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Power Permutations

Throughout the talk: F = Fq = Fpn is a finite field of
characteristic p and order q = pn

Power function on a finite field F : a function f : F → F with
f (x) = xd for some positive integer d

Power permutation of F : a power function f (x) = xd on F is a
permutation of F if and only if gcd(d , |F ∗|) = 1

If gcd(d , |F ∗|) = 1, we say that d is an invertible exponent over F :
if e = 1/d (mod |F ∗|), then x 7→ xe is the inverse function of
x 7→ xd

Cryptographic significance: arithmetically easy to implement power
permutations within cryptosystems

Want power permutations that are resistant to linear cryptanalysis
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Linear Functionals

F = Fq = Fpn is a finite field of characteristic p and order q = pn

Let Tr : F → Fp be the absolute trace:

Tr(x) = x + xp + · · ·+ xp
n−1

Then for any c ∈ F , we have an Fp-linear functional:

F → Fp

x 7→ Tr(cx)

Every Fp-linear functional of F is uniquely represented in this way

If c1, . . . , cn form an Fp-basis of F = Fq = Fpn , then we have the
Fp-linear isomorphism:

F → Fn
p

x 7→ (Tr(c1x), . . . ,Tr(cnx)) ,

So we call our Fp-linear functionals x 7→ Tr(cx) (with c 6= 0)
component linear functionals
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Nonlinearity

F = Fq = Fpn has absolute trace Tr : F → Fp

If f : F → F , then for each b ∈ F ∗, we get a component function
of f :

F → Fp

x 7→ Tr(bf (x))

To resist linear cryptanalysis: want component functions Tr(bf (x))
of f uncorrelated with the linear functionals x 7→ Tr(cx) (for all
c ∈ F )

When p = 2,
∑
x∈F

(−1)Tr(bf (x))−Tr(cx)

= # of agreements between Tr(bf (x)) and Tr(cx)

−# of disagreements between Tr(bf (x)) and Tr(cx)

Notice: x 7→ (−1)Tr(x) is the canonical additive character of F into
{±1} ⊆ C∗ (when F is characteristic 2)

5



Nonlinearity

F = Fq = Fpn has absolute trace Tr : F → Fp

If f : F → F , then for each b ∈ F ∗, we get a component function
of f :

F → Fp

x 7→ Tr(bf (x))

To resist linear cryptanalysis: want component functions Tr(bf (x))
of f uncorrelated with the linear functionals x 7→ Tr(cx) (for all
c ∈ F )

When p = 2,
∑
x∈F

(−1)Tr(bf (x))−Tr(cx)

= # of agreements between Tr(bf (x)) and Tr(cx)

−# of disagreements between Tr(bf (x)) and Tr(cx)

Notice: x 7→ (−1)Tr(x) is the canonical additive character of F into
{±1} ⊆ C∗ (when F is characteristic 2)

5



Nonlinearity

F = Fq = Fpn has absolute trace Tr : F → Fp

If f : F → F , then for each b ∈ F ∗, we get a component function
of f :

F → Fp

x 7→ Tr(bf (x))

To resist linear cryptanalysis: want component functions Tr(bf (x))
of f uncorrelated with the linear functionals x 7→ Tr(cx) (for all
c ∈ F )

When p = 2,
∑
x∈F

(−1)Tr(bf (x))−Tr(cx)

= # of agreements between Tr(bf (x)) and Tr(cx)

−# of disagreements between Tr(bf (x)) and Tr(cx)

Notice: x 7→ (−1)Tr(x) is the canonical additive character of F into
{±1} ⊆ C∗ (when F is characteristic 2)

5



Nonlinearity

F = Fq = Fpn has absolute trace Tr : F → Fp

If f : F → F , then for each b ∈ F ∗, we get a component function
of f :

F → Fp

x 7→ Tr(bf (x))

To resist linear cryptanalysis: want component functions Tr(bf (x))
of f uncorrelated with the linear functionals x 7→ Tr(cx) (for all
c ∈ F )

