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Power function on a finite field F: a function f: F — F with
f(x) = x9 for some positive integer d

Power permutation of F: a power function f(x) = x9 on F is a
permutation of F if and only if ged(d, |F*]) =1

If ged(d, |F*|) = 1, we say that d is an invertible exponent over F:
if e=1/d (mod |F*|), then x — x€ is the inverse function of
x = x4

Cryptographic significance: arithmetically easy to implement power
permutations within cryptosystems

Want power permutations that are resistant to linear cryptanalysis
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F =F4 =Fpn is a finite field of characteristic p and order g = p”

Let Tr: F — [, be the absolute trace:
Tr(x) =x A xP 4 xP
Then for any ¢ € F, we have an [Fy-linear functional:

F—T,
x = Tr(ex)

Every [Fp-linear functional of F is uniquely represented in this way

If c1,...,cnp form an Fp-basis of F = Fg = [Fpn, then we have the
[Fp-linear isomorphism:
F— T,

X = (Tr(clx), - ,TF(CnX)) )

So we call our Fp-linear functionals x — Tr(cx) (with ¢ # 0)
component linear functionals
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Nonlinearity
F =F4 = Fpn has absolute trace Tr: F — [,

If f: F — F, then for each b € F*, we get a component function
of f:

F— T,

x> Tr(bf(x))
To resist linear cryptanalysis: want component functions Tr(bf(x))

of f uncorrelated with the linear functionals x — Tr(cx) (for all
ceF)

When p = 2, Z Tr(bf x))—Tr(cx)
xeF

= # of agreements between Tr(bf(x)) and Tr(cx)
— # of disagreements between Tr(bf(x)) and Tr(cx)

Notice: x + (—1)T) is the canonical additive character of F into
{£1} C C* (when F is characteristic 2)
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If F has characteristic 2, want 3, _g(—1)T(6f(:)=Tr(e) to be
close to 0

For F of arbitrary characteristic p, let ¢, = exp(2mi/p) and then
define the canonical additive character of F to be

VYr:iF = () € C
wF( ) CTr(X) <X+XP+...+Xq/P

We define the Walsh Transform of f to be the function

Ws: FxF—C
) =Y wr(bf(x) — ox) = Y ¢ DT
xeF xeF

And we define the Walsh Spectrum of f to be
{We(b,c): be F*,c € F} (b= 0 tells us nothing about f)

Want every element of this spectrum to have small magnitude
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Walsh Spectrum of a Power Permutation

g F — C* is the canonical additive character of F

f(x) = x9 is a power permutation of F (so ged(d,|F*|) = 1)
For b € F*,c € F, the Walsh transform is

We(b,c) =D vr(bx? — ox),

x€eF
which is a Weil sum of a binomial, which can be reparameterized
with y = b1/9x
We (b, c) = Z wF(yd - Cb_l/d}/) = We(L, b_l/dc)

yeF
So define

WE a( Z Vr(x? — ax)

xeF
and then the Walsh spectrum of f(x) = x9 over F is

{Wea(a) :ac F}
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f(x) = x9 is a power permutation of F = Fq=TFpn

Wr.q(a) =3 cr r(x? — ax) is a Weil sum
{WF 4(a) : a € F} is the Walsh spectrum of f

Notice that We 4(0) = >, . ¢¥F(x?) = > yer¥r(y) =0
Weil spectrum for f(x) = x9 over F is {Wr 4(a) : a € F*}.

The Weil spectrum gives the crosscorrelation spectrum for a pair of
p-ary maximum length linear feedback shift register sequences
(m-sequences) of period g — 1 = |F*|

One m-sequence comes from the other by decimating by d

The values of the periodic crosscorrelations between these
sequences for the g — 1 relative shifts equal —1 + W 4(a) for the
g — 1 different a € F*.
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Equivalence and Degeneracy
f(x) = x? is a power permutation of F =F, = Fpn
Wra(a) = X cr r(x? — ax)

The power permutation g(x) = x¢'
spectrum as f(x) = x? when
> d' =d (mod |F*|), because x¢ = x? for every x € F
» d' = pd, because Tr(xP9) = Tr(x9), so ¥r(xP?) = vr(x9)
» d’ is the inverse of d modulo |F*|
Thus we declare an exponent d’ to be equivalent to d over F if

d' = pkd (mod |F*|) or d’ = p¥/d (mod |F*|) for some k € Z

produces the same Weil

If d is equivalent to 1 (i.e., a power of p modulo g — 1), then

F| ifa=1

We a2) = Wea(2) = S we(o — ax) = {11 T 2=
<cF 0 otherwise

So the Walsh spectrum is {0, |F|} and we say that d and
f(x) = x9 are degenerate over F
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f(x) = x9 is a power permutation of F = Fgq=TFpn
Wr.g(a) = > cp (x4 — ax)

|F| ifa=1

If d is degenerate, then Wk 4(a) = {0 therwi
otherwise

So the Weil spectrum {WE 4(a) : a € F*} has two values if d is
degenerate and |F| > 2 (and only one value if |F| = 2)

Helleseth (1976): Weil spectrum of power permutation has at least
three distinct values when d is nondegenerate

Research has often focused on F and d that produce Weil spectra
with few distinct values (e.g., 3, 4, or 5) and with values of small
magnitude (not much larger than \/|F])
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» d is not a power of p modulo |F*| = p" — 1, but
» d is a power of p modulo |HE| = p/2—1=pm—1
Up to equivalence, we may assume that a Niho exponent d has
d =1 (mod |HE|), so there is some integer s > 2 such that
d=1+s|Hf|=1+s(p" —1)
Then d is invertible over F if and only if gcd(2s — 1,p™ +1) =1

Niho exponents can give Weil spectra with few distinct values
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F =TFq=TFpn = Fpem is a field of characteristic p and order g = p”
and d =1+ s(p™ — 1) is a Niho exponent

» s =2 produces d =1+ 2(p" —1)
This is invertible over F if and only if p™ # 2 (mod 3)

So when p = 2, invertible over F if and only if m is even

Theorem (Niho, 1972)
If F =TFom, miseven, andd =1+ 2(2™ — 1), then

{WEr4(a) :a€ F*} = {-2m0,2m,2.2"}.
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Weil Spectra for Some Niho Exponents (s = 3)
F=Fg=Fn=F,
and d =1+ s(p™ — 1) is a Niho exponent

om is a field of characteristic p and order g = p

n
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if and only if p™ # 4 (mod 5)
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If F =Fym, m#2 (mod4), andd =1+ 3(2™ — 1), then
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Building on work of Dobbertin, Felke, Helleseth, Rosendahl (2006),

the exact values in the spectrum were determined.

Theorem (Xia-Li-Zeng-Helleseth, 2016)
If F=Fapm m#2 (mod 4), m>3, and d = 1 + 3(2™ — 1), then
{Wrag(a):ae F*} ={-2m0,2m2.2M 4.2"} if m is even,
{Wra(a):ae F*} ={-2m0,2™2-273.2" 4.2™} if m is odd.
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Weil Spectra for Some Niho Exponents (s = 4)
F=F;=Fn=F,
and d =1+ s(p™ — 1) is a Niho exponent

om is a field of characteristic p and order g = p”

» s =4 produces d =1+ 4(p™ — 1), which is invertible over F
if and only if p™ # 6 (mod 7)

(so for p = 2, always invertible over F)
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Niho's thesis concerns this spectrum when m is even.
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F =TFq =Fpn = Fpom is a field of characteristic p and order g = p"
and d =1+ s(p™ — 1) is a Niho exponent

» s =4 produces d =1+ 4(p™ — 1), which is invertible over F
if and only if p™ # 6 (mod 7)

(so for p = 2, always invertible over F)
Theorem (Niho, 1972)
If F = Fpom and d = 1+ 4(2™ — 1), then
{Wrg(a) 1 a€ F*} C {—27,0,27,2.2™ 3.2™ 4.2™ 5.2™ 6.2},

So there are at most 8 distinct values. The very last conjecture in
Niho's thesis concerns this spectrum when m is even.

Niho's Last Conjecture (1972)
If F = Foom, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.
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The New Result

Theorem (Niho, 1972)
If F =Fym and d =1+ 4(2™ — 1), then

{Weg(a):a€ F*} C{-27,0,27,2.2™ 3.2 4.2™ 5.2",

Niho's Last Conjecture (1972)
If F =Fym, miseven, andd =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.

6-2m).
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The New Result

Theorem (Niho, 1972)
If F =Fymandd=1+4(2™ — 1), then

{Weg(a):a€ F*} C{-27,0,27,2.273.27 4.27 5.27,

Niho's Last Conjecture (1972)
If F =Fym, miseven, andd =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.

6-2m1.

We proved
Theorem (Helleseth-K.-Li)
If F = Foom, miseven, and d =1+ 4(2™ — 1), then

{Weg(a) :ac F*} C {-27,0,2M,2.2" 4.2™}.
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How to Begin: with the Unit Circle

F =T m is a finite field
The half field He = Fpm is the unique subfield with [F : Hg] = 2.
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How to Begin: with the Unit Circle

F = Fpem is a finite field
The half field He = Fpm is the unique subfield with [F : Hg] = 2.

Gal(F/HE) is a cyclic group of order 2 generated by the
automorphism 7¢: F — F with 7¢(x) = x/"Fl = xP"

He = {x € F: 7r(x) = x}
We also define the unit circle of F, which is
Ur={xeF :1mr(x)=1/x} = {x e F*: xP"T1 =1}
This is the unique cyclic subgroup of order p™ 4+ 1 in F*

We sometimes call 7¢ the conjugation map and abbreviate 7¢(x)
as X, so then
Ur ={xe F":xx=1}.
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Niho's Theorem
F =T 2m is a finite field
The half field He = Fpm is the unique subfield with [F : Hg] = 2
7r: F — F with 7r(x) = xP" generates Gal(F/HE)
The unit circle Ur = {x € F* : 7p(x) = 1/x}
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7r: F — F with 7r(x) = xP" generates Gal(F/HE)
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Theorem

Let F =TF,m and d = s(p™ — 1)+ 1 and for a € F, let Zf ; be
the number of distinct roots of the polynomial

2s5—1

gr.a(x) =x —ax® —rr(a)x* 141

that lie on Ug. Then

Wp’d(a) = (ZF,a — l)pm.
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2s5—1

gr.a(x) =x —ax® —rr(a)x* 141

that lie on Ug. Then

Wp’d(a) = (ZF,a — l)pm.

Originally proved by Niho (1972) for p =2
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Niho's Theorem
F =T 2m is a finite field
The half field He = Fpm is the unique subfield with [F : Hg] = 2
7r: F — F with 7r(x) = xP" generates Gal(F/HE)
The unit circle Ur = {x € F* : 7p(x) = 1/x}

Theorem
Let F =TF,m and d = s(p™ — 1)+ 1 and for a € F, let Zf ; be
the number of distinct roots of the polynomial

gra(x) =x*"1t —ax® —rp(a)x* 1+ 1

that lie on Ug. Then

Wp’d(a) = (ZF,a — l)pm.

Originally proved by Niho (1972) for p =2
Generalized by Rosendahl (2006) to all p
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Niho's Proof that the Spectrum is at Most 8-Valued

Niho’s Theorem: Let F = [F2m and d = s(p” — 1) + 1 and for
ac F,let Zr , be the number of distinct roots of the polynomial

gra(x) =x*"1—ax® — rp(a)x* 1+ 1

that lie on Ur. Then WF7d(a) = (ZF,a — 1)pm.
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Niho’s Theorem: Let F = [F2m and d = s(p” — 1) + 1 and for
ac F,let Zr , be the number of distinct roots of the polynomial

2s—1

gr.a(x) =x —ax® —rr(a)x* P41

that lie on Ur. Then WF7d(a) = (ZF,a — 1)pm.

When p = 2 and s = 4, the polynomial gr , has degree 7; this is
Niho's proof that the Weil spectrum is at most 8-valued
Theorem (Niho, 1972)

If F =Fym and d =1+ 4(2™ — 1), then

{Wr4(a):ae F*} C{—2m0,2m2.2™ 3.2™ 4.2M 5.2™ 6.2M}.
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Niho’s Theorem: Let F = [F2m and d = s(p” — 1) + 1 and for
ac F,let Zr , be the number of distinct roots of the polynomial

2s—1

gr.a(x) =x —ax® —rr(a)x* P41

that lie on Ur. Then WF7d(a) = (ZF,a — 1)pm.

When p = 2 and s = 4, the polynomial gr , has degree 7; this is
Niho's proof that the Weil spectrum is at most 8-valued
Theorem (Niho, 1972)

If F =Fym and d =1+ 4(2™ — 1), then

{Wrg(a):ae F*} C{-270,272.2m 3.2M 4.2M 5.2 6.2M},

Our result states that 3-2™,5-2™ and 6 - 2™ do not occur in the
Weil spectrum,

18



Niho's Proof that the Spectrum is at Most 8-Valued

Niho’s Theorem: Let F = [F2m and d = s(p” — 1) + 1 and for
ac F,let Zr , be the number of distinct roots of the polynomial

2s—1

gr.a(x) =x —ax® —rr(a)x* P41

that lie on Ur. Then WF7d(a) = (ZF,a — 1)pm.

When p = 2 and s = 4, the polynomial gr , has degree 7; this is
Niho's proof that the Weil spectrum is at most 8-valued
Theorem (Niho, 1972)

If F =Fym and d =1+ 4(2™ — 1), then

{Wrg(a):ae F*} C{-270,272.2m 3.2M 4.2M 5.2 6.2M},

Our result states that 3-2™,5-2™ and 6 - 2™ do not occur in the
Weil spectrum, so it suffices to prove that Zr , is never 4, 6, or 7.
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Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If F =TFom, miseven,d =1+ 4(2™ — 1), and for each a € F,

gra(x) =x" —ax* — 7e(a)x® + 1,

then gF , does not have precisely 4, 6, or 7 distinct roots on UF.
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We call gf , the key polynomial for a over F.
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polynomial gr , in inseparable if and only if a € UF.
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only root of gr 5 on UF.



Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)
If F =TFom, miseven,d =1+ 4(2™ — 1), and for each a € F,

gra(x) =x" —ax* — 7e(a)x® + 1,

then gF , does not have precisely 4, 6, or 7 distinct roots on UF.

We call gf , the key polynomial for a over F.
Lemma
If F = Foom, mis even, and d =1+ 4(2™ — 1), then the key
polynomial gr , in inseparable if and only if a € UF.
> Ifa=1, then gr a(x) = (x + 1)°(x®> + x + 1) and 1 is the
only root of gr 5 on UF.
> Ifac Up ~ {1}, then gr o(x) = (x3 + a)(x* + 1/a) has three
simple roots at the cube roots of a, exactly one of which lies
on Ug, along with a root of multiplicity 4 at a~/* € Ug. So
there are two distinct roots on Uf.



Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)
If F =Fym, miseven, d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) =x" —ax* — 7e(a)x® + 1,
is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.
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such that
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roots on UF.

If f(x) = fo+ x4+ -+ fyx? € F[x] with fy, fy # 0, then the
conjugate-reciprocal of f is the polynomial

fT(X) =7(fq) + TE(fg—1)x + - + TF(fg)xd.

20



Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)

If F =Fym, miseven, d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) =x" —ax* — 7e(a)x® + 1,

is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.

If f(x) = fo+ x4+ -+ fyx? € F[x] with fy, fy # 0, then the
conjugate-reciprocal of f is the polynomial

fT(X) =7(fq) + TE(fg—1)x + - + TF(fg)xd.

If fT(x) = f(x), we say that f(x) is self-conjugate-reciprocal

20



Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)

If F =Fym, miseven, d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) =x" —ax* — 7e(a)x® + 1,
is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.

If f(x) = fo+ x4+ -+ fyx? € F[x] with fy, fy # 0, then the
conjugate-reciprocal of f is the polynomial

F1(x) = me(fy) + Tr(fa—1)x + - - - + 76 (fo)x“.
If fT(x) = f(x), we say that f(x) is self-conjugate-reciprocal

Notice that our key polynomials gr , are self-conjugate-reciprocal



Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)

If F =Fym, miseven, d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) =x" —ax* — 7e(a)x® + 1,
is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.

If f(x) = fo+ x4+ -+ fyx? € F[x] with fy, fy # 0, then the
conjugate-reciprocal of f is the polynomial

fT(X) =7(fq) + TE(fg—1)x + - + TF(fg)xd.
If fT(x) = f(x), we say that f(x) is self-conjugate-reciprocal
Notice that our key polynomials gr , are self-conjugate-reciprocal

If ris a root of a self-conjugate-reciprocal polynomial, then so is

1/7e(r).



Conjugate-Reciprocal Action
F =T 2m is a finite field
The half field He = Fpm is the unique subfield with [F : Hg] = 2
7r: F — F with 7r(x) = xP" generates Gal(F/HE)
The unit circle Ur = {x € F* : 7p(x) = 1/x}
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The unit circle Ur = {x € F* : 7p(x) = 1/x}

Let F be the algebraic closure of F

Extend 7r: F — F with 7r(x) = xP" for all x € F

Define the conjugate-reciprocal map 7r: F — F_ by
TE(x) = 1/7r(x) = x P

Then He = {x € F: 7¢(x) = x} and Ur = {x € F : wp(x) = x}

Let the conjugate-reciprocal group Mg = {77,’f- . k € Z} be the
cyclic group of permutations of F* generated by mf

The set of roots of a self-conjugate-reciprocal polynomial is
Mg-closed
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Orbits of the Conjugate-Reciprocal Action

F =T m is a finite field
TF: F = F W|th 7F(x) = xP" and
me: FT — F with mp(x) = x P
Np={rk:keZ}actson F
The unit circle Up = {x € F" : ¢(x) = x}
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The unit circle Up = {x € F" : ¢(x) = x}

If r € F*, then we write If - r for the orbit {mk(r): k€ Z} of r
under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a
union of such orbits
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Orbits of the Conjugate-Reciprocal Action

F=TF p2m is a finite field

TF: F = F W|th 7F(x) = xP" and
e Fr = F with mp(x) = x "
Np={rk:keZ}actson F
The unit circle Up = {x € F" : ¢(x) = x}

If r € F", then we write f - r for the orbit {7k(r): k € Z} of r
under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a
union of such orbits

Two main facts:
> All orbits are finite

> An element x € F lies in a singleton orbit (orbit of cardinality
1) if and only if x € Ur

22



Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.
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Suffices to Show (Only the Separable Case Remains)
If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,
is separable, then gr , does not have precisely 4, 6, or 7 distinct
roots on UF.

Let RF , denote the set of roots in F* of the key polynomial gr 5

Since gF , is self-conjugate-reciprocal, Rf , is a union of [1g-orbits.

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven, d =1+ 4(2™ — 1), then for each a € F
such that

gr.a(x) = x" —ax* — 1r(a)x® + 1,
is separable, the partition of the set Rr , of roots of gr 5 in F" into
Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.
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A Sum Attached to a lNg-closed Set
Let F = IFom, let R be a finite g-closed subset of F" and let

szzm.

{uv}CR
u#v

Then S € HE.
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5= Z (u—v)?

{uv}CR
u#v

Then S € HE.

Proof: Recall that x € HE if and only if 77(x) = x, and note that
< uv ) _ 7r(u)Te(V

(u=v)?)  (7r(u) = 7r(v))?

me(u) " tre(v)

~ (me(u) T = we(v) 1)
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A Sum Attached to a lNg-closed Set
Let F = IFom, let R be a finite g-closed subset of F" and let

5= Z (u—v)?

{uv}CR
u#v

Then S € HE.

Proof: Recall that x € HE if and only if 77(x) = x, and note that

<(u )) B (TFT(F( E:F((Va)ﬁ

So 7£(S)=S,and so S € Hf O



A Sum Attached to Two [Mg-closed Sets

Let F = szm, let @, R be finite MMg-closed subsets of F" and let

Then S € HE.
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Trace of the Sum with a Single Orbit

Let F =Fpm, let r € F*, and let S = > {uvICrer ﬁ
uF#v

Then S € Hg
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2
Proof: Notice that T = % = -4 —|—( u ) )

(u—v)? u—v u—v

uv>: u_ 4 me(v)

u— u=v " mp(v)=mr(u)”

So T+ T4 472" = _u —I—TF(

u—v
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Trace of the Sum with a Single Orbit
Let F =Fopm, let r€ F', and let S = 3", ,ycny» =0
uF#v

Then S € Hfr and TrHF/M(S) = (‘HF;*I) (mod 2).

(“)2-

Proof: Notice that T =

( )

2 om— 1 o il (V)
SoT+T2+---+T = +T (u v) u—v m
If we let M = |Mg-r| and set r, = ﬂ,’é(r) so that our orbit is
{ro=r,n,...,r_1}, then

ri ri+1
Tr S) = — + = )
HF/FQ( ) Z (ri — lir1 — rig1

0<i<j<M
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Trace of the Sum with a Single Orbit

Let F =Fpm, let r € F*, and let S = > {uvICrer ﬁ
uF#v

Then S € Hr and TrHF/M(S) = (‘HF;*I) (mod 2).

(“)2-

Proof: Notice that T =

( )
So T+ T2 4+ T2 " =4 47 (

If we let M = |Mg - r| and set r, = wK(r), so that our orbit is
{rop=r,n,...,rm—1}, then

ri riy1
Troee(S) = Y (r._,.+. = )
i1

0<i<j<M T+t = Fitl

For the (", ") pairs (k, /) with 0 < k < £ < M both re/(rx — rz)
and ry/(rg — rg) occur, which sum to 1.

) me(v)
u—v u—v Tr;:( )—mF(u)”
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Trace of the Sum with a Single Orbit

Let F =Fpm, let r € F*, and let S = > {uvICrer ﬁ
uF#v

Then S € Hr and TrHF/M(S) = (‘HF;*I) (mod 2).

(“)2-

Proof: Notice that T =

( )
So T+ T2+ + T = L +T(

If we let M = |Mg - r| and set r, = wK(r), so that our orbit is

{rop=r,n,...,rm—1}, then

ri rity
T m(S) = Y (r-—r-+ — )
i1

0<i<j<M Fiy1 — rita

For the (", ") pairs (k, /) with 0 < k < £ < M both re/(rx — rz)
and ry/(rg — rg) occur, which sum to 1.

For the remaining M — 1 pairs (k,¢) with 0 = k < ¢ < M,

ro/(ro — r¢) occurs twice, which sums to 0. O

) me(v)
u—v u—v Tr;:( )—me(u)”
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Trace of the Sum with Two Orbits
Let F = Fym, let r,s € F belong to different Mg-orbits, and let

S = 3 ﬁ

(u,v)ENE-rxMg-s
Then S € Hg
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Trace of the Sum with Two Orbits
Let F = Fym, let r,s € F belong to different Mg-orbits, and let

S = 3 ﬁ

(u,v)ENE-rxMg-s
Then S € Hfg and

Tri, /i,(S) = Mg - r|[Me - 5| (mod 2).

Proof: As previously, if T = ( )2, then

A T o A /2 ()
u—v  7wr(v) —7me(u)

and so

Trye/m,(S) = > <uﬁ vl 7TF(V7;F_(V72F(U)) ’

(u,v)eNg-rxNg-s

For each of the |I'IF rHI'I s| pairs (u v) € Mg - rxMg-s, both
u
u—v

O




Trace of the Sum over a Union of Orbits
Let F = Fpm, and let R be the union of N distinct Mg-orbits in
F' andlet S=3y, VR @2y Then S € Hg and

RI+1
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Pe? {u, V}CP {P Q}C?D (u,v)EPXQ
uF#v

If we apply Try, /r, to S, then by previous results

T =% (7)) + S 1Pl

Pe? {P,Q}C?
P#Q
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If we apply Try, /r, to S, then by previous results
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If we had (1) instead of (7, "), this would count all (§') pairs of
elements from R,

28



Trace of the Sum over a Union of Orbits
Let F = Fpm, and let R be the union of N distinct Mg-orbits in
F' andlet S=3y, VR @2y Then S € Hg and

RI+1
TrHF/]FQ(S) = ( ‘2_'_ ) —+ N (mod 2)

Proof: Let P be the partition of R into MNg-orbits, so

=Y Y Yt XY oY

Pe? {u, V}CP {P Q}C?D (u,v)EPXQ
uF#v

If we apply Try, /r, to S, then by previous results

T =% (7)) + S 1Pl

Pe? {P,Q}C?
P#Q

If we had (1) instead of (7, "), this would count all (§') pairs of
elements from R, but we have ), ,(|P| — 1) = |R| — N fewer

pairs, so we get ("‘;') —|R|+ N. O

28



Where were we?

Suffices to Show (Equivalent Orbital Formulation)
If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,
is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

29



Where were we?

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

RF 5 is a union of lg-orbits: let Nr , be the number of orbits.

29



Where were we?

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

RF 5 is a union of lg-orbits: let Nr , be the number of orbits. Let

uv
SF,a = Z (U— V)2’

{va}gRF,a
u#v

29



Where were we?

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

RF 5 is a union of lg-orbits: let Nr , be the number of orbits. Let

uv
SF,a = E 2
u—v)

{uvv}gRF,a
u#v

and then our recent result tells us that 5S¢ , € HF and
RF +1
Tru/r,(SFa) = <| 32| > + Nf,,

7+1
:( ;L )—i—NF,a:NF’a (mod 2)



Sr.a in Terms of Symmetric Functions
F = Fym and a € F such that g , is separable,

whose set RF , of roots is partitioned into Nf , orbits,

NF . = TfHF/1F2(5F,a) (mod 2), where Sf , = Z{u,v}gRF,a
uF#v

uv

(v

30



Sr.a in Terms of Symmetric Functions

F = Fym and a € F such that gr , is separable,
whose set RF , of roots is partitioned into Nf , orbits,

NF.o = Try, jr,(SF.a) (mod 2), where Sg o = > 1y vycr,, (u V)z
uF#v

Let b(x) = [[1<icjcr(xi — X)) € ]FQ[X]_, ..., x7] and let

_XiXj

C(Xl,...,X7):b(X17-~7 Z (I_XJ)2

1<i<j<7
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Let b(x) = [[1<icjcr(xi — X)) € ]FQ[X]_, ..., x7] and let
XX
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1<i<j<7

Write RF,a = {I’l7 RN r7} so that 5[:73 = H
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Sr.a in Terms of Symmetric Functions

F = Fym and a € F such that gr , is separable,
whose set RF , of roots is partitioned into Nf , orbits,

NF.o = Try, jr,(SF.a) (mod 2), where Sg o = > 1y vycr,, (u V)z
uF#v

Let b(x) = [[1<icjcr(xi — X)) € IFQ[X]_, ..., x7] and let

XiX
c(xt,...yx7) = b(x1,...,x7 Z x _Ij()2
1<i<j<7 Xi J
Write RF,a = {I’l7 RN r7} so that 5[:73 = H
c(x1,...,x7) is homogeneous symmetric of degree 42
Let ok(x1,...,x7) be the degree k elementary symmetric poly., so
C(Xl,...,Xn) = Z )\(617.'.7(97)01610262 --~U7e7,
(e1,.-,e7)eNT

e1+2ex+...+7e7=42
with each Ao, ) € F2 (and 0 € N).
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Sr.a in Terms of Symmetric Functions
F = Fym and a € F such that g , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne.2 = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

— er_e er
(X1, Xn) = E Net,er)01 05+ 07,

(e1,..,e7)ENT
e1+2ex+...+7e7=42
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Sr.a in Terms of Symmetric Functions
F =Fym and a € F such that gF , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne.2 = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

(Xt ..oy Xn) = Z Netye)01 05 =07,
(e1,...,er)EN?
e1+2ex+...+7e7=42

(e1,...,€7) such
Term that Ae,,..e) 7 0

Number | &1 & e e e e e

1 o o o o 2 3 2

2 o o o o 3 1 3

3 0O 0 0 0 6 2 O

4 o 0 o O 7 0 1

5 0O 0 0 1 4 3 0

6 o 0 0o 1 5 1 1
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189
190
191

192
193
194
195
196
197
198
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., €7) such

(61,..

that Ae,,..e) # 0

€2

€4 €5 €6

€3

€1

Term

Number

199
200
201
202
203
204
205
206
207
208

209
210
211

212
213
214



(e1,...,e7) such

Term that /\(el,...,e7) #0
Number | &1 e e e e e €
215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 O 0O o6 O
218 6 0 0 0 1 4 1

F = Fym and a € F such that g , is separable, whose
set Rr o ={r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,2 = Try, /r,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

— € € €7
c(x1y. %) = E )\(eh._@)al 0y 0y,

(e1,...,er)eNT
e1+2ex+...+7e7=42
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(e1,...,e7) such

Term that /\(el,...,e7) #0
Number | &1 e e e e e €
215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 O 0O o6 O
218 6 0 0 0 1 4 1

F = Fym and a € F such that g , is separable, whose
set Rr o ={r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,2 = Try, /r,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

— € € €7
c(x1y. %) = E )\(eh._@)al 0y 0y,

(e1,...,er)eNT
e1+2ex+...+7e7=42

Key fact: if A, &) 7 0, then at least one of ey, e, es, or e is
positive.
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(e1,...,e7) such

Term that /\(el,...,e7) #0
Number | e1 e e e e e €
215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 0O 0 o6 O
218 6 0 0 0 1 4 1

F = Fym and a € F such that g , is separable, whose
set Rr o ={r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,2 = Try, /r,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

— € € €7
c(x1y. %) = E )\(eh._@)al 0y 0y,

(e1,...,er)eNT
e1+2ex+...+7e7=42

Key fact: if A, &) 7 0, then at least one of ey, e, es, or e is
positive.
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., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

199
200
201
202
203
204
205

206
207
208
209
210
211

212
213
214



., €7) such

(61,..

that Ae,,..e) # 0

€2

€5 €6

€4

€1

Term

Number

183
184
185
186
187
188

189
190
191

192
193
194
195
196
197
198

48



., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

167
168
169
170
171

172

173

174

175

176

177

178

179

180
181

182
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., €7) such
that Ae,,..e) # 0

(61,..

€ 66

€4

€2

€1

Term

Number

151
152

153
154
155
156
157
158
159
160
161

162
163
164
165
166
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., €7) such

(61,..

that Ae,,..e) # 0

€2

€5 €6

€4

€1

Term

Number

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150

51
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., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

87

88
89
90
91

92

93
94

95

96
97

98
99

100
101

102
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., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

71

72

73
74

75

76
77

78
79

80

81

82

83

84

85

86

55



., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

55

56
57

58
59
60
61

62

63
64

65

66
67
68
69
70

56



., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

39
40

41

42

43
44
45

46
47

48
49

50
51

52

53
54



., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

23
24
25

26
27

28
29
30
31

32

33

34

35

36
37

38

58



., €7) such

(61,..

that Ae,,..e) # 0

€2

€ 66

€4

€1

Term

Number

10
11

12
13
14
15
16
17
18
19
20
21

22
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Sr.a in Terms of Symmetric Functions
F =Fym and a € F such that gF , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne.2 = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

(Xt ..oy Xn) = Z Netye)01 05 =07,
(e1,...,er)EN?
e1+2ex+...+7e7=42

(e1,...,€7) such
Term that Ae,,..e) 70

Number | e1 e e e e e €

1 o o o o 2 3 2

2 o o o o 3 1 3

3 0O 0 0 0 6 2 0

4 o 0 o 0 7 0 1

5 0O 0 0o 1 4 3 0

6 o 0 0o 1 5 1 1
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(e1,...,e7) such

Term that /\(el,...,e7) #0
Number | e1 e e e e e €
215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 0O 0 o6 O
218 6 0 0 0 1 4 1

F = Fym and a € F such that g , is separable, whose
set Rr o ={r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,2 = Try, /r,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r))? with

— € € €7
c(x1y. %) = E )\(eh._@)al 0y 0y,

(e1,...,er)eNT
e1+2ex+...+7e7=42

Key fact: if A, &) 7 0, then at least one of ey, e, es, or e is
positive.

61



F = Fym and a € F such that g , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,a = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r7))? with

= E €1 € €7
C(Xl,...,Xn) = )\(817...,6’7)0-1 oy -0,

(e1,-...er)eN’
e1+2ex+...+7e7=42

If )\(617_,‘787) #£ 0, then at least one of eq, e, es, or €5 is positive.
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F = Fym and a € F such that gf , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,a = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r7))? with

= E €1 € €7
C(Xl,...,Xn) = )\(817...,6’7)0-]_ oy -0,

(e1,-...er)eN’
e1+2ex+...+7e7=42

If )\(617,”787) #£ 0, then at least one of eq, e, es, or €5 is positive.

Notice that
gra(x) =x" —ax* —7e(a)x® + 1
= (x =)+ (x— 1)

=x"—oi(n,..., r7)x6 +oo(r1y ..., r)x°

7r7)-
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F = Fym and a € F such that gf , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,a = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r7))? with

— e _e er
(X1, Xn) = E Net,er)01 05 207,

(e1,..,e7)ENT
e1+2ex+...+7e7=42

If )\(617,”787) #£ 0, then at least one of eq, e, es, or €5 is positive.

Notice that

gra(x) =x" —ax* —7e(a)x® + 1
:(X—I’l)"-(X—ﬁ)
=x" —o1(r,...,m)x0 +oo(r,. .., rm)x

So ok(r,...,r7) =0 for k € {1,2,5,6}.

5

—i—ar(n,

7r7)'
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F = Fym and a € F such that gf , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,a = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r7))? with

— er_e er
(X1, Xn) = E Net,er)01 05 207,

(e1,..,e7)ENT
e1+2ex+...+7e7=42

If )\(617,”787) #£ 0, then at least one of eq, e, es, or €5 is positive.

Notice that
gra(x) =x" —ax* —7e(a)x® + 1

=(X—r1)---(x—r7)

:x7—al(rl,...,r7)x6—|—02(r1,...,r7)x5—~~—o7(r1,---
So o(r,...,r7) =0 for k € {1,2,5,6}.
Every term in ¢(r,...,r7) is a product of oy (r1, ..., r7)'s with at

least one k € {1,2,5,6}, so Sk, =0,

7r7)'
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F = Fym and a € F such that gf , is separable, whose
set Rr, = {r,...,r7} of roots is partitioned into Nfg , orbits,
Ne,a = Try, jr,(SF.a) (mod 2), where
Sea=c(r,...,r7)/(b(r1,...,r7))? with

— er_e er
(X1, Xn) = E Net,er)01 05 207,

(e1,..,e7)ENT
e1+2ex+...+7e7=42

If )\(617,”787) #£ 0, then at least one of eq, e, es, or €5 is positive.

Notice that
gra(x) =x" —ax* —7e(a)x® + 1

=(X—r1)---(x—r7)

:x7—al(rl,...,r7)x6—|—02(r1,...,r7)x5—~~—o7(r1,---
So o(r,...,r7) =0 for k € {1,2,5,6}.
Every term in ¢(r,...,r7) is a product of oy (r1, ..., r7)'s with at

least one k € {1,2,5,6}, so Sr, =0, and so Ng , is even

7r7)'
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And Now...

Suffices to Show (Equivalent Orbital Formulation)
If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,
is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.
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And Now...

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set Rr , of seven roots is partitioned into
an even number of [1g-orbits
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And Now...

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set Rr , of seven roots is partitioned into
an even number of [1g-orbits
» So there cannot be precisely 7 singleton orbits, since that
would be 7 total orbits (not even!),

63



And Now...

Suffices to Show (Equivalent Orbital Formulation)
If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F
such that

gra(x) = x" —ax* — 7e(a)x® + 1,
is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set Rr , of seven roots is partitioned into
an even number of [1g-orbits
» So there cannot be precisely 7 singleton orbits, since that
would be 7 total orbits (not even!),
» nor can there be 6 singleton orbits, since that would place the
final element also into a singleton orbit
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And Now...

Suffices to Show (Equivalent Orbital Formulation)

If F =TFom, miseven,d =1+ 4(2™ — 1), then for each a € F

such that

gra(x) = x" —ax* — 7e(a)x® + 1,

is separable, the partition of the set Rg , of roots of gr , in F" into
[Mg-orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set Rr , of seven roots is partitioned into
an even number of [1g-orbits
» So there cannot be precisely 7 singleton orbits, since that
would be 7 total orbits (not even!),
» nor can there be 6 singleton orbits, since that would place the
final element also into a singleton orbit
» nor can there be 4 singleton orbits, since the total number of
orbits is even, so the remaining 3 elements would need to be
partitioned into an even number of orbits, which would
introduce another singleton orbit.
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Recap

Niho's Last Conjecture (1972)
If F = Fym, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.
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Recap

Niho's Last Conjecture (1972)
If F = Fym, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.

Theorem (Helleseth-K.-Li)
If F =TFom, miseven, and d =1+ 4(2™ — 1), then

{WF,d(a) ra€ F P C{-2m0,2M2.2M 4.2M}.

64



Recap

Niho's Last Conjecture (1972)
If F = Fym, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.
Theorem (Helleseth-K.-Li)
If F =TFom, miseven, and d =1+ 4(2™ — 1), then
{Wrg(a):a€ F*}C{-20,2m2-27 4.2m}.

Theorem (Helleseth-K.-Li)
If F =Fym, misodd, m>1,and d =1+ 4(2™ — 1), then

{Wrq(a) :a€ F*} C{-27,0,2m,2.27 3. 2™ 4.2m},
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Recap

Niho's Last Conjecture (1972)
If F = Fym, miseven, and d =1+ 4(2™ — 1), then

{WE 4(a) : a € F*} contains at most 5 distinct values.
Theorem (Helleseth-K.-Li)
If F =TFom, miseven, and d =1+ 4(2™ — 1), then
{Wrg(a):a€ F*}C{-20,2m2-27 4.2m}.

Theorem (Helleseth-K.-Li)
If F =Fym, misodd, m>1,and d =1+ 4(2™ — 1), then

{Wrq(a) :a€ F*} C{-27,0,2m,2.27 3. 2™ 4.2m},

(m =1 makes d degenerate, with Weil spectrum {0,4})
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