## Niho's Last Conjecture

Tor Helleseth*, Daniel J. Katz ${ }^{\dagger}$, and Chunlei Li $\ddagger$
${ }^{* \ddagger}$ Department of Informatics, University of Bergen, Norway
† Department of Mathematics, California State University, Northridge

* $\ddagger$ Supported by the Research Council of Norway Grants No. 247742/O70 and No. 311646/O70 ${ }^{\dagger}$ Supported by National Science Foundation Awards DMS-1500856 and CCF-1815487
$\ddagger$ Supported by National Natural Science Foundation of China Grant No. 61771021

Fifth International Workshop on
Boolean Functions and their Applications (BFA 2020)
Loen, Norway
15 September 2020

# In Memoriam 

Hans Dobbertin
Petri Rosendahl

## Power Permutations

Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

## Power Permutations

> Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

Power function on a finite field $F$ : a function $f: F \rightarrow F$ with $f(x)=x^{d}$ for some positive integer $d$

## Power Permutations

Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

Power function on a finite field $F$ : a function $f: F \rightarrow F$ with $f(x)=x^{d}$ for some positive integer $d$

Power permutation of $F$ : a power function $f(x)=x^{d}$ on $F$ is a permutation of $F$ if and only if $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$

## Power Permutations

Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

Power function on a finite field $F$ : a function $f: F \rightarrow F$ with $f(x)=x^{d}$ for some positive integer $d$
Power permutation of $F$ : a power function $f(x)=x^{d}$ on $F$ is a permutation of $F$ if and only if $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$

If $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$, we say that $d$ is an invertible exponent over $F$ :
if $e=1 / d\left(\bmod \left|F^{*}\right|\right)$, then $x \mapsto x^{e}$ is the inverse function of $x \mapsto x^{d}$

## Power Permutations

Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

Power function on a finite field $F$ : a function $f: F \rightarrow F$ with $f(x)=x^{d}$ for some positive integer $d$
Power permutation of $F$ : a power function $f(x)=x^{d}$ on $F$ is a permutation of $F$ if and only if $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$

If $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$, we say that $d$ is an invertible exponent over $F$ :
if $e=1 / d\left(\bmod \left|F^{*}\right|\right)$, then $x \mapsto x^{e}$ is the inverse function of $x \mapsto x^{d}$

Cryptographic significance: arithmetically easy to implement power permutations within cryptosystems

## Power Permutations

Throughout the talk: $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$

Power function on a finite field $F$ : a function $f: F \rightarrow F$ with $f(x)=x^{d}$ for some positive integer $d$

Power permutation of $F$ : a power function $f(x)=x^{d}$ on $F$ is a permutation of $F$ if and only if $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$

If $\operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1$, we say that $d$ is an invertible exponent over $F$ : if $e=1 / d\left(\bmod \left|F^{*}\right|\right)$, then $x \mapsto x^{e}$ is the inverse function of $x \mapsto x^{d}$

Cryptographic significance: arithmetically easy to implement power permutations within cryptosystems

Want power permutations that are resistant to linear cryptanalysis

## Linear Functionals

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a finite field of characteristic } p \text { and order } q=p^{n}
$$

## Linear Functionals

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a finite field of characteristic } p \text { and order } q=p^{n}
$$

Let $\operatorname{Tr}: F \rightarrow \mathbb{F}_{p}$ be the absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}}
$$

## Linear Functionals

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$
Let $\operatorname{Tr}: F \rightarrow \mathbb{F}_{p}$ be the absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}}
$$

Then for any $c \in F$, we have an $\mathbb{F}_{p}$-linear functional:

$$
\begin{aligned}
F & \rightarrow \mathbb{F}_{p} \\
x & \mapsto \operatorname{Tr}(c x)
\end{aligned}
$$

## Linear Functionals

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$
Let $\operatorname{Tr}: F \rightarrow \mathbb{F}_{p}$ be the absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}}
$$

Then for any $c \in F$, we have an $\mathbb{F}_{p}$-linear functional:

$$
\begin{aligned}
F & \rightarrow \mathbb{F}_{p} \\
x & \mapsto \operatorname{Tr}(c x)
\end{aligned}
$$

Every $\mathbb{F}_{p}$-linear functional of $F$ is uniquely represented in this way

## Linear Functionals

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$
Let $\operatorname{Tr}: F \rightarrow \mathbb{F}_{p}$ be the absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}}
$$

Then for any $c \in F$, we have an $\mathbb{F}_{p}$-linear functional:

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(c x)
\end{aligned}
$$

Every $\mathbb{F}_{p}$-linear functional of $F$ is uniquely represented in this way
If $c_{1}, \ldots, c_{n}$ form an $\mathbb{F}_{p^{-}}$-basis of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$, then we have the $\mathbb{F}_{p}$-linear isomorphism:

$$
\begin{aligned}
F & \rightarrow \mathbb{F}_{p}^{n} \\
x & \mapsto\left(\operatorname{Tr}\left(c_{1} x\right), \ldots, \operatorname{Tr}\left(c_{n} x\right)\right),
\end{aligned}
$$

## Linear Functionals

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a finite field of characteristic $p$ and order $q=p^{n}$
Let $\operatorname{Tr}: F \rightarrow \mathbb{F}_{p}$ be the absolute trace:

$$
\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{n-1}}
$$

Then for any $c \in F$, we have an $\mathbb{F}_{p}$-linear functional:

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(c x)
\end{aligned}
$$

Every $\mathbb{F}_{p}$-linear functional of $F$ is uniquely represented in this way
If $c_{1}, \ldots, c_{n}$ form an $\mathbb{F}_{p^{-}}$-basis of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$, then we have the $\mathbb{F}_{p}$-linear isomorphism:

$$
\begin{aligned}
F & \rightarrow \mathbb{F}_{p}^{n} \\
x & \mapsto\left(\operatorname{Tr}\left(c_{1} x\right), \ldots, \operatorname{Tr}\left(c_{n} x\right)\right),
\end{aligned}
$$

So we call our $\mathbb{F}_{p}$-linear functionals $x \mapsto \operatorname{Tr}(c x)($ with $c \neq 0)$ component linear functionals

## Nonlinearity

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { has absolute trace } \operatorname{Tr}: F \rightarrow \mathbb{F}_{p}
$$

## Nonlinearity

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { has absolute trace } \operatorname{Tr}: F \rightarrow \mathbb{F}_{p}
$$

If $f: F \rightarrow F$, then for each $b \in F^{*}$, we get a component function of $f$ :

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(b f(x))
\end{aligned}
$$

## Nonlinearity

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { has absolute trace } \operatorname{Tr}: F \rightarrow \mathbb{F}_{p}
$$

If $f: F \rightarrow F$, then for each $b \in F^{*}$, we get a component function of $f$ :

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(b f(x))
\end{aligned}
$$

To resist linear cryptanalysis: want component functions $\operatorname{Tr}(b f(x))$ of $f$ uncorrelated with the linear functionals $x \mapsto \operatorname{Tr}(c x)$ (for all $c \in F)$

## Nonlinearity

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { has absolute trace } \operatorname{Tr}: F \rightarrow \mathbb{F}_{p}
$$

If $f: F \rightarrow F$, then for each $b \in F^{*}$, we get a component function of $f$ :

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(b f(x))
\end{aligned}
$$

To resist linear cryptanalysis: want component functions $\operatorname{Tr}(b f(x))$ of $f$ uncorrelated with the linear functionals $x \mapsto \operatorname{Tr}(c x)$ (for all $c \in F)$
When $p=2, \sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$
$=\#$ of agreements between $\operatorname{Tr}(b f(x))$ and $\operatorname{Tr}(c x)$

- \# of disagreements between $\operatorname{Tr}(b f(x))$ and $\operatorname{Tr}(c x)$


## Nonlinearity

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { has absolute trace } \operatorname{Tr}: F \rightarrow \mathbb{F}_{p}
$$

If $f: F \rightarrow F$, then for each $b \in F^{*}$, we get a component function of $f$ :

$$
\begin{aligned}
& F \rightarrow \mathbb{F}_{p} \\
& x \mapsto \operatorname{Tr}(b f(x))
\end{aligned}
$$

To resist linear cryptanalysis: want component functions $\operatorname{Tr}(b f(x))$ of $f$ uncorrelated with the linear functionals $x \mapsto \operatorname{Tr}(c x)$ (for all $c \in F)$

$$
\begin{aligned}
& \text { When } p=2, \sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)} \\
& =\# \text { of agreements between } \operatorname{Tr}(b f(x)) \text { and } \operatorname{Tr}(c x) \\
& \quad-\# \text { of disagreements between } \operatorname{Tr}(b f(x)) \text { and } \operatorname{Tr}(c x)
\end{aligned}
$$

Notice: $x \mapsto(-1)^{\operatorname{Tr}(x)}$ is the canonical additive character of $F$ into $\{ \pm 1\} \subseteq \mathbb{C}^{*}$ (when $F$ is characteristic 2 )

## Walsh Transform

If $F$ has characteristic 2 , want $\sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$ to be close to 0

## Walsh Transform

If $F$ has characteristic 2 , want $\sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$ to be close to 0

For $F$ of arbitrary characteristic $p$, let $\zeta_{p}=\exp (2 \pi i / p)$ and then define the canonical additive character of $F$ to be

$$
\begin{gathered}
\psi_{F}: F \rightarrow\left\langle\zeta_{p}\right\rangle \subseteq \mathbb{C}^{*} \\
\psi_{F}(x)=\zeta_{p}^{\operatorname{Tr}(x)}=\zeta_{p}^{x+x^{p}+\cdots+x^{q / p}}
\end{gathered}
$$

## Walsh Transform

If $F$ has characteristic 2 , want $\sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$ to be close to 0

For $F$ of arbitrary characteristic $p$, let $\zeta_{p}=\exp (2 \pi i / p)$ and then define the canonical additive character of $F$ to be

$$
\begin{gathered}
\psi_{F}: F \rightarrow\left\langle\zeta_{p}\right\rangle \subseteq \mathbb{C}^{*} \\
\psi_{F}(x)=\zeta_{p}^{\operatorname{Tr}(x)}=\zeta_{p}^{x+x^{p}+\cdots+x^{q / p}}
\end{gathered}
$$

We define the Walsh Transform of $f$ to be the function

$$
\begin{aligned}
W_{f} & : F \times F \rightarrow \mathbb{C} \\
W_{f}(b, c) & =\sum_{x \in F} \psi_{F}(b f(x)-c x)=\sum_{x \in F} \zeta_{p}^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}
\end{aligned}
$$

## Walsh Transform

If $F$ has characteristic 2 , want $\sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$ to be close to 0

For $F$ of arbitrary characteristic $p$, let $\zeta_{p}=\exp (2 \pi i / p)$ and then define the canonical additive character of $F$ to be

$$
\begin{gathered}
\psi_{F}: F \rightarrow\left\langle\zeta_{p}\right\rangle \subseteq \mathbb{C}^{*} \\
\psi_{F}(x)=\zeta_{p}^{\operatorname{Tr}(x)}=\zeta_{p}^{x+x^{p}+\cdots+x^{q / p}}
\end{gathered}
$$

We define the Walsh Transform of $f$ to be the function

$$
\begin{aligned}
W_{f} & : F \times F \rightarrow \mathbb{C} \\
W_{f}(b, c) & =\sum_{x \in F} \psi_{F}(b f(x)-c x)=\sum_{x \in F} \zeta_{p}^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}
\end{aligned}
$$

And we define the Walsh Spectrum of $f$ to be $\left\{W_{f}(b, c): b \in F^{*}, c \in F\right\}(b=0$ tells us nothing about $f)$

## Walsh Transform

If $F$ has characteristic 2 , want $\sum_{x \in F}(-1)^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}$ to be close to 0

For $F$ of arbitrary characteristic $p$, let $\zeta_{p}=\exp (2 \pi i / p)$ and then define the canonical additive character of $F$ to be

$$
\begin{gathered}
\psi_{F}: F \rightarrow\left\langle\zeta_{p}\right\rangle \subseteq \mathbb{C}^{*} \\
\psi_{F}(x)=\zeta_{p}^{\operatorname{Tr}(x)}=\zeta_{p}^{x+x^{p}+\cdots+x^{q / p}}
\end{gathered}
$$

We define the Walsh Transform of $f$ to be the function

$$
\begin{aligned}
W_{f} & : F \times F \rightarrow \mathbb{C} \\
W_{f}(b, c) & =\sum_{x \in F} \psi_{F}(b f(x)-c x)=\sum_{x \in F} \zeta_{p}^{\operatorname{Tr}(b f(x))-\operatorname{Tr}(c x)}
\end{aligned}
$$

And we define the Walsh Spectrum of $f$ to be $\left\{W_{f}(b, c): b \in F^{*}, c \in F\right\}(b=0$ tells us nothing about $f)$

Want every element of this spectrum to have small magnitude

## Walsh Spectrum of a Power Permutation

$$
\psi_{F}: F \rightarrow \mathbb{C}^{*} \text { is the canonical additive character of } F
$$

## Walsh Spectrum of a Power Permutation

$\psi_{F}: F \rightarrow \mathbb{C}^{*}$ is the canonical additive character of $F$
$f(x)=x^{d}$ is a power permutation of $F\left(\operatorname{sog} \operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1\right)$

## Walsh Spectrum of a Power Permutation

$$
\psi_{F}: F \rightarrow \mathbb{C}^{*} \text { is the canonical additive character of } F
$$

$f(x)=x^{d}$ is a power permutation of $F\left(\operatorname{sog} \operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1\right)$
For $b \in F^{*}, c \in F$, the Walsh transform is

$$
W_{f}(b, c)=\sum_{x \in F} \psi_{F}\left(b x^{d}-c x\right)
$$

which is a Weil sum of a binomial

## Walsh Spectrum of a Power Permutation

## $\psi_{F}: F \rightarrow \mathbb{C}^{*}$ is the canonical additive character of $F$

$f(x)=x^{d}$ is a power permutation of $F\left(\operatorname{sog} \operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1\right)$
For $b \in F^{*}, c \in F$, the Walsh transform is

$$
W_{f}(b, c)=\sum_{x \in F} \psi_{F}\left(b x^{d}-c x\right)
$$

which is a Weil sum of a binomial, which can be reparameterized with $y=b^{1 / d} x$

$$
W_{f}(b, c)=\sum_{y \in F} \psi_{F}\left(y^{d}-c b^{-1 / d} y\right)=W_{f}\left(1, b^{-1 / d} c\right)
$$