When p = 2,
∑
x∈F

(−1)Tr(bf (x))−Tr(cx)

= # of agreements between Tr(bf (x)) and Tr(cx)

−# of disagreements between Tr(bf (x)) and Tr(cx)

Notice: x 7→ (−1)Tr(x) is the canonical additive character of F into
{±1} ⊆ C∗ (when F is characteristic 2)

5



Nonlinearity

F = Fq = Fpn has absolute trace Tr : F → Fp

If f : F → F , then for each b ∈ F ∗, we get a component function
of f :

F → Fp

x 7→ Tr(bf (x))

To resist linear cryptanalysis: want component functions Tr(bf (x))
of f uncorrelated with the linear functionals x 7→ Tr(cx) (for all
c ∈ F )

When p = 2,
∑
x∈F

(−1)Tr(bf (x))−Tr(cx)

= # of agreements between Tr(bf (x)) and Tr(cx)

−# of disagreements between Tr(bf (x)) and Tr(cx)

Notice: x 7→ (−1)Tr(x) is the canonical additive character of F into
{±1} ⊆ C∗ (when F is characteristic 2)

5



Walsh Transform
If F has characteristic 2, want

∑
x∈F (−1)Tr(bf (x))−Tr(cx) to be

close to 0

For F of arbitrary characteristic p, let ζp = exp(2πi/p) and then
define the canonical additive character of F to be

ψF : F → 〈ζp〉 ⊆ C∗

ψF (x) = ζ
Tr(x)
p = ζx+xp+···+xq/p

p

We define the Walsh Transform of f to be the function

Wf : F × F → C

Wf (b, c) =
∑
x∈F

ψF (bf (x)− cx) =
∑
x∈F

ζ
Tr(bf (x))−Tr(cx)
p

And we define the Walsh Spectrum of f to be
{Wf (b, c) : b ∈ F ∗, c ∈ F} (b = 0 tells us nothing about f )

Want every element of this spectrum to have small magnitude
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Walsh Spectrum of a Power Permutation
ψF : F → C∗ is the canonical additive character of F

f (x) = xd is a power permutation of F (so gcd(d , |F ∗|) = 1)

For b ∈ F ∗, c ∈ F , the Walsh transform is

Wf (b, c) =
∑
x∈F

ψF (bxd − cx),

which is a Weil sum of a binomial, which can be reparameterized
with y = b1/dx

Wf (b, c) =
∑
y∈F

ψF (yd − cb−1/dy) = Wf (1, b−1/dc)

So define
WF ,d(a) =

∑
x∈F

ψF (xd − ax),

and then the Walsh spectrum of f (x) = xd over F is

{WF ,d(a) : a ∈ F}

7
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Weil Spectrum and Crosscorrelation

f (x) = xd is a power permutation of F = Fq = Fpn

WF ,d(a) =
∑

x∈F ψF (xd − ax) is a Weil sum

{WF ,d(a) : a ∈ F} is the Walsh spectrum of f

Notice that WF ,d(0) =
∑

x∈F ψF (xd) =
∑

y∈F ψF (y) = 0

Weil spectrum for f (x) = xd over F is {WF ,d(a) : a ∈ F ∗}.

The Weil spectrum gives the crosscorrelation spectrum for a pair of
p-ary maximum length linear feedback shift register sequences
(m-sequences) of period q − 1 = |F ∗|

One m-sequence comes from the other by decimating by d

The values of the periodic crosscorrelations between these
sequences for the q − 1 relative shifts equal −1 + WF ,d(a) for the
q − 1 different a ∈ F ∗.

8
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Equivalence and Degeneracy

f (x) = xd is a power permutation of F = Fq = Fpn

WF ,d(a) =
∑

x∈F ψF (xd − ax)

The power permutation g(x) = xd
′

produces the same Weil
spectrum as f (x) = xd when
I d ′ ≡ d (mod |F ∗|), because xd

′
= xd for every x ∈ F

I d ′ = pd , because Tr(xpd) = Tr(xd), so ψF (xpd) