberg, 386– 397 (1994).
- J. Peng, C. H. Tan, New differentially 4-uniform permutations by modifying the inverse function on subfields. Cryptogr. Commun. 9, 363–378 (2017).
- [8] L. J. Qu, Y. Tan, C. H. Tan, C. Li, Constructing differentially 4-uniform permutations over F_{22k} via the switching method. IEEE Trans. Inf. Theory 59(7), 4675–4686 (2013).
- D. Tang, C. Carlet, X. Tang, Differentially 4-uniform bijections by permuting the inverse function. Des. Codes. Cryptogr. 77, 117–141 (2015).
- [10] G. Xu, L. Qu, Two classes of differentially 4-uniform permutations over \mathbb{F}_{2^n} with n even. Adv. Math. Comm., 14(1), 97–110 (2019).

- [11] Z. Zha, L. Hu, S. Sun, Constructing new differentially 4-uniform permutations from the inverse function. Finite Fields Appl. 25, 64–78 (2014).
- [12] Z. Zha, L. Hu, J. Shan, Differentially 6-uniform permutations by modifying the Gold function. In: IEEE Int. Conf. on Information and Automation (ICIA), 961–965 (2014).