## Walsh Spectrum of a Power Permutation

## $\psi_{F}: F \rightarrow \mathbb{C}^{*}$ is the canonical additive character of $F$

$f(x)=x^{d}$ is a power permutation of $F\left(\operatorname{sog} \operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1\right)$
For $b \in F^{*}, c \in F$, the Walsh transform is

$$
W_{f}(b, c)=\sum_{x \in F} \psi_{F}\left(b x^{d}-c x\right)
$$

which is a Weil sum of a binomial, which can be reparameterized with $y=b^{1 / d} x$

$$
W_{f}(b, c)=\sum_{y \in F} \psi_{F}\left(y^{d}-c b^{-1 / d} y\right)=W_{f}\left(1, b^{-1 / d} c\right)
$$

So define

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

## Walsh Spectrum of a Power Permutation

## $\psi_{F}: F \rightarrow \mathbb{C}^{*}$ is the canonical additive character of $F$

$f(x)=x^{d}$ is a power permutation of $F\left(\operatorname{sog} \operatorname{gcd}\left(d,\left|F^{*}\right|\right)=1\right)$
For $b \in F^{*}, c \in F$, the Walsh transform is

$$
W_{f}(b, c)=\sum_{x \in F} \psi_{F}\left(b x^{d}-c x\right)
$$

which is a Weil sum of a binomial, which can be reparameterized with $y=b^{1 / d} x$

$$
W_{f}(b, c)=\sum_{y \in F} \psi_{F}\left(y^{d}-c b^{-1 / d} y\right)=W_{f}\left(1, b^{-1 / d} c\right)
$$

So define

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

and then the Walsh spectrum of $f(x)=x^{d}$ over $F$ is

$$
\left\{W_{F, d}(a): a \in F\right\}
$$

## Weil Spectrum and Crosscorrelation

$f(x)=x^{d}$ is a power permutation of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum }
$$ $\left\{W_{F, d}(a): a \in F\right\}$ is the Walsh spectrum of $f$

## Weil Spectrum and Crosscorrelation

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum } \\
\left\{W_{F, d}(a): a \in F\right\} \text { is the Walsh spectrum of } f
\end{gathered}
$$

Notice that $W_{F, d}(0)=\sum_{x \in F} \psi_{F}\left(x^{d}\right)=\sum_{y \in F} \psi_{F}(y)=0$

## Weil Spectrum and Crosscorrelation

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum } \\
\left\{W_{F, d}(a): a \in F\right\} \text { is the Walsh spectrum of } f
\end{gathered}
$$

Notice that $W_{F, d}(0)=\sum_{x \in F} \psi_{F}\left(x^{d}\right)=\sum_{y \in F} \psi_{F}(y)=0$
Weil spectrum for $f(x)=x^{d}$ over $F$ is $\left\{W_{F, d}(a): a \in F^{*}\right\}$.

## Weil Spectrum and Crosscorrelation

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum } \\
\left\{W_{F, d}(a): a \in F\right\} \text { is the Walsh spectrum of } f
\end{gathered}
$$

Notice that $W_{F, d}(0)=\sum_{x \in F} \psi_{F}\left(x^{d}\right)=\sum_{y \in F} \psi_{F}(y)=0$
Weil spectrum for $f(x)=x^{d}$ over $F$ is $\left\{W_{F, d}(a): a \in F^{*}\right\}$.
The Weil spectrum gives the crosscorrelation spectrum for a pair of $p$-ary maximum length linear feedback shift register sequences ( m -sequences) of period $q-1=\left|F^{*}\right|$

## Weil Spectrum and Crosscorrelation

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum } \\
\left\{W_{F, d}(a): a \in F\right\} \text { is the Walsh spectrum of } f
\end{gathered}
$$

Notice that $W_{F, d}(0)=\sum_{x \in F} \psi_{F}\left(x^{d}\right)=\sum_{y \in F} \psi_{F}(y)=0$
Weil spectrum for $f(x)=x^{d}$ over $F$ is $\left\{W_{F, d}(a): a \in F^{*}\right\}$.
The Weil spectrum gives the crosscorrelation spectrum for a pair of $p$-ary maximum length linear feedback shift register sequences ( m -sequences) of period $q-1=\left|F^{*}\right|$

One m -sequence comes from the other by decimating by $d$

## Weil Spectrum and Crosscorrelation

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right) \text { is a Weil sum } \\
\left\{W_{F, d}(a): a \in F\right\} \text { is the Walsh spectrum of } f
\end{gathered}
$$

Notice that $W_{F, d}(0)=\sum_{x \in F} \psi_{F}\left(x^{d}\right)=\sum_{y \in F} \psi_{F}(y)=0$
Weil spectrum for $f(x)=x^{d}$ over $F$ is $\left\{W_{F, d}(a): a \in F^{*}\right\}$.
The Weil spectrum gives the crosscorrelation spectrum for a pair of $p$-ary maximum length linear feedback shift register sequences ( m -sequences) of period $q-1=\left|F^{*}\right|$

One $m$-sequence comes from the other by decimating by $d$
The values of the periodic crosscorrelations between these sequences for the $q-1$ relative shifts equal $-1+W_{F, d}(a)$ for the $q-1$ different $a \in F^{*}$.

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when
$-d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when
$\triangleright d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$

- $d^{\prime}=p d$, because $\operatorname{Tr}\left(x^{p d}\right)=\operatorname{Tr}\left(x^{d}\right)$, so $\psi_{F}\left(x^{p d}\right)=\psi_{F}\left(x^{d}\right)$


## Equivalence and Degeneracy

$$
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}
$$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when
$-d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$

- $d^{\prime}=p d$, because $\operatorname{Tr}\left(x^{p d}\right)=\operatorname{Tr}\left(x^{d}\right)$, so $\psi_{F}\left(x^{p d}\right)=\psi_{F}\left(x^{d}\right)$
- $d^{\prime}$ is the inverse of $d$ modulo $\left|F^{*}\right|$


## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when

- $d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$
- $d^{\prime}=p d$, because $\operatorname{Tr}\left(x^{p d}\right)=\operatorname{Tr}\left(x^{d}\right)$, so $\psi_{F}\left(x^{p d}\right)=\psi_{F}\left(x^{d}\right)$
- $d^{\prime}$ is the inverse of $d$ modulo $\left|F^{*}\right|$

Thus we declare an exponent $d^{\prime}$ to be equivalent to $d$ over $F$ if $d^{\prime} \equiv p^{k} d\left(\bmod \left|F^{*}\right|\right)$ or $d^{\prime} \equiv p^{k} / d\left(\bmod \left|F^{*}\right|\right)$ for some $k \in \mathbb{Z}$

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when
$-d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$
$-d^{\prime}=p d$, because $\operatorname{Tr}\left(x^{p d}\right)=\operatorname{Tr}\left(x^{d}\right)$, so $\psi_{F}\left(x^{p d}\right)=\psi_{F}\left(x^{d}\right)$

- $d^{\prime}$ is the inverse of $d$ modulo $\left|F^{*}\right|$

Thus we declare an exponent $d^{\prime}$ to be equivalent to $d$ over $F$ if $d^{\prime} \equiv p^{k} d\left(\bmod \left|F^{*}\right|\right)$ or $d^{\prime} \equiv p^{k} / d\left(\bmod \left|F^{*}\right|\right)$ for some $k \in \mathbb{Z}$ If $d$ is equivalent to 1 (i.e., a power of $p$ modulo $q-1$ ), then

$$
W_{F, d}(a)=W_{F, 1}(a)=\sum_{x \in F} \psi_{F}\left(x^{1}-a x\right)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}
$$

## Equivalence and Degeneracy

$$
\begin{gathered}
f(x)=x^{d} \text { is a power permutation of } F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \\
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
\end{gathered}
$$

The power permutation $g(x)=x^{d^{\prime}}$ produces the same Weil spectrum as $f(x)=x^{d}$ when
$-d^{\prime} \equiv d\left(\bmod \left|F^{*}\right|\right)$, because $x^{d^{\prime}}=x^{d}$ for every $x \in F$
$-d^{\prime}=p d$, because $\operatorname{Tr}\left(x^{p d}\right)=\operatorname{Tr}\left(x^{d}\right)$, so $\psi_{F}\left(x^{p d}\right)=\psi_{F}\left(x^{d}\right)$

- $d^{\prime}$ is the inverse of $d$ modulo $\left|F^{*}\right|$

Thus we declare an exponent $d^{\prime}$ to be equivalent to $d$ over $F$ if $d^{\prime} \equiv p^{k} d\left(\bmod \left|F^{*}\right|\right)$ or $d^{\prime} \equiv p^{k} / d\left(\bmod \left|F^{*}\right|\right)$ for some $k \in \mathbb{Z}$

If $d$ is equivalent to 1 (i.e., a power of $p$ modulo $q-1$ ), then

$$
W_{F, d}(a)=W_{F, 1}(a)=\sum_{x \in F} \psi_{F}\left(x^{1}-a x\right)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}
$$

So the Walsh spectrum is $\{0,|F|\}$ and we say that $d$ and $f(x)=x^{d}$ are degenerate over $F$

## Degeneracy and Number of Values

$f(x)=x^{d}$ is a power permutation of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

If $d$ is degenerate, then $W_{F, d}(a)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}$

## Degeneracy and Number of Values

$f(x)=x^{d}$ is a power permutation of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

If $d$ is degenerate, then $W_{F, d}(a)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}$
So the Weil spectrum $\left\{W_{F, d}(a): a \in F^{*}\right\}$ has two values if $d$ is degenerate and $|F|>2$ (and only one value if $|F|=2$ )

## Degeneracy and Number of Values

$f(x)=x^{d}$ is a power permutation of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

If $d$ is degenerate, then $W_{F, d}(a)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}$
So the Weil spectrum $\left\{W_{F, d}(a): a \in F^{*}\right\}$ has two values if $d$ is degenerate and $|F|>2$ (and only one value if $|F|=2$ )

Helleseth (1976): Weil spectrum of power permutation has at least three distinct values when $d$ is nondegenerate

## Degeneracy and Number of Values

$f(x)=x^{d}$ is a power permutation of $F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$

$$
W_{F, d}(a)=\sum_{x \in F} \psi_{F}\left(x^{d}-a x\right)
$$

If $d$ is degenerate, then $W_{F, d}(a)= \begin{cases}|F| & \text { if } a=1 \\ 0 & \text { otherwise }\end{cases}$
So the Weil spectrum $\left\{W_{F, d}(a): a \in F^{*}\right\}$ has two values if $d$ is degenerate and $|F|>2$ (and only one value if $|F|=2$ )

Helleseth (1976): Weil spectrum of power permutation has at least three distinct values when $d$ is nondegenerate

Research has often focused on $F$ and $d$ that produce Weil spectra with few distinct values (e.g., 3, 4, or 5) and with values of small magnitude (not much larger than $\sqrt{|F|}$ )

## Niho Exponents

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a field of characteristic $p$ and order $q=p^{n}$

## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$

## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so

## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so

- $d$ is not a power of $p$ modulo $\left|F^{*}\right|=p^{n}-1$, but


## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so

- $d$ is not a power of $p$ modulo $\left|F^{*}\right|=p^{n}-1$, but
- $d$ is a power of $p$ modulo $\left|H_{F}^{*}\right|=p^{n / 2}-1=p^{m}-1$


## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so

- $d$ is not a power of $p$ modulo $\left|F^{*}\right|=p^{n}-1$, but
- $d$ is a power of $p$ modulo $\left|H_{F}^{*}\right|=p^{n / 2}-1=p^{m}-1$

Up to equivalence, we may assume that a Niho exponent $d$ has $d \equiv 1\left(\bmod \left|H_{F}^{*}\right|\right)$, so there is some integer $s \geq 2$ such that

$$
d=1+s\left|H_{F}^{*}\right|=1+s\left(p^{m}-1\right)
$$

## Niho Exponents

$$
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}} \text { is a field of characteristic } p \text { and order } q=p^{n}
$$

If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so

- $d$ is not a power of $p$ modulo $\left|F^{*}\right|=p^{n}-1$, but
- $d$ is a power of $p$ modulo $\left|H_{F}^{*}\right|=p^{n / 2}-1=p^{m}-1$

Up to equivalence, we may assume that a Niho exponent $d$ has $d \equiv 1\left(\bmod \left|H_{F}^{*}\right|\right)$, so there is some integer $s \geq 2$ such that

$$
d=1+s\left|H_{F}^{*}\right|=1+s\left(p^{m}-1\right)
$$

Then $d$ is invertible over $F$ if and only if $\operatorname{gcd}\left(2 s-1, p^{m}+1\right)=1$

## Niho Exponents

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$ is a field of characteristic $p$ and order $q=p^{n}$
If $F$ is of even degree over $\mathbb{F}_{p}$ (i.e., $n=2 m$ for some positive integer $m$ ), then we define the half field of $F$, written $H_{F}$, to be the unique subfield of index 2 in $F$

So $H_{F}=\mathbb{F}_{p^{n / 2}}=\mathbb{F}_{p^{m}}$ and $\left|H_{F}\right|=\sqrt{|F|}$
A Niho exponent over $F$ is a positive integer $d$ that is nondegenerate over $F$ but is degenerate over $H_{F}$, so
$-d$ is not a power of $p$ modulo $\left|F^{*}\right|=p^{n}-1$, but

- $d$ is a power of $p$ modulo $\left|H_{F}^{*}\right|=p^{n / 2}-1=p^{m}-1$

Up to equivalence, we may assume that a Niho exponent $d$ has $d \equiv 1\left(\bmod \left|H_{F}^{*}\right|\right)$, so there is some integer $s \geq 2$ such that

$$
d=1+s\left|H_{F}^{*}\right|=1+s\left(p^{m}-1\right)
$$

Then $d$ is invertible over $F$ if and only if $\operatorname{gcd}\left(2 s-1, p^{m}+1\right)=1$
Niho exponents can give Weil spectra with few distinct values

## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=2$ produces $d=1+2\left(p^{m}-1\right)$


## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=2$ produces $d=1+2\left(p^{m}-1\right)$

This is invertible over $F$ if and only if $p^{m} \not \equiv 2(\bmod 3)$

## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=2$ produces $d=1+2\left(p^{m}-1\right)$

This is invertible over $F$ if and only if $p^{m} \not \equiv 2(\bmod 3)$
So when $p=2$, invertible over $F$ if and only if $m$ is even

## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=2$ produces $d=1+2\left(p^{m}-1\right)$

This is invertible over $F$ if and only if $p^{m} \not \equiv 2(\bmod 3)$
So when $p=2$, invertible over $F$ if and only if $m$ is even
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+2\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\}=\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}\right\}
$$

## Weil Spectra for Some Niho Exponents $(s=2)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$

$$
\text { and } d=1+s\left(p^{m}-1\right) \text { is a Niho exponent }
$$

- $s=2$ produces $d=1+2\left(p^{m}-1\right)$

This is invertible over $F$ if and only if $p^{m} \not \equiv 2(\bmod 3)$
So when $p=2$, invertible over $F$ if and only if $m$ is even
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+2\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\}=\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}\right\}
$$

So the Weil spectrum is 4 -valued

## Weil Spectra for Some Niho Exponents $(s=3)$

$$
\begin{gathered}
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}} \text { is a field of characteristic } p \text { and order } q=p^{n} \\
\quad \text { and } d=1+s\left(p^{m}-1\right) \text { is a Niho exponent }
\end{gathered}
$$

## Weil Spectra for Some Niho Exponents $(s=3)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=3$ produces $d=1+3\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 4(\bmod 5)$ (so for $p=2$, if and only if $m \not \equiv 2(\bmod 4)$ )


## Weil Spectra for Some Niho Exponents $(s=3)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=3$ produces $d=1+3\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 4(\bmod 5)$
(so for $p=2$, if and only if $m \not \equiv 2(\bmod 4)$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}, m \not \equiv 2(\bmod 4)$, and $d=1+3\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}\right\}$.


## Weil Spectra for Some Niho Exponents $(s=3)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=3$ produces $d=1+3\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 4(\bmod 5)$
(so for $p=2$, if and only if $m \not \equiv 2(\bmod 4)$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}, m \neq 2(\bmod 4)$, and $d=1+3\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}\right\} .
$$

Building on work of Dobbertin, Felke, Helleseth, Rosendahl (2006), the exact values in the spectrum were determined.
Theorem (Xia-Li-Zeng-Helleseth, 2016)
If $F=\mathbb{F}_{2^{2 m}}, m \not \equiv 2(\bmod 4), m \geq 3$, and $d=1+3\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\}=\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 4 \cdot 2^{m}\right\} \quad$ if $m$ is even,
$\left\{W_{F, d}(a): a \in F^{*}\right\}=\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}\right\} \quad$ if $m$ is odd.

## Weil Spectra for Some Niho Exponents $(s=4)$

$$
\begin{gathered}
F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}} \text { is a field of characteristic } p \text { and order } q=p^{n} \\
\quad \text { and } d=1+s\left(p^{m}-1\right) \text { is a Niho exponent }
\end{gathered}
$$

## Weil Spectra for Some Niho Exponents $(s=4)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=4$ produces $d=1+4\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 6(\bmod 7)$ (so for $p=2$, always invertible over $F$ )


## Weil Spectra for Some Niho Exponents $(s=4)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=4$ produces $d=1+4\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 6(\bmod 7)$ (so for $p=2$, always invertible over $F$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.


## Weil Spectra for Some Niho Exponents $(s=4)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=4$ produces $d=1+4\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 6(\bmod 7)$ (so for $p=2$, always invertible over $F$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.

So there are at most 8 distinct values.

## Weil Spectra for Some Niho Exponents $(s=4)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=4$ produces $d=1+4\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 6(\bmod 7)$ (so for $p=2$, always invertible over $F$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.

So there are at most 8 distinct values. The very last conjecture in Niho's thesis concerns this spectrum when $m$ is even.

## Weil Spectra for Some Niho Exponents $(s=4)$

$F=\mathbb{F}_{q}=\mathbb{F}_{p^{n}}=\mathbb{F}_{p^{2 m}}$ is a field of characteristic $p$ and order $q=p^{n}$ and $d=1+s\left(p^{m}-1\right)$ is a Niho exponent

- $s=4$ produces $d=1+4\left(p^{m}-1\right)$, which is invertible over $F$ if and only if $p^{m} \not \equiv 6(\bmod 7)$
(so for $p=2$, always invertible over $F$ )
Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.
So there are at most 8 distinct values. The very last conjecture in Niho's thesis concerns this spectrum when $m$ is even.
Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.


## The New Result

Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}, m} m$ is even, and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

## The New Result

Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

We proved
Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 4 \cdot 2^{m}\right\} .
$$

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.
$\mathrm{GaI}\left(F / H_{F}\right)$ is a cyclic group of order 2 generated by the automorphism $\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{\left|H_{F}\right|}=x^{p^{m}}$

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.
$\mathrm{Gal}\left(F / H_{F}\right)$ is a cyclic group of order 2 generated by the automorphism $\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{\left|H_{F}\right|}=x^{p^{m}}$

$$
H_{F}=\left\{x \in F: \tau_{F}(x)=x\right\}
$$

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.
$\mathrm{GaI}\left(F / H_{F}\right)$ is a cyclic group of order 2 generated by the automorphism $\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{\left|H_{F}\right|}=x^{p^{m}}$

$$
H_{F}=\left\{x \in F: \tau_{F}(x)=x\right\}
$$

We also define the unit circle of $F$, which is

$$
U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}=\left\{x \in F^{*}: x^{p^{m}+1}=1\right\}
$$

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.
$\mathrm{Gal}\left(F / H_{F}\right)$ is a cyclic group of order 2 generated by the automorphism $\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{\left|H_{F}\right|}=x^{p^{m}}$

$$
H_{F}=\left\{x \in F: \tau_{F}(x)=x\right\}
$$

We also define the unit circle of $F$, which is

$$
U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}=\left\{x \in F^{*}: x^{p^{m}+1}=1\right\}
$$

This is the unique cyclic subgroup of order $p^{m}+1$ in $F^{*}$

## How to Begin: with the Unit Circle

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$.
$\mathrm{GaI}\left(F / H_{F}\right)$ is a cyclic group of order 2 generated by the automorphism $\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{\left|H_{F}\right|}=x^{p^{m}}$

$$
H_{F}=\left\{x \in F: \tau_{F}(x)=x\right\}
$$

We also define the unit circle of $F$, which is

$$
U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}=\left\{x \in F^{*}: x^{p^{m}+1}=1\right\}
$$

This is the unique cyclic subgroup of order $p^{m}+1$ in $F^{*}$
We sometimes call $\tau_{F}$ the conjugation map and abbreviate $\tau_{F}(x)$ as $\bar{x}$, so then

$$
U_{F}=\left\{x \in F^{*}: x \bar{x}=1\right\} .
$$

## Niho's Theorem

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$

## Niho's Theorem

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Theorem
Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then

$$
W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}
$$

## Niho's Theorem

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Theorem
Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then

$$
W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}
$$

Originally proved by Niho (1972) for $p=2$

## Niho's Theorem

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Theorem
Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then

$$
W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}
$$

Originally proved by Niho (1972) for $p=2$
Generalized by Rosendahl (2006) to all $p$

## Niho's Proof that the Spectrum is at Most 8-Valued

Niho's Theorem: Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then $W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}$.

## Niho's Proof that the Spectrum is at Most 8-Valued

Niho's Theorem: Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then $W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}$.

When $p=2$ and $s=4$, the polynomial $g_{F, a}$ has degree 7 ; this is Niho's proof that the Weil spectrum is at most 8 -valued

Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.

## Niho's Proof that the Spectrum is at Most 8-Valued

Niho's Theorem: Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then $W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}$.

When $p=2$ and $s=4$, the polynomial $g_{F, a}$ has degree 7 ; this is Niho's proof that the Weil spectrum is at most 8 -valued

Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.
Our result states that $3 \cdot 2^{m}, 5 \cdot 2^{m}$, and $6 \cdot 2^{m}$ do not occur in the Weil spectrum,

## Niho's Proof that the Spectrum is at Most 8-Valued

Niho's Theorem: Let $F=\mathbb{F}_{p^{2 m}}$ and $d=s\left(p^{m}-1\right)+1$ and for $a \in F$, let $Z_{F, a}$ be the number of distinct roots of the polynomial

$$
g_{F, a}(x)=x^{2 s-1}-a x^{s}-\tau_{F}(a) x^{s-1}+1
$$

that lie on $U_{F}$. Then $W_{F, d}(a)=\left(Z_{F, a}-1\right) p^{m}$.

When $p=2$ and $s=4$, the polynomial $g_{F, a}$ has degree 7 ; this is Niho's proof that the Weil spectrum is at most 8 -valued

Theorem (Niho, 1972)
If $F=\mathbb{F}_{2^{2 m}}$ and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}, 5 \cdot 2^{m}, 6 \cdot 2^{m}\right\}$.
Our result states that $3 \cdot 2^{m}, 5 \cdot 2^{m}$, and $6 \cdot 2^{m}$ do not occur in the Weil spectrum, so it suffices to prove that $Z_{F, a}$ is never 4,6 , or 7 .

## Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, and for each $a \in F$,

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

## Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, and for each $a \in F$,

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.
We call $g_{F, a}$ the key polynomial for a over $F$.

## Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, and for each $a \in F$,

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.
We call $g_{F, a}$ the key polynomial for a over $F$.
Lemma
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then the key polynomial $g_{F, a}$ in inseparable if and only if $a \in U_{F}$.

## Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, and for each $a \in F$,

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.
We call $g_{F, a}$ the key polynomial for a over $F$.
Lemma
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then the key polynomial $g_{F, a}$ in inseparable if and only if $a \in U_{F}$.

- If $a=1$, then $g_{F, a}(x)=(x+1)^{5}\left(x^{2}+x+1\right)$ and 1 is the only root of $g_{F, a}$ on $U_{F}$.


## Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, and for each $a \in F$,

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.
We call $g_{F, a}$ the key polynomial for a over $F$.
Lemma
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then the key polynomial $g_{F, a}$ in inseparable if and only if $a \in U_{F}$.

- If $a=1$, then $g_{F, a}(x)=(x+1)^{5}\left(x^{2}+x+1\right)$ and 1 is the only root of $g_{F, a}$ on $U_{F}$.
- If $a \in U_{F} \backslash\{1\}$, then $g_{F, a}(x)=\left(x^{3}+a\right)\left(x^{4}+1 / a\right)$ has three simple roots at the cube roots of a, exactly one of which lies on $U_{F}$, along with a root of multiplicity 4 at $a^{-1 / 4} \in U_{F}$. So there are two distinct roots on $U_{F}$.


## Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4, 6, or 7 distinct roots on $U_{F}$.

## Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4, 6, or 7 distinct roots on $U_{F}$.

If $f(x)=f_{0}+f_{1} x+\cdots+f_{d} x^{d} \in F[x]$ with $f_{0}, f_{d} \neq 0$, then the conjugate-reciprocal of $f$ is the polynomial

$$
f^{\dagger}(x)=\tau_{F}\left(f_{d}\right)+\tau_{F}\left(f_{d-1}\right) x+\cdots+\tau_{F}\left(f_{0}\right) x^{d} .
$$

## Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4, 6, or 7 distinct roots on $U_{F}$.

If $f(x)=f_{0}+f_{1} x+\cdots+f_{d} x^{d} \in F[x]$ with $f_{0}, f_{d} \neq 0$, then the conjugate-reciprocal of $f$ is the polynomial

$$
f^{\dagger}(x)=\tau_{F}\left(f_{d}\right)+\tau_{F}\left(f_{d-1}\right) x+\cdots+\tau_{F}\left(f_{0}\right) x^{d} .
$$

If $f^{\dagger}(x)=f(x)$, we say that $f(x)$ is self-conjugate-reciprocal

## Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}$, $m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

If $f(x)=f_{0}+f_{1} x+\cdots+f_{d} x^{d} \in F[x]$ with $f_{0}, f_{d} \neq 0$, then the conjugate-reciprocal of $f$ is the polynomial

$$
f^{\dagger}(x)=\tau_{F}\left(f_{d}\right)+\tau_{F}\left(f_{d-1}\right) x+\cdots+\tau_{F}\left(f_{0}\right) x^{d} .
$$

If $f^{\dagger}(x)=f(x)$, we say that $f(x)$ is self-conjugate-reciprocal
Notice that our key polynomials $g_{F, a}$ are self-conjugate-reciprocal

## Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}$, $m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

If $f(x)=f_{0}+f_{1} x+\cdots+f_{d} x^{d} \in F[x]$ with $f_{0}, f_{d} \neq 0$, then the conjugate-reciprocal of $f$ is the polynomial

$$
f^{\dagger}(x)=\tau_{F}\left(f_{d}\right)+\tau_{F}\left(f_{d-1}\right) x+\cdots+\tau_{F}\left(f_{0}\right) x^{d} .
$$

If $f^{\dagger}(x)=f(x)$, we say that $f(x)$ is self-conjugate-reciprocal
Notice that our key polynomials $g_{F, a}$ are self-conjugate-reciprocal If $r$ is a root of a self-conjugate-reciprocal polynomial, then so is $1 / \tau_{\digamma}(r)$.

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$
Extend $\tau_{F}: \bar{F} \rightarrow \bar{F}$ with $\tau_{F}(x)=x^{p^{m}}$ for all $x \in \bar{F}$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$
Extend $\tau_{F}: \bar{F} \rightarrow \bar{F}$ with $\tau_{F}(x)=x^{p^{m}}$ for all $x \in \bar{F}$
Define the conjugate-reciprocal map $\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*}$ by

$$
\pi_{F}(x)=1 / \tau_{F}(x)=x^{-p^{m}}
$$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$
Extend $\tau_{F}: \bar{F} \rightarrow \bar{F}$ with $\tau_{F}(x)=x^{p^{m}}$ for all $x \in \bar{F}$
Define the conjugate-reciprocal map $\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*}$ by

$$
\pi_{F}(x)=1 / \tau_{F}(x)=x^{-p^{m}}
$$

Then $H_{F}=\left\{x \in \bar{F}: \tau_{F}(x)=x\right\}$ and $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$
$\tau_{F}: F \rightarrow F$ with $\tau_{F}(x)=x^{p^{m}}$ generates $\operatorname{Gal}\left(F / H_{F}\right)$
The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$
Extend $\tau_{F}: \bar{F} \rightarrow \bar{F}$ with $\tau_{F}(x)=x^{p^{m}}$ for all $x \in \bar{F}$
Define the conjugate-reciprocal map $\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*}$ by

$$
\pi_{F}(x)=1 / \tau_{F}(x)=x^{-p^{m}}
$$

Then $H_{F}=\left\{x \in \bar{F}: \tau_{F}(x)=x\right\}$ and $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$
Let the conjugate-reciprocal group $\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\}$ be the cyclic group of permutations of $\bar{F}^{*}$ generated by $\pi_{F}$

## Conjugate-Reciprocal Action

$$
F=\mathbb{F}_{p^{2 m}} \text { is a finite field }
$$

The half field $H_{F}=\mathbb{F}_{p^{m}}$ is the unique subfield with $\left[F: H_{F}\right]=2$

$$
\tau_{F}: F \rightarrow F \text { with } \tau_{F}(x)=x^{p^{m}} \text { generates } \operatorname{Gal}\left(F / H_{F}\right)
$$

The unit circle $U_{F}=\left\{x \in F^{*}: \tau_{F}(x)=1 / x\right\}$
Let $\bar{F}$ be the algebraic closure of $F$
Extend $\tau_{F}: \bar{F} \rightarrow \bar{F}$ with $\tau_{F}(x)=x^{p^{m}}$ for all $x \in \bar{F}$
Define the conjugate-reciprocal map $\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*}$ by

$$
\pi_{F}(x)=1 / \tau_{F}(x)=x^{-p^{m}}
$$

Then $H_{F}=\left\{x \in \bar{F}: \tau_{F}(x)=x\right\}$ and $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$
Let the conjugate-reciprocal group $\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\}$ be the cyclic group of permutations of $\bar{F}^{*}$ generated by $\pi_{F}$

The set of roots of a self-conjugate-reciprocal polynomial is $\Pi_{F}$-closed

## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \bar{F} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \vec{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$

## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \bar{F} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$

If $r \in \bar{F}^{*}$, then we write $\Pi_{F} \cdot r$ for the orbit $\left\{\pi_{F}^{k}(r): k \in \mathbb{Z}\right\}$ of $r$ under the conjugate-reciprocal action

## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \overline{\bar{F}} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$

If $r \in \bar{F}^{*}$, then we write $\Pi_{F} \cdot r$ for the orbit $\left\{\pi_{F}^{k}(r): k \in \mathbb{Z}\right\}$ of $r$ under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a union of such orbits

## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \overline{\bar{F}} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \bar{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$

If $r \in \bar{F}^{*}$, then we write $\Pi_{F} \cdot r$ for the orbit $\left\{\pi_{F}^{k}(r): k \in \mathbb{Z}\right\}$ of $r$ under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a union of such orbits

Two main facts:

## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \bar{F} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \vec{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$
If $r \in \bar{F}^{*}$, then we write $\Pi_{F} \cdot r$ for the orbit $\left\{\pi_{F}^{k}(r): k \in \mathbb{Z}\right\}$ of $r$ under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a union of such orbits

Two main facts:

- All orbits are finite


## Orbits of the Conjugate-Reciprocal Action

$$
\begin{gathered}
F=\mathbb{F}_{p^{2 m}} \text { is a finite field } \\
\tau_{F}: \bar{F} \rightarrow \bar{F} \text { with } \tau_{F}(x)=x^{p^{m}} \text { and } \\
\pi_{F}: \vec{F}^{*} \rightarrow \bar{F}^{*} \text { with } \pi_{F}(x)=x^{-p^{m}} \\
\Pi_{F}=\left\{\pi_{F}^{k}: k \in \mathbb{Z}\right\} \text { acts on } \bar{F}^{*}
\end{gathered}
$$

The unit circle $U_{F}=\left\{x \in \bar{F}^{*}: \pi_{F}(x)=x\right\}$
If $r \in \bar{F}^{*}$, then we write $\Pi_{F} \cdot r$ for the orbit $\left\{\pi_{\digamma}^{k}(r): k \in \mathbb{Z}\right\}$ of $r$ under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a union of such orbits

Two main facts:

- All orbits are finite
- An element $x \in \bar{F}^{*}$ lies in a singleton orbit (orbit of cardinality 1) if and only if $x \in U_{F}$


## Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}$, $m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

## Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

Let $R_{F, a}$ denote the set of roots in $\bar{F}^{*}$ of the key polynomial $g_{F, a}$

## Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, then $g_{F, a}$ does not have precisely 4, 6, or 7 distinct roots on $U_{F}$.

Let $R_{F, a}$ denote the set of roots in $\bar{F}^{*}$ of the key polynomial $g_{F, a}$
Since $g_{F, a}$ is self-conjugate-reciprocal, $R_{F, a}$ is a union of $\Pi_{F}$-orbits.

## Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1
$$

is separable, then $g_{F, a}$ does not have precisely 4,6 , or 7 distinct roots on $U_{F}$.

Let $R_{F, a}$ denote the set of roots in $\bar{F}^{*}$ of the key polynomial $g_{F, a}$
Since $g_{F, a}$ is self-conjugate-reciprocal, $R_{F, a}$ is a union of $\Pi_{F}$-orbits.
Suffices to Show (Equivalent Orbital Formulation)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4, 6, or 7 singleton orbits.

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$,

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right)
$$

## A Sum Attached to a $\Pi_{F}$-closed Set

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right)=\frac{\tau_{F}(u) \tau_{F}(v)}{\left(\tau_{F}(u)-\tau_{F}(v)\right)^{2}}
$$

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\begin{aligned}
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right) & =\frac{\tau_{F}(u) \tau_{F}(v)}{\left(\tau_{F}(u)-\tau_{F}(v)\right)^{2}} \\
& =\frac{\pi_{F}(u)^{-1} \pi_{F}(v)^{-1}}{\left(\pi_{F}(u)^{-1}-\pi_{F}(v)^{-1}\right)^{2}}
\end{aligned}
$$

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\begin{aligned}
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right) & =\frac{\tau_{F}(u) \tau_{F}(v)}{\left(\tau_{F}(u)-\tau_{F}(v)\right)^{2}} \\
& =\frac{\pi_{F}(u)^{-1} \pi_{F}(v)^{-1}}{\left(\pi_{F}(u)^{-1}-\pi_{F}(v)^{-1}\right)^{2}} \\
& =\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(v)-\pi_{F}(u)\right)^{2}}
\end{aligned}
$$

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\begin{aligned}
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right) & =\frac{\tau_{F}(u) \tau_{F}(v)}{\left(\tau_{F}(u)-\tau_{F}(v)\right)^{2}} \\
& =\frac{\pi_{F}(u)^{-1} \pi_{F}(v)^{-1}}{\left(\pi_{F}(u)^{-1}-\pi_{F}(v)^{-1}\right)^{2}} \\
& =\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(v)-\pi_{F}(u)\right)^{2}} \\
& =\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(u)-\pi_{F}(v)\right)^{2}}
\end{aligned}
$$

## A Sum Attached to a $\Pi_{F-c l o s e d ~ S e t ~}^{\text {St }}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $R$ be a finite $\Pi_{F}$-closed subset of $\bar{F}^{*}$ and let

$$
S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: Recall that $x \in H_{F}$ if and only if $\tau_{F}(x)=x$, and note that

$$
\begin{aligned}
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right) & =\frac{\tau_{F}(u) \tau_{F}(v)}{\left(\tau_{F}(u)-\tau_{F}(v)\right)^{2}} \\
& =\frac{\pi_{F}(u)^{-1} \pi_{F}(v)^{-1}}{\left(\pi_{F}(u)^{-1}-\pi_{F}(v)^{-1}\right)^{2}} \\
& =\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(v)-\pi_{F}(u)\right)^{2}} \\
& =\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(u)-\pi_{F}(v)\right)^{2}}
\end{aligned}
$$

So $\tau_{F}(S)=S$, and so $S \in H_{F}$

## A Sum Attached to Two $\Pi_{F-c l o s e d ~ S e t s ~}$

Let $F=\mathbb{F}_{p^{2 m}}$, let $Q, R$ be finite $\Pi_{F}$-closed subsets of $\bar{F}^{*}$ and let

$$
S=\sum_{(u, v) \in Q \times R} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.

## A Sum Attached to Two $\Pi_{F}$-closed Sets

Let $F=\mathbb{F}_{p^{2 m}}$, let $Q, R$ be finite $\Pi_{F}$-closed subsets of $\bar{F}^{*}$ and let

$$
S=\sum_{(u, v) \in Q \times R} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$.
Proof: As previously

$$
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right)=\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(u)-\pi_{F}(v)\right)^{2}}
$$

## A Sum Attached to Two $\Pi_{F}$-closed Sets

Let $F=\mathbb{F}_{p^{2 m}}$, let $Q, R$ be finite $\Pi_{F}$-closed subsets of $\bar{F}^{*}$ and let

$$
S=\sum_{(u, v) \in Q \times R} \frac{u v}{(u-v)^{2}}
$$

Then $S \in H_{F}$.
Proof: As previously

$$
\tau_{F}\left(\frac{u v}{(u-v)^{2}}\right)=\frac{\pi_{F}(u) \pi_{F}(v)}{\left(\pi_{F}(u)-\pi_{F}(v)\right)^{2}}
$$

So $\tau_{F}(S)=S$, and so $S \in H_{F}$.

Trace of the Sum with a Single Orbit
Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r}^{u \neq v} \left\lvert\, \frac{u v}{(u-v)^{2}}\right.$.
Then $S \in H_{F}$

## Trace of the Sum with a Single Orbit

Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r}^{u \neq v} \left\lvert\, \frac{u v}{(u-v)^{2}}\right.$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left(\left.\Pi_{F \cdot \cdot}\right|_{2}\right)(\bmod 2)$.

Trace of the Sum with a Single Orbit
Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r}^{u \neq v} \left\lvert\, \frac{u v}{(u-v)^{2}}\right.$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left(\left.\Pi_{F \cdot r}\right|_{2-1}\right)(\bmod 2)$.
Proof: Notice that $T=\frac{u v}{(u-v)^{2}}=\frac{u}{u-v}+\left(\frac{u}{u-v}\right)^{2}$.

## Trace of the Sum with a Single Orbit

Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r \neq v} \frac{u v}{(u-v)^{2}}$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left(\begin{array}{|c}\left|\Pi_{F} \cdot \gamma\right|-1\end{array}\right)(\bmod 2)$.
Proof: Notice that $T=\frac{u v}{(u-v)^{2}}=\frac{u}{u-v}+\left(\frac{u}{u-v}\right)^{2}$.
So $T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\tau_{F}\left(\frac{u}{u-v}\right)=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}$.

## Trace of the Sum with a Single Orbit

Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r}^{u \neq v} \left\lvert\, \frac{u v}{(u-v)^{2}}\right.$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{\left|\Pi_{F} \cdot \cdot\right|-1}{2}(\bmod 2)$.
Proof: Notice that $T=\frac{u v}{(u-v)^{2}}=\frac{u}{u-v}+\left(\frac{u}{u-v}\right)^{2}$.
So $T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\tau_{F}\left(\frac{u}{u-v}\right)=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}$.
If we let $M=\left|\Pi_{F} \cdot r\right|$ and set $r_{k}=\pi_{F}^{k}(r)$, so that our orbit is $\left\{r_{0}=r, r_{1}, \ldots, r_{M-1}\right\}$, then

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{0 \leq i<j<M}\left(\frac{r_{i}}{r_{i}-r_{j}}+\frac{r_{j+1}}{r_{j+1}-r_{i+1}}\right)
$$

## Trace of the Sum with a Single Orbit

Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq 円_{F} \cdot \cdot} \frac{u v}{(u \neq v} \substack{(u-v)^{2}}$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left(\left.\Pi_{F \cdot \cdot}\right|_{2}\right)(\bmod 2)$.
Proof: Notice that $T=\frac{u v}{(u-v)^{2}}=\frac{u}{u-v}+\left(\frac{u}{u-v}\right)^{2}$.
So $T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\tau_{F}\left(\frac{u}{u-v}\right)=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}$.
If we let $M=\left|\Pi_{F} \cdot r\right|$ and set $r_{k}=\pi_{\digamma}^{k}(r)$, so that our orbit is $\left\{r_{0}=r, r_{1}, \ldots, r_{M-1}\right\}$, then

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{0 \leq i<j<M}\left(\frac{r_{i}}{r_{i}-r_{j}}+\frac{r_{j+1}}{r_{j+1}-r_{i+1}}\right) .
$$

For the $\binom{M-1}{2}$ pairs $(k, \ell)$ with $0<k<\ell<M$ both $r_{k} /\left(r_{k}-r_{\ell}\right)$ and $r_{\ell} /\left(r_{\ell}-r_{k}\right)$ occur, which sum to 1 .

## Trace of the Sum with a Single Orbit

Let $F=\mathbb{F}_{2^{2 m}}$, let $r \in \bar{F}^{*}$, and let $S=\sum_{\{u, v\} \subseteq \Pi_{F} \cdot r}^{u \neq v} \left\lvert\, \frac{u v}{(u-v)^{2}}\right.$.
Then $S \in H_{F}$ and $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left(\begin{array}{|c}\left|\Pi_{F} \cdot \gamma\right|-1\end{array}\right)(\bmod 2)$.
Proof: Notice that $T=\frac{u v}{(u-v)^{2}}=\frac{u}{u-v}+\left(\frac{u}{u-v}\right)^{2}$.
So $T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\tau_{F}\left(\frac{u}{u-v}\right)=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}$.
If we let $M=\left|\Pi_{F} \cdot r\right|$ and set $r_{k}=\pi_{F}^{k}(r)$, so that our orbit is $\left\{r_{0}=r, r_{1}, \ldots, r_{M-1}\right\}$, then

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{0 \leq i<j<M}\left(\frac{r_{i}}{r_{i}-r_{j}}+\frac{r_{j+1}}{r_{j+1}-r_{i+1}}\right) .
$$

For the $\binom{M-1}{2}$ pairs $(k, \ell)$ with $0<k<\ell<M$ both $r_{k} /\left(r_{k}-r_{\ell}\right)$ and $r_{\ell} /\left(r_{\ell}-r_{k}\right)$ occur, which sum to 1 .
For the remaining $M-1$ pairs $(k, \ell)$ with $0=k<\ell<M$, $r_{0} /\left(r_{0}-r_{\ell}\right)$ occurs twice, which sums to 0 .

## Trace of the Sum with Two Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, let $r, s \in \bar{F}^{*}$ belong to different $\Pi_{F}$-orbits, and let

$$
S=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$

## Trace of the Sum with Two Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, let $r, s \in \bar{F}^{*}$ belong to different $\Pi_{F}$-orbits, and let

$$
S=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left|\Pi_{F} \cdot r\right|\left|\Pi_{F} \cdot s\right| \quad(\bmod 2)
$$

## Trace of the Sum with Two Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, let $r, s \in \bar{F}^{*}$ belong to different $\Pi_{F}$-orbits, and let

$$
S=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s} \frac{u v}{(u-v)^{2}} .
$$

Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left|\Pi_{F} \cdot r\right|\left|\Pi_{F} \cdot s\right| \quad(\bmod 2)
$$

Proof: As previously, if $T=\frac{u v}{(u-v)^{2}}$, then

$$
T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}
$$

## Trace of the Sum with Two Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, let $r, s \in \bar{F}^{*}$ belong to different $\Pi_{F}$-orbits, and let

$$
S=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s} \frac{u v}{(u-v)^{2}}
$$

Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left|\Pi_{F} \cdot r\right|\left|\Pi_{F} \cdot s\right| \quad(\bmod 2) .
$$

Proof: As previously, if $T=\frac{u v}{(u-v)^{2}}$, then

$$
T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}
$$

and so

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s}\left(\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}\right),
$$

## Trace of the Sum with Two Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, let $r, s \in \bar{F}^{*}$ belong to different $\Pi_{F}$-orbits, and let

$$
S=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s} \frac{u v}{(u-v)^{2}}
$$

Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\left|\Pi_{F} \cdot r\right|\left|\Pi_{F} \cdot s\right| \quad(\bmod 2)
$$

Proof: As previously, if $T=\frac{u v}{(u-v)^{2}}$, then

$$
T+T^{2}+\cdots+T^{2^{m-1}}=\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}
$$

and so

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s}\left(\frac{u}{u-v}+\frac{\pi_{F}(v)}{\pi_{F}(v)-\pi_{F}(u)}\right),
$$

For each of the $\left|\Pi_{F} \cdot r\right||\Pi \cdot s|$ pairs $(u, v) \in \Pi_{F} \cdot r \times \Pi_{F} \cdot s$, both $\frac{u}{u-v}$ and $\frac{v}{v-u}$ occur, which sum to 1 .

## Trace of the Sum over a Union of Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, and let $R$ be the union of $N$ distinct $\Pi_{F}$-orbits in $\bar{F}^{*}$, and let $S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}}$. Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{|R|+1}{2}+N \quad(\bmod 2)
$$

## Trace of the Sum over a Union of Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, and let $R$ be the union of $N$ distinct $\Pi_{F}$-orbits in $\bar{F}^{*}$, and let $S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}}$. Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{|R|+1}{2}+N \quad(\bmod 2)
$$

Proof: Let $\mathcal{P}$ be the partition of $R$ into $\Pi_{F}$-orbits, so

## Trace of the Sum over a Union of Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, and let $R$ be the union of $N$ distinct $\Pi_{F}$-orbits in $\bar{F}^{*}$, and let $S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}}$. Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{|R|+1}{2}+N \quad(\bmod 2)
$$

Proof: Let $\mathcal{P}$ be the partition of $R$ into $\Pi_{F}$-orbits, so

$$
S=\sum_{P \in \mathcal{P}} \sum_{\substack{\{u, v\} \subseteq P \\ u \neq v}} \frac{u v}{(u-v)^{2}}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}} \sum_{(u, v) \in P \times Q} \frac{u v}{(u-v)^{2}} .
$$

If we apply $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}$ to $S$, then by previous results

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{P \in \mathcal{P}}\binom{|P|-1}{2}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}}|P \| Q| .
$$

## Trace of the Sum over a Union of Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, and let $R$ be the union of $N$ distinct $\Pi_{F}$-orbits in $\bar{F}^{*}$, and let $S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}}$. Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{|R|+1}{2}+N \quad(\bmod 2)
$$

Proof: Let $\mathcal{P}$ be the partition of $R$ into $\Pi_{F}$-orbits, so

$$
S=\sum_{P \in \mathcal{P}} \sum_{\substack{\{u, v\} \subseteq P \\ u \neq v}} \frac{u v}{(u-v)^{2}}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}} \sum_{(u, v) \in P \times Q} \frac{u v}{(u-v)^{2}} .
$$

If we apply $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}$ to $S$, then by previous results

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{P \in \mathcal{P}}\binom{|P|-1}{2}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}}|P \| Q| .
$$

If we had $\binom{|P|}{2}$ instead of $\binom{|P|-1}{2}$, this would count all $\binom{|R|}{2}$ pairs of elements from $R$,

## Trace of the Sum over a Union of Orbits

Let $F=\mathbb{F}_{2^{2 m}}$, and let $R$ be the union of $N$ distinct $\Pi_{F}$-orbits in $\bar{F}^{*}$, and let $S=\sum_{\substack{\{u, v\} \subseteq R \\ u \neq v}} \frac{u v}{(u-v)^{2}}$. Then $S \in H_{F}$ and

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\binom{|R|+1}{2}+N \quad(\bmod 2)
$$

Proof: Let $\mathcal{P}$ be the partition of $R$ into $\Pi_{F}$-orbits, so

$$
S=\sum_{P \in \mathcal{P}} \sum_{\substack{\{u, v\} \subseteq P \\ u \neq v}} \frac{u v}{(u-v)^{2}}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}} \sum_{(u, v) \in P \times Q} \frac{u v}{(u-v)^{2}} .
$$

If we apply $\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}$ to $S$, then by previous results

$$
\operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}(S)=\sum_{P \in \mathcal{P}}\binom{|P|-1}{2}+\sum_{\substack{\{P, Q\} \subseteq \mathcal{P} \\ P \neq Q}}|P \| Q| .
$$

If we had $\binom{|P|}{2}$ instead of $\binom{|P|-1}{2}$, this would count all $\binom{|R|}{2}$ pairs of elements from $R$, but we have $\sum_{P \in \mathcal{P}}(|P|-1)=|R|-N$ fewer pairs, so we get $\binom{|R|}{2}-|R|+N$.

## Where were we?

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4, 6 , or 7 singleton orbits.

## Where were we?

Suffices to Show (Equivalent Orbital Formulation)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $F^{*}$ into $\Pi_{F}$-orbits does not have precisely 4,6 , or 7 singleton orbits.
$R_{F, a}$ is a union of $\Pi_{F}$-orbits: let $N_{F, a}$ be the number of orbits.

## Where were we?

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}$, $m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4,6 , or 7 singleton orbits.
$R_{F, a}$ is a union of $\Pi_{F}$-orbits: let $N_{F, a}$ be the number of orbits. Let

$$
S_{F, a}=\sum_{\substack{\left\{u, v \in R_{F, a} \\ \neq v\right.}} \frac{u v}{(u-v)^{2}},
$$

## Where were we?

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into

$R_{F, a}$ is a union of $\Pi_{F}$-orbits: let $N_{F, a}$ be the number of orbits. Let

$$
S_{F, a}=\sum_{\substack{\{u, v\} \subseteq R_{F, a} \\ u \neq v}} \frac{u v}{(u-v)^{2}},
$$

and then our recent result tells us that $S_{F, a} \in H_{F}$ and

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{H}_{F / \mathbb{F}}}\left(S_{F, a}\right) & =\binom{\left|R_{F, a}\right|+1}{2}+N_{F, a} \\
& =\binom{7+1}{2}+N_{F, a}=N_{F, a} \quad(\bmod 2)
\end{aligned}
$$

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } S_{F, a}=\sum_{\{u, v\} \subseteq R_{F, a}} \frac{u v}{(u \neq v)^{2}}
$$

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } S_{F, a}=\sum_{\substack{\{u, v\} \subseteq R_{F, a} u \neq v}} \frac{u v}{(u-v)^{2}}
$$

Let $b(x)=\prod_{1 \leq i<j \leq 7}\left(x_{i}-x_{j}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{7}\right]$ and let

$$
c\left(x_{1}, \ldots, x_{7}\right)=b\left(x_{1}, \ldots, x_{7}\right)^{2} \sum_{1 \leq i<j \leq 7} \frac{x_{i} x_{j}}{\left(x_{i}-x_{j}\right)^{2}}
$$

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } S_{F, a}=\sum_{\substack{\{u, v\} \subseteq R_{F, a} u \neq v}} \frac{u v}{(u-v)^{2}}
$$

Let $b(x)=\prod_{1 \leq i<j \leq 7}\left(x_{i}-x_{j}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{7}\right]$ and let

$$
c\left(x_{1}, \ldots, x_{7}\right)=b\left(x_{1}, \ldots, x_{7}\right)^{2} \sum_{1 \leq i<j \leq 7} \frac{x_{i} x_{j}}{\left(x_{i}-x_{j}\right)^{2}}
$$

Write $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ so that $S_{F, a}=\frac{c\left(r_{1}, \ldots, r_{7}\right)}{b\left(r_{1}, \ldots, r_{7}\right)^{2}}$.

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } S_{F, a}=\sum_{\substack{\{u, v\} \subseteq R_{F, a} u \neq v}} \frac{u v}{(u-v)^{2}}
$$

Let $b(x)=\prod_{1 \leq i<j \leq 7}\left(x_{i}-x_{j}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{7}\right]$ and let

$$
c\left(x_{1}, \ldots, x_{7}\right)=b\left(x_{1}, \ldots, x_{7}\right)^{2} \sum_{1 \leq i<j \leq 7} \frac{x_{i} x_{j}}{\left(x_{i}-x_{j}\right)^{2}}
$$

Write $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ so that $S_{F, a}=\frac{c\left(r_{1}, \ldots, r_{7}\right)}{b\left(r_{1}, \ldots, r_{7}\right)^{2}}$. $c\left(x_{1}, \ldots, x_{7}\right)$ is homogeneous symmetric of degree 42

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } S_{F, a}=\sum_{\substack{\{u, v\} \subseteq R_{F, a} u \neq v}} \frac{u v}{(u-v)^{2}}
$$

Let $b(x)=\prod_{1 \leq i<j \leq 7}\left(x_{i}-x_{j}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{7}\right]$ and let

$$
c\left(x_{1}, \ldots, x_{7}\right)=b\left(x_{1}, \ldots, x_{7}\right)^{2} \sum_{1 \leq i<j \leq 7} \frac{x_{i} x_{j}}{\left(x_{i}-x_{j}\right)^{2}}
$$

Write $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ so that $S_{F, a}=\frac{c\left(r_{1}, \ldots, r_{7}\right)}{b\left(r_{1}, \ldots, r_{7}\right)^{2}}$. $c\left(x_{1}, \ldots, x_{7}\right)$ is homogeneous symmetric of degree 42

Let $\sigma_{k}\left(x_{1}, \ldots, x_{7}\right)$ be the degree $k$ elementary symmetric poly., so

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\ e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}},
$$

with each $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \in \mathbb{F}_{2}($ and $0 \in \mathbb{N})$.

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where }
$$

$$
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{\prime}=42 \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=1
\end{gathered}
$$

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\quad \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, \ldots, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 1 | 0 | 0 | 0 | 0 | 2 | 3 | 2 |
| 2 | 0 | 0 | 0 | 0 | 3 | 1 | 3 |
| 3 | 0 | 0 | 0 | 0 | 6 | 2 | 0 |
| 4 | 0 | 0 | 0 | 0 | 7 | 0 | 1 |
| 5 | 0 | 0 | 0 | 1 | 4 | 3 | 0 |
| 6 | 0 | 0 | 0 | 1 | 5 | 1 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 7 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |
| 8 | 0 | 0 | 1 | 0 | 5 | 0 | 2 |
| 9 | 0 | 0 | 1 | 1 | 3 | 1 | 2 |
| 10 | 0 | 0 | 2 | 0 | 2 | 2 | 2 |
| 11 | 0 | 0 | 2 | 0 | 3 | 0 | 3 |
| 12 | 0 | 0 | 2 | 1 | 0 | 3 | 2 |
| 13 | 0 | 0 | 2 | 1 | 1 | 1 | 3 |
| 14 | 0 | 0 | 3 | 0 | 3 | 3 | 0 |
| 15 | 0 | 0 | 3 | 2 | 1 | 1 | 2 |
| 16 | 0 | 0 | 4 | 0 | 0 | 5 | 0 |
| 17 | 0 | 0 | 4 | 0 | 1 | 3 | 1 |
| 18 | 0 | 0 | 4 | 2 | 2 | 2 | 0 |
| 19 | 0 | 0 | 4 | 2 | 3 | 0 | 1 |
| 20 | 0 | 0 | 4 | 3 | 0 | 3 | 0 |
| 21 | 0 | 0 | 4 | 3 | 1 | 1 | 1 |
| 22 | 0 | 0 | 5 | 0 | 3 | 2 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 23 | 0 | 0 | 5 | 1 | 1 | 3 | 0 |
| 24 | 0 | 1 | 0 | 0 | 0 | 2 | 4 |
| 25 | 0 | 1 | 0 | 0 | 1 | 0 | 5 |
| 26 | 0 | 1 | 0 | 1 | 2 | 2 | 2 |
| 27 | 0 | 1 | 0 | 1 | 3 | 0 | 3 |
| 28 | 0 | 1 | 1 | 0 | 5 | 2 | 0 |
| 29 | 0 | 1 | 1 | 1 | 1 | 0 | 4 |
| 30 | 0 | 1 | 1 | 2 | 3 | 0 | 2 |
| 31 | 0 | 1 | 2 | 0 | 2 | 4 | 0 |
| 32 | 0 | 1 | 2 | 0 | 3 | 2 | 1 |
| 33 | 0 | 1 | 2 | 2 | 0 | 2 | 2 |
| 34 | 0 | 1 | 2 | 2 | 1 | 0 | 3 |
| 35 | 0 | 1 | 3 | 0 | 1 | 2 | 2 |
| 36 | 0 | 1 | 3 | 1 | 3 | 2 | 0 |
| 37 | 0 | 1 | 3 | 3 | 1 | 0 | 2 |
| 38 | 0 | 1 | 4 | 1 | 0 | 4 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 39 | 0 | 1 | 4 | 1 | 1 | 2 | 1 |
| 40 | 0 | 2 | 0 | 0 | 2 | 0 | 4 |
| 41 | 0 | 2 | 0 | 0 | 4 | 3 | 0 |
| 42 | 0 | 2 | 0 | 1 | 0 | 1 | 4 |
| 43 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
| 44 | 0 | 2 | 2 | 0 | 1 | 1 | 3 |
| 45 | 0 | 2 | 2 | 0 | 5 | 0 | 1 |
| 46 | 0 | 2 | 2 | 1 | 3 | 1 | 1 |
| 47 | 0 | 2 | 2 | 2 | 2 | 0 | 2 |
| 48 | 0 | 2 | 2 | 3 | 0 | 1 | 2 |
| 49 | 0 | 2 | 3 | 0 | 3 | 0 | 2 |
| 50 | 0 | 2 | 3 | 1 | 1 | 1 | 2 |
| 51 | 0 | 3 | 0 | 0 | 2 | 2 | 2 |
| 52 | 0 | 3 | 0 | 1 | 4 | 2 | 0 |
| 53 | 0 | 3 | 0 | 2 | 0 | 0 | 4 |
| 54 | 0 | 3 | 0 | 3 | 2 | 0 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 55 | 0 | 3 | 1 | 0 | 1 | 0 | 4 |
| 56 | 0 | 3 | 2 | 1 | 1 | 0 | 3 |
| 57 | 0 | 3 | 2 | 2 | 2 | 2 | 0 |
| 58 | 0 | 3 | 2 | 4 | 0 | 0 | 2 |
| 59 | 0 | 3 | 4 | 0 | 0 | 4 | 0 |
| 60 | 0 | 4 | 0 | 0 | 0 | 1 | 4 |
| 61 | 0 | 5 | 0 | 0 | 4 | 2 | 0 |
| 62 | 0 | 5 | 0 | 1 | 0 | 0 | 4 |
| 63 | 0 | 5 | 0 | 2 | 2 | 0 | 2 |
| 64 | 0 | 7 | 0 | 0 | 0 | 0 | 4 |
| 65 | 1 | 0 | 0 | 0 | 0 | 1 | 5 |
| 66 | 1 | 0 | 0 | 0 | 4 | 0 | 3 |
| 67 | 1 | 0 | 0 | 1 | 2 | 1 | 3 |
| 68 | 1 | 0 | 1 | 0 | 2 | 0 | 4 |
| 69 | 1 | 0 | 1 | 0 | 4 | 3 | 0 |
| 70 | 1 | 0 | 1 | 1 | 0 | 1 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 71 | 1 | 0 | 1 | 2 | 2 | 1 | 2 |
| 72 | 1 | 0 | 2 | 0 | 2 | 3 | 1 |
| 73 | 1 | 0 | 2 | 2 | 0 | 1 | 3 |
| 74 | 1 | 0 | 3 | 0 | 0 | 3 | 2 |
| 75 | 1 | 0 | 3 | 0 | 4 | 2 | 0 |
| 76 | 1 | 0 | 3 | 1 | 2 | 3 | 0 |
| 77 | 1 | 0 | 3 | 2 | 2 | 0 | 2 |
| 78 | 1 | 0 | 3 | 3 | 0 | 1 | 2 |
| 79 | 1 | 0 | 4 | 0 | 2 | 2 | 1 |
| 80 | 1 | 0 | 4 | 1 | 0 | 3 | 1 |
| 81 | 1 | 1 | 0 | 0 | 4 | 2 | 1 |
| 82 | 1 | 1 | 0 | 1 | 0 | 0 | 5 |
| 83 | 1 | 1 | 0 | 2 | 2 | 0 | 3 |
| 84 | 1 | 1 | 1 | 0 | 2 | 2 | 2 |
| 85 | 1 | 1 | 1 | 1 | 4 | 2 | 0 |
| 86 | 1 | 1 | 1 | 2 | 0 | 0 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 87 | 1 | 1 | 1 | 3 | 2 | 0 | 2 |
| 88 | 1 | 1 | 2 | 0 | 0 | 2 | 3 |
| 89 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
| 90 | 1 | 1 | 2 | 3 | 0 | 0 | 3 |
| 91 | 1 | 1 | 3 | 1 | 0 | 2 | 2 |
| 92 | 1 | 1 | 3 | 2 | 2 | 2 | 0 |
| 93 | 1 | 1 | 3 | 4 | 0 | 0 | 2 |
| 94 | 1 | 1 | 5 | 0 | 0 | 4 | 0 |
| 95 | 1 | 2 | 1 | 0 | 0 | 1 | 4 |
| 96 | 1 | 2 | 2 | 0 | 2 | 0 | 3 |
| 97 | 1 | 2 | 2 | 1 | 0 | 1 | 3 |
| 98 | 1 | 3 | 0 | 0 | 0 | 0 | 5 |
| 99 | 1 | 3 | 1 | 0 | 4 | 2 | 0 |
| 100 | 1 | 3 | 1 | 1 | 0 | 0 | 4 |
| 101 | 1 | 3 | 1 | 2 | 2 | 0 | 2 |
| 102 | 1 | 5 | 1 | 0 | 0 | 0 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 103 | 2 | 0 | 0 | 0 | 0 | 2 | 4 |
| 104 | 2 | 0 | 0 | 0 | 1 | 0 | 5 |
| 105 | 2 | 0 | 0 | 0 | 2 | 5 | 0 |
| 106 | 2 | 0 | 0 | 0 | 3 | 3 | 1 |
| 107 | 2 | 0 | 0 | 2 | 0 | 3 | 2 |
| 108 | 2 | 0 | 0 | 2 | 1 | 1 | 3 |
| 109 | 2 | 0 | 1 | 1 | 3 | 3 | 0 |
| 110 | 2 | 0 | 1 | 3 | 1 | 1 | 2 |
| 111 | 2 | 0 | 2 | 1 | 0 | 5 | 0 |
| 112 | 2 | 0 | 2 | 1 | 1 | 3 | 1 |
| 113 | 2 | 0 | 2 | 2 | 0 | 2 | 2 |
| 114 | 2 | 0 | 2 | 2 | 1 | 0 | 3 |
| 115 | 2 | 0 | 3 | 0 | 1 | 2 | 2 |
| 116 | 2 | 1 | 0 | 1 | 2 | 4 | 0 |
| 117 | 2 | 1 | 0 | 1 | 3 | 2 | 1 |
| 118 | 2 | 1 | 0 | 3 | 0 | 2 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 119 | 2 | 1 | 0 | 3 | 1 | 0 | 3 |
| 120 | 2 | 1 | 1 | 2 | 3 | 2 | 0 |
| 121 | 2 | 1 | 1 | 4 | 1 | 0 | 2 |
| 122 | 2 | 1 | 3 | 0 | 1 | 4 | 0 |
| 123 | 2 | 2 | 0 | 0 | 3 | 0 | 3 |
| 124 | 2 | 2 | 0 | 1 | 0 | 3 | 2 |
| 125 | 2 | 2 | 0 | 1 | 1 | 1 | 3 |
| 126 | 2 | 2 | 0 | 2 | 0 | 0 | 4 |
| 127 | 2 | 2 | 0 | 2 | 2 | 3 | 0 |
| 128 | 2 | 2 | 0 | 4 | 0 | 1 | 2 |
| 129 | 2 | 2 | 1 | 0 | 1 | 0 | 4 |
| 130 | 2 | 2 | 1 | 0 | 3 | 3 | 0 |
| 131 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
| 132 | 2 | 2 | 2 | 0 | 1 | 3 | 1 |
| 133 | 2 | 2 | 2 | 2 | 3 | 0 | 1 |
| 134 | 2 | 2 | 2 | 3 | 0 | 3 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 135 | 2 | 2 | 2 | 3 | 1 | 1 | 1 |
| 136 | 2 | 2 | 2 | 4 | 0 | 0 | 2 |
| 137 | 2 | 2 | 3 | 0 | 3 | 2 | 0 |
| 138 | 2 | 2 | 3 | 1 | 1 | 3 | 0 |
| 139 | 2 | 2 | 4 | 0 | 0 | 4 | 0 |
| 140 | 2 | 3 | 0 | 0 | 3 | 2 | 1 |
| 141 | 2 | 3 | 0 | 2 | 1 | 0 | 3 |
| 142 | 2 | 3 | 0 | 3 | 2 | 2 | 0 |
| 143 | 2 | 3 | 0 | 5 | 0 | 0 | 2 |
| 144 | 2 | 3 | 1 | 0 | 1 | 2 | 2 |
| 145 | 2 | 3 | 1 | 1 | 3 | 2 | 0 |
| 146 | 2 | 3 | 1 | 3 | 1 | 0 | 2 |
| 147 | 2 | 3 | 2 | 1 | 1 | 2 | 1 |
| 148 | 2 | 4 | 0 | 0 | 1 | 1 | 3 |
| 149 | 2 | 4 | 0 | 0 | 4 | 2 | 0 |
| 150 | 2 | 4 | 0 | 0 | 5 | 0 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 151 | 2 | 4 | 0 | 1 | 3 | 1 | 1 |
| 152 | 2 | 4 | 0 | 3 | 0 | 1 | 2 |
| 153 | 2 | 4 | 1 | 0 | 3 | 0 | 2 |
| 154 | 2 | 4 | 1 | 1 | 1 | 1 | 2 |
| 155 | 2 | 5 | 0 | 1 | 1 | 0 | 3 |
| 156 | 2 | 6 | 0 | 0 | 0 | 0 | 4 |
| 157 | 3 | 0 | 0 | 1 | 2 | 3 | 1 |
| 158 | 3 | 0 | 0 | 3 | 0 | 1 | 3 |
| 159 | 3 | 0 | 1 | 0 | 2 | 2 | 2 |
| 160 | 3 | 0 | 1 | 2 | 0 | 0 | 4 |
| 161 | 3 | 0 | 1 | 2 | 2 | 3 | 0 |
| 162 | 3 | 0 | 1 | 4 | 0 | 1 | 2 |
| 163 | 3 | 0 | 2 | 0 | 0 | 2 | 3 |
| 164 | 3 | 0 | 3 | 0 | 0 | 5 | 0 |
| 165 | 3 | 0 | 3 | 2 | 2 | 2 | 0 |
| 166 | 3 | 0 | 3 | 4 | 0 | 0 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 167 | 3 | 0 | 5 | 0 | 0 | 4 | 0 |
| 168 | 3 | 1 | 0 | 2 | 2 | 2 | 1 |
| 169 | 3 | 1 | 0 | 4 | 0 | 0 | 3 |
| 170 | 3 | 1 | 1 | 0 | 2 | 4 | 0 |
| 171 | 3 | 1 | 1 | 2 | 0 | 2 | 2 |
| 172 | 3 | 1 | 1 | 3 | 2 | 2 | 0 |
| 173 | 3 | 1 | 1 | 5 | 0 | 0 | 2 |
| 174 | 3 | 1 | 2 | 0 | 0 | 4 | 1 |
| 175 | 3 | 1 | 3 | 1 | 0 | 4 | 0 |
| 176 | 3 | 2 | 0 | 0 | 0 | 0 | 5 |
| 177 | 3 | 2 | 0 | 0 | 2 | 3 | 1 |
| 178 | 3 | 2 | 0 | 2 | 0 | 1 | 3 |
| 179 | 3 | 2 | 1 | 0 | 0 | 3 | 2 |
| 180 | 3 | 2 | 1 | 1 | 2 | 3 | 0 |
| 181 | 3 | 2 | 1 | 3 | 0 | 1 | 2 |
| 182 | 3 | 2 | 2 | 0 | 2 | 2 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, \ldots, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 183 | 3 | 2 | 2 | 1 | 0 | 3 | 1 |
| 184 | 3 | 3 | 0 | 0 | 0 | 2 | 3 |
| 185 | 3 | 3 | 0 | 1 | 2 | 2 | 1 |
| 186 | 3 | 3 | 0 | 3 | 0 | 0 | 3 |
| 187 | 3 | 3 | 1 | 1 | 0 | 2 | 2 |
| 188 | 3 | 4 | 0 | 0 | 2 | 0 | 3 |
| 189 | 3 | 4 | 0 | 1 | 0 | 1 | 3 |
| 190 | 3 | 4 | 1 | 0 | 0 | 0 | 4 |
| 191 | 4 | 0 | 0 | 2 | 0 | 5 | 0 |
| 192 | 4 | 0 | 0 | 2 | 1 | 3 | 1 |
| 193 | 4 | 0 | 0 | 4 | 2 | 2 | 0 |
| 194 | 4 | 0 | 0 | 4 | 3 | 0 | 1 |
| 195 | 4 | 0 | 0 | 5 | 0 | 3 | 0 |
| 196 | 4 | 0 | 0 | 5 | 1 | 1 | 1 |
| 197 | 4 | 0 | 1 | 0 | 1 | 5 | 0 |
| 198 | 4 | 0 | 1 | 3 | 1 | 3 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 199 | 4 | 0 | 1 | 4 | 1 | 0 | 2 |
| 200 | 4 | 0 | 3 | 0 | 1 | 4 | 0 |
| 201 | 4 | 1 | 0 | 0 | 0 | 6 | 0 |
| 202 | 4 | 1 | 0 | 0 | 1 | 4 | 1 |
| 203 | 4 | 1 | 0 | 3 | 0 | 4 | 0 |
| 204 | 4 | 1 | 0 | 3 | 1 | 2 | 1 |
| 205 | 4 | 1 | 1 | 1 | 1 | 4 | 0 |
| 206 | 4 | 2 | 0 | 1 | 1 | 3 | 1 |
| 207 | 4 | 2 | 0 | 2 | 1 | 0 | 3 |
| 208 | 4 | 2 | 1 | 0 | 1 | 2 | 2 |
| 209 | 5 | 0 | 0 | 0 | 0 | 5 | 1 |
| 210 | 5 | 0 | 0 | 3 | 0 | 3 | 1 |
| 211 | 5 | 0 | 0 | 4 | 0 | 0 | 3 |
| 212 | 5 | 0 | 1 | 1 | 0 | 5 | 0 |
| 213 | 5 | 0 | 1 | 2 | 0 | 2 | 2 |
| 214 | 5 | 0 | 2 | 0 | 0 | 4 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | that $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$ |  |  |  |  |  |  |
| Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 215 | 5 | 1 | 0 | 1 | 0 | 4 | 1 |
| 216 | 5 | 2 | 0 | 0 | 0 | 2 | 3 |
| 217 | 6 | 0 | 0 | 0 | 0 | 6 | 0 |
| 218 | 6 | 0 | 0 | 0 | 1 | 4 | 1 |

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\ e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}},
$$

|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | that $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$ |  |  |  |  |  |  |
| Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 215 | 5 | 1 | 0 | 1 | 0 | 4 | 1 |
| 216 | 5 | 2 | 0 | 0 | 0 | 2 | 3 |
| 217 | 6 | 0 | 0 | 0 | 0 | 6 | 0 |
| 218 | 6 | 0 | 0 | 0 | 1 | 4 | 1 |

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\ e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

Key fact: if $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.

|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | that $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$ |  |  |  |  |  |  |
| Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 215 | 5 | 1 | 0 | 1 | 0 | 4 | 1 |
| 216 | 5 | 2 | 0 | 0 | 0 | 2 | 3 |
| 217 | 6 | 0 | 0 | 0 | 0 | 6 | 0 |
| 218 | 6 | 0 | 0 | 0 | 1 | 4 | 1 |

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\ e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

Key fact: if $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.

|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 199 | 4 | 0 | 1 | 4 | 1 | 0 | 2 |
| 200 | 4 | 0 | 3 | 0 | 1 | 4 | 0 |
| 201 | 4 | 1 | 0 | 0 | 0 | 6 | 0 |
| 202 | 4 | 1 | 0 | 0 | 1 | 4 | 1 |
| 203 | 4 | 1 | 0 | 3 | 0 | 4 | 0 |
| 204 | 4 | 1 | 0 | 3 | 1 | 2 | 1 |
| 205 | 4 | 1 | 1 | 1 | 1 | 4 | 0 |
| 206 | 4 | 2 | 0 | 1 | 1 | 3 | 1 |
| 207 | 4 | 2 | 0 | 2 | 1 | 0 | 3 |
| 208 | 4 | 2 | 1 | 0 | 1 | 2 | 2 |
| 209 | 5 | 0 | 0 | 0 | 0 | 5 | 1 |
| 210 | 5 | 0 | 0 | 3 | 0 | 3 | 1 |
| 211 | 5 | 0 | 0 | 4 | 0 | 0 | 3 |
| 212 | 5 | 0 | 1 | 1 | 0 | 5 | 0 |
| 213 | 5 | 0 | 1 | 2 | 0 | 2 | 2 |
| 214 | 5 | 0 | 2 | 0 | 0 | 4 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 183 | 3 | 2 | 2 | 1 | 0 | 3 | 1 |
| 184 | 3 | 3 | 0 | 0 | 0 | 2 | 3 |
| 185 | 3 | 3 | 0 | 1 | 2 | 2 | 1 |
| 186 | 3 | 3 | 0 | 3 | 0 | 0 | 3 |
| 187 | 3 | 3 | 1 | 1 | 0 | 2 | 2 |
| 188 | 3 | 4 | 0 | 0 | 2 | 0 | 3 |
| 189 | 3 | 4 | 0 | 1 | 0 | 1 | 3 |
| 190 | 3 | 4 | 1 | 0 | 0 | 0 | 4 |
| 191 | 4 | 0 | 0 | 2 | 0 | 5 | 0 |
| 192 | 4 | 0 | 0 | 2 | 1 | 3 | 1 |
| 193 | 4 | 0 | 0 | 4 | 2 | 2 | 0 |
| 194 | 4 | 0 | 0 | 4 | 3 | 0 | 1 |
| 195 | 4 | 0 | 0 | 5 | 0 | 3 | 0 |
| 196 | 4 | 0 | 0 | 5 | 1 | 1 | 1 |
| 197 | 4 | 0 | 1 | 0 | 1 | 5 | 0 |
| 198 | 4 | 0 | 1 | 3 | 1 | 3 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 167 | 3 | 0 | 5 | 0 | 0 | 4 | 0 |
| 168 | 3 | 1 | 0 | 2 | 2 | 2 | 1 |
| 169 | 3 | 1 | 0 | 4 | 0 | 0 | 3 |
| 170 | 3 | 1 | 1 | 0 | 2 | 4 | 0 |
| 171 | 3 | 1 | 1 | 2 | 0 | 2 | 2 |
| 172 | 3 | 1 | 1 | 3 | 2 | 2 | 0 |
| 173 | 3 | 1 | 1 | 5 | 0 | 0 | 2 |
| 174 | 3 | 1 | 2 | 0 | 0 | 4 | 1 |
| 175 | 3 | 1 | 3 | 1 | 0 | 4 | 0 |
| 176 | 3 | 2 | 0 | 0 | 0 | 0 | 5 |
| 177 | 3 | 2 | 0 | 0 | 2 | 3 | 1 |
| 178 | 3 | 2 | 0 | 2 | 0 | 1 | 3 |
| 179 | 3 | 2 | 1 | 0 | 0 | 3 | 2 |
| 180 | 3 | 2 | 1 | 1 | 2 | 3 | 0 |
| 181 | 3 | 2 | 1 | 3 | 0 | 1 | 2 |
| 182 | 3 | 2 | 2 | 0 | 2 | 2 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 151 | 2 | 4 | 0 | 1 | 3 | 1 | 1 |
| 152 | 2 | 4 | 0 | 3 | 0 | 1 | 2 |
| 153 | 2 | 4 | 1 | 0 | 3 | 0 | 2 |
| 154 | 2 | 4 | 1 | 1 | 1 | 1 | 2 |
| 155 | 2 | 5 | 0 | 1 | 1 | 0 | 3 |
| 156 | 2 | 6 | 0 | 0 | 0 | 0 | 4 |
| 157 | 3 | 0 | 0 | 1 | 2 | 3 | 1 |
| 158 | 3 | 0 | 0 | 3 | 0 | 1 | 3 |
| 159 | 3 | 0 | 1 | 0 | 2 | 2 | 2 |
| 160 | 3 | 0 | 1 | 2 | 0 | 0 | 4 |
| 161 | 3 | 0 | 1 | 2 | 2 | 3 | 0 |
| 162 | 3 | 0 | 1 | 4 | 0 | 1 | 2 |
| 163 | 3 | 0 | 2 | 0 | 0 | 2 | 3 |
| 164 | 3 | 0 | 3 | 0 | 0 | 5 | 0 |
| 165 | 3 | 0 | 3 | 2 | 2 | 2 | 0 |
| 166 | 3 | 0 | 3 | 4 | 0 | 0 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 135 | 2 | 2 | 2 | 3 | 1 | 1 | 1 |
| 136 | 2 | 2 | 2 | 4 | 0 | 0 | 2 |
| 137 | 2 | 2 | 3 | 0 | 3 | 2 | 0 |
| 138 | 2 | 2 | 3 | 1 | 1 | 3 | 0 |
| 139 | 2 | 2 | 4 | 0 | 0 | 4 | 0 |
| 140 | 2 | 3 | 0 | 0 | 3 | 2 | 1 |
| 141 | 2 | 3 | 0 | 2 | 1 | 0 | 3 |
| 142 | 2 | 3 | 0 | 3 | 2 | 2 | 0 |
| 143 | 2 | 3 | 0 | 5 | 0 | 0 | 2 |
| 144 | 2 | 3 | 1 | 0 | 1 | 2 | 2 |
| 145 | 2 | 3 | 1 | 1 | 3 | 2 | 0 |
| 146 | 2 | 3 | 1 | 3 | 1 | 0 | 2 |
| 147 | 2 | 3 | 2 | 1 | 1 | 2 | 1 |
| 148 | 2 | 4 | 0 | 0 | 1 | 1 | 3 |
| 149 | 2 | 4 | 0 | 0 | 4 | 2 | 0 |
| 150 | 2 | 4 | 0 | 0 | 5 | 0 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 119 | 2 | 1 | 0 | 3 | 1 | 0 | 3 |
| 120 | 2 | 1 | 1 | 2 | 3 | 2 | 0 |
| 121 | 2 | 1 | 1 | 4 | 1 | 0 | 2 |
| 122 | 2 | 1 | 3 | 0 | 1 | 4 | 0 |
| 123 | 2 | 2 | 0 | 0 | 3 | 0 | 3 |
| 124 | 2 | 2 | 0 | 1 | 0 | 3 | 2 |
| 125 | 2 | 2 | 0 | 1 | 1 | 1 | 3 |
| 126 | 2 | 2 | 0 | 2 | 0 | 0 | 4 |
| 127 | 2 | 2 | 0 | 2 | 2 | 3 | 0 |
| 128 | 2 | 2 | 0 | 4 | 0 | 1 | 2 |
| 129 | 2 | 2 | 1 | 0 | 1 | 0 | 4 |
| 130 | 2 | 2 | 1 | 0 | 3 | 3 | 0 |
| 131 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
| 132 | 2 | 2 | 2 | 0 | 1 | 3 | 1 |
| 133 | 2 | 2 | 2 | 2 | 3 | 0 | 1 |
| 134 | 2 | 2 | 2 | 3 | 0 | 3 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 103 | 2 | 0 | 0 | 0 | 0 | 2 | 4 |
| 104 | 2 | 0 | 0 | 0 | 1 | 0 | 5 |
| 105 | 2 | 0 | 0 | 0 | 2 | 5 | 0 |
| 106 | 2 | 0 | 0 | 0 | 3 | 3 | 1 |
| 107 | 2 | 0 | 0 | 2 | 0 | 3 | 2 |
| 108 | 2 | 0 | 0 | 2 | 1 | 1 | 3 |
| 109 | 2 | 0 | 1 | 1 | 3 | 3 | 0 |
| 110 | 2 | 0 | 1 | 3 | 1 | 1 | 2 |
| 111 | 2 | 0 | 2 | 1 | 0 | 5 | 0 |
| 112 | 2 | 0 | 2 | 1 | 1 | 3 | 1 |
| 113 | 2 | 0 | 2 | 2 | 0 | 2 | 2 |
| 114 | 2 | 0 | 2 | 2 | 1 | 0 | 3 |
| 115 | 2 | 0 | 3 | 0 | 1 | 2 | 2 |
| 116 | 2 | 1 | 0 | 1 | 2 | 4 | 0 |
| 117 | 2 | 1 | 0 | 1 | 3 | 2 | 1 |
| 118 | 2 | 1 | 0 | 3 | 0 | 2 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 87 | 1 | 1 | 1 | 3 | 2 | 0 | 2 |
| 88 | 1 | 1 | 2 | 0 | 0 | 2 | 3 |
| 89 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
| 90 | 1 | 1 | 2 | 3 | 0 | 0 | 3 |
| 91 | 1 | 1 | 3 | 1 | 0 | 2 | 2 |
| 92 | 1 | 1 | 3 | 2 | 2 | 2 | 0 |
| 93 | 1 | 1 | 3 | 4 | 0 | 0 | 2 |
| 94 | 1 | 1 | 5 | 0 | 0 | 4 | 0 |
| 95 | 1 | 2 | 1 | 0 | 0 | 1 | 4 |
| 96 | 1 | 2 | 2 | 0 | 2 | 0 | 3 |
| 97 | 1 | 2 | 2 | 1 | 0 | 1 | 3 |
| 98 | 1 | 3 | 0 | 0 | 0 | 0 | 5 |
| 99 | 1 | 3 | 1 | 0 | 4 | 2 | 0 |
| 100 | 1 | 3 | 1 | 1 | 0 | 0 | 4 |
| 101 | 1 | 3 | 1 | 2 | 2 | 0 | 2 |
| 102 | 1 | 5 | 1 | 0 | 0 | 0 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 71 | 1 | 0 | 1 | 2 | 2 | 1 | 2 |
| 72 | 1 | 0 | 2 | 0 | 2 | 3 | 1 |
| 73 | 1 | 0 | 2 | 2 | 0 | 1 | 3 |
| 74 | 1 | 0 | 3 | 0 | 0 | 3 | 2 |
| 75 | 1 | 0 | 3 | 0 | 4 | 2 | 0 |
| 76 | 1 | 0 | 3 | 1 | 2 | 3 | 0 |
| 77 | 1 | 0 | 3 | 2 | 2 | 0 | 2 |
| 78 | 1 | 0 | 3 | 3 | 0 | 1 | 2 |
| 79 | 1 | 0 | 4 | 0 | 2 | 2 | 1 |
| 80 | 1 | 0 | 4 | 1 | 0 | 3 | 1 |
| 81 | 1 | 1 | 0 | 0 | 4 | 2 | 1 |
| 82 | 1 | 1 | 0 | 1 | 0 | 0 | 5 |
| 83 | 1 | 1 | 0 | 2 | 2 | 0 | 3 |
| 84 | 1 | 1 | 1 | 0 | 2 | 2 | 2 |
| 85 | 1 | 1 | 1 | 1 | 4 | 2 | 0 |
| 86 | 1 | 1 | 1 | 2 | 0 | 0 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 55 | 0 | 3 | 1 | 0 | 1 | 0 | 4 |
| 56 | 0 | 3 | 2 | 1 | 1 | 0 | 3 |
| 57 | 0 | 3 | 2 | 2 | 2 | 2 | 0 |
| 58 | 0 | 3 | 2 | 4 | 0 | 0 | 2 |
| 59 | 0 | 3 | 4 | 0 | 0 | 4 | 0 |
| 60 | 0 | 4 | 0 | 0 | 0 | 1 | 4 |
| 61 | 0 | 5 | 0 | 0 | 4 | 2 | 0 |
| 62 | 0 | 5 | 0 | 1 | 0 | 0 | 4 |
| 63 | 0 | 5 | 0 | 2 | 2 | 0 | 2 |
| 64 | 0 | 7 | 0 | 0 | 0 | 0 | 4 |
| 65 | 1 | 0 | 0 | 0 | 0 | 1 | 5 |
| 66 | 1 | 0 | 0 | 0 | 4 | 0 | 3 |
| 67 | 1 | 0 | 0 | 1 | 2 | 1 | 3 |
| 68 | 1 | 0 | 1 | 0 | 2 | 0 | 4 |
| 69 | 1 | 0 | 1 | 0 | 4 | 3 | 0 |
| 70 | 1 | 0 | 1 | 1 | 0 | 1 | 4 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 39 | 0 | 1 | 4 | 1 | 1 | 2 | 1 |
| 40 | 0 | 2 | 0 | 0 | 2 | 0 | 4 |
| 41 | 0 | 2 | 0 | 0 | 4 | 3 | 0 |
| 42 | 0 | 2 | 0 | 1 | 0 | 1 | 4 |
| 43 | 0 | 2 | 0 | 2 | 2 | 1 | 2 |
| 44 | 0 | 2 | 2 | 0 | 1 | 1 | 3 |
| 45 | 0 | 2 | 2 | 0 | 5 | 0 | 1 |
| 46 | 0 | 2 | 2 | 1 | 3 | 1 | 1 |
| 47 | 0 | 2 | 2 | 2 | 2 | 0 | 2 |
| 48 | 0 | 2 | 2 | 3 | 0 | 1 | 2 |
| 49 | 0 | 2 | 3 | 0 | 3 | 0 | 2 |
| 50 | 0 | 2 | 3 | 1 | 1 | 1 | 2 |
| 51 | 0 | 3 | 0 | 0 | 2 | 2 | 2 |
| 52 | 0 | 3 | 0 | 1 | 4 | 2 | 0 |
| 53 | 0 | 3 | 0 | 2 | 0 | 0 | 4 |
| 54 | 0 | 3 | 0 | 3 | 2 | 0 | 2 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 23 | 0 | 0 | 5 | 1 | 1 | 3 | 0 |
| 24 | 0 | 1 | 0 | 0 | 0 | 2 | 4 |
| 25 | 0 | 1 | 0 | 0 | 1 | 0 | 5 |
| 26 | 0 | 1 | 0 | 1 | 2 | 2 | 2 |
| 27 | 0 | 1 | 0 | 1 | 3 | 0 | 3 |
| 28 | 0 | 1 | 1 | 0 | 5 | 2 | 0 |
| 29 | 0 | 1 | 1 | 1 | 1 | 0 | 4 |
| 30 | 0 | 1 | 1 | 2 | 3 | 0 | 2 |
| 31 | 0 | 1 | 2 | 0 | 2 | 4 | 0 |
| 32 | 0 | 1 | 2 | 0 | 3 | 2 | 1 |
| 33 | 0 | 1 | 2 | 2 | 0 | 2 | 2 |
| 34 | 0 | 1 | 2 | 2 | 1 | 0 | 3 |
| 35 | 0 | 1 | 3 | 0 | 1 | 2 | 2 |
| 36 | 0 | 1 | 3 | 1 | 3 | 2 | 0 |
| 37 | 0 | 1 | 3 | 3 | 1 | 0 | 2 |
| 38 | 0 | 1 | 4 | 1 | 0 | 4 | 0 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 7 | 0 | 0 | 1 | 0 | 1 | 1 | 4 |
| 8 | 0 | 0 | 1 | 0 | 5 | 0 | 2 |
| 9 | 0 | 0 | 1 | 1 | 3 | 1 | 2 |
| 10 | 0 | 0 | 2 | 0 | 2 | 2 | 2 |
| 11 | 0 | 0 | 2 | 0 | 3 | 0 | 3 |
| 12 | 0 | 0 | 2 | 1 | 0 | 3 | 2 |
| 13 | 0 | 0 | 2 | 1 | 1 | 1 | 3 |
| 14 | 0 | 0 | 3 | 0 | 3 | 3 | 0 |
| 15 | 0 | 0 | 3 | 2 | 1 | 1 | 2 |
| 16 | 0 | 0 | 4 | 0 | 0 | 5 | 0 |
| 17 | 0 | 0 | 4 | 0 | 1 | 3 | 1 |
| 18 | 0 | 0 | 4 | 2 | 2 | 2 | 0 |
| 19 | 0 | 0 | 4 | 2 | 3 | 0 | 1 |
| 20 | 0 | 0 | 4 | 3 | 0 | 3 | 0 |
| 21 | 0 | 0 | 4 | 3 | 1 | 1 | 1 |
| 22 | 0 | 0 | 5 | 0 | 3 | 2 | 0 |

## $S_{F, a}$ in Terms of Symmetric Functions

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\quad \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term <br> Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}, \ldots, e_{5}$ | $e_{6}$ | $e_{7}$ |  |
| 1 | 0 | 0 | 0 | 0 | 2 | 3 | 2 |
| 2 | 0 | 0 | 0 | 0 | 3 | 1 | 3 |
| 3 | 0 | 0 | 0 | 0 | 6 | 2 | 0 |
| 4 | 0 | 0 | 0 | 0 | 7 | 0 | 1 |
| 5 | 0 | 0 | 0 | 1 | 4 | 3 | 0 |
| 6 | 0 | 0 | 0 | 1 | 5 | 1 | 1 |


|  | $\left(e_{1}, \ldots, e_{7}\right)$ such |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term | that $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$ |  |  |  |  |  |  |
| Number | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{4}$ | $e_{5}$ | $e_{6}$ | $e_{7}$ |
| 215 | 5 | 1 | 0 | 1 | 0 | 4 | 1 |
| 216 | 5 | 2 | 0 | 0 | 0 | 2 | 3 |
| 217 | 6 | 0 | 0 | 0 | 0 | 6 | 0 |
| 218 | 6 | 0 | 0 | 0 | 1 | 4 | 1 |

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\ e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

Key fact: if $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with } \\
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42}} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}},
\end{gathered}
$$

If $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\quad \sum_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

If $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
Notice that

$$
\begin{aligned}
g_{F, a}(x) & =x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1 \\
& =\left(x-r_{1}\right) \cdots\left(x-r_{7}\right) \\
& =x^{7}-\sigma_{1}\left(r_{1}, \ldots, r_{7}\right) x^{6}+\sigma_{2}\left(r_{1}, \ldots, r_{7}\right) x^{5}-\cdots-\sigma_{7}\left(r_{1}, \cdots, r_{7}\right) .
\end{aligned}
$$

$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\quad \sum_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

If $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
Notice that

$$
\begin{aligned}
g_{F, a}(x) & =x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1 \\
& =\left(x-r_{1}\right) \cdots\left(x-r_{7}\right) \\
& =x^{7}-\sigma_{1}\left(r_{1}, \ldots, r_{7}\right) x^{6}+\sigma_{2}\left(r_{1}, \ldots, r_{7}\right) x^{5}-\cdots-\sigma_{7}\left(r_{1}, \cdots, r_{7}\right) .
\end{aligned}
$$

So $\sigma_{k}\left(r_{1}, \ldots, r_{7}\right)=0$ for $k \in\{1,2,5,6\}$.
$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
\begin{gathered}
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where } \\
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
\end{gathered}
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(n^{1} \mathbb{N}^{7}\right.} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

If $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
Notice that

$$
\begin{aligned}
g_{F, a}(x) & =x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1 \\
& =\left(x-r_{1}\right) \cdots\left(x-r_{7}\right) \\
& =x^{7}-\sigma_{1}\left(r_{1}, \ldots, r_{7}\right) x^{6}+\sigma_{2}\left(r_{1}, \ldots, r_{7}\right) x^{5}-\cdots-\sigma_{7}\left(r_{1}, \cdots, r_{7}\right) .
\end{aligned}
$$

So $\sigma_{k}\left(r_{1}, \ldots, r_{7}\right)=0$ for $k \in\{1,2,5,6\}$.
Every term in $c\left(r_{1}, \ldots, r_{7}\right)$ is a product of $\sigma_{k}\left(r_{1}, \ldots, r_{7}\right)$ 's with at least one $k \in\{1,2,5,6\}$, so $S_{F, a}=0$,
$F=\mathbb{F}_{2^{2 m}}$ and $a \in F$ such that $g_{F, a}$ is separable, whose set $R_{F, a}=\left\{r_{1}, \ldots, r_{7}\right\}$ of roots is partitioned into $N_{F, a}$ orbits,

$$
N_{F, a} \equiv \operatorname{Tr}_{H_{F} / \mathbb{F}_{2}}\left(S_{F, a}\right)(\bmod 2), \text { where }
$$

$$
S_{F, a}=c\left(r_{1}, \ldots, r_{7}\right) /\left(b\left(r_{1}, \ldots, r_{7}\right)\right)^{2} \text { with }
$$

$$
c\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(n^{1} \mathbb{N}^{7}\right.} \lambda_{\left(e_{1}, \ldots, e_{7}\right)} \sigma_{1}^{e_{1}} \sigma_{2}^{e_{2}} \cdots \sigma_{7}^{e_{7}}
$$

$$
\begin{gathered}
\left(e_{1}, \ldots, e_{7}\right) \in \mathbb{N}^{7} \\
e_{1}+2 e_{2}+\ldots+7 e_{7}=42
\end{gathered}
$$

If $\lambda_{\left(e_{1}, \ldots, e_{7}\right)} \neq 0$, then at least one of $e_{1}, e_{2}, e_{5}$, or $e_{6}$ is positive.
Notice that

$$
\begin{aligned}
g_{F, a}(x) & =x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1 \\
& =\left(x-r_{1}\right) \cdots\left(x-r_{7}\right) \\
& =x^{7}-\sigma_{1}\left(r_{1}, \ldots, r_{7}\right) x^{6}+\sigma_{2}\left(r_{1}, \ldots, r_{7}\right) x^{5}-\cdots-\sigma_{7}\left(r_{1}, \cdots, r_{7}\right) .
\end{aligned}
$$

So $\sigma_{k}\left(r_{1}, \ldots, r_{7}\right)=0$ for $k \in\{1,2,5,6\}$.
Every term in $c\left(r_{1}, \ldots, r_{7}\right)$ is a product of $\sigma_{k}\left(r_{1}, \ldots, r_{7}\right)$ 's with at least one $k \in\{1,2,5,6\}$, so $S_{F, a}=0$, and so $N_{F, a}$ is even

## And Now...

Suffices to Show (Equivalent Orbital Formulation)
If $F=\mathbb{F}_{2^{2 m}}$, $m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F \text {-orbits does not have precisely } 4,6 \text {, or } 7 \text { singleton orbits. }}^{\text {. }}$

## And Now...

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set $R_{F, a}$ of seven roots is partitioned into an even number of $\Pi_{F}$-orbits

## And Now...

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4,6 , or 7 singleton orbits.

Now we know that the set $R_{F, a}$ of seven roots is partitioned into an even number of $\Pi_{F}$-orbits

- So there cannot be precisely 7 singleton orbits, since that would be 7 total orbits (not even!),


## And Now...

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F}$-orbits does not have precisely 4, 6 , or 7 singleton orbits.

Now we know that the set $R_{F, a}$ of seven roots is partitioned into an even number of $\Pi_{F}$-orbits

- So there cannot be precisely 7 singleton orbits, since that would be 7 total orbits (not even!),
- nor can there be 6 singleton orbits, since that would place the final element also into a singleton orbit


## And Now...

## Suffices to Show (Equivalent Orbital Formulation)

If $F=\mathbb{F}_{2^{2 m}}, m$ is even, $d=1+4\left(2^{m}-1\right)$, then for each $a \in F$ such that

$$
g_{F, a}(x)=x^{7}-a x^{4}-\tau_{F}(a) x^{3}+1,
$$

is separable, the partition of the set $R_{F, a}$ of roots of $g_{F, a}$ in $\bar{F}^{*}$ into $\Pi_{F \text {-orbits does not have precisely } 4,6 \text {, or } 7 \text { singleton orbits. }}^{\text {. }}$

Now we know that the set $R_{F, a}$ of seven roots is partitioned into an even number of $\Pi_{F}$-orbits

- So there cannot be precisely 7 singleton orbits, since that would be 7 total orbits (not even!),
- nor can there be 6 singleton orbits, since that would place the final element also into a singleton orbit
- nor can there be 4 singleton orbits, since the total number of orbits is even, so the remaining 3 elements would need to be partitioned into an even number of orbits, which would introduce another singleton orbit.


## Recap

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then
$\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

## Recap

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}, m}$ is even, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 4 \cdot 2^{m}\right\} .
$$

## Recap

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 4 \cdot 2^{m}\right\}
$$

Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}}, m$ is odd, $m>1$, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}\right\} .
$$

## Recap

Niho's Last Conjecture (1972)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then $\left\{W_{F, d}(a): a \in F^{*}\right\}$ contains at most 5 distinct values.

Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}}, m$ is even, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 4 \cdot 2^{m}\right\}
$$

Theorem (Helleseth-K.-Li)
If $F=\mathbb{F}_{2^{2 m}}, m$ is odd, $m>1$, and $d=1+4\left(2^{m}-1\right)$, then

$$
\left\{W_{F, d}(a): a \in F^{*}\right\} \subseteq\left\{-2^{m}, 0,2^{m}, 2 \cdot 2^{m}, 3 \cdot 2^{m}, 4 \cdot 2^{m}\right\} .
$$

( $m=1$ makes $d$ degenerate, with Weil spectrum $\{0,4\}$ )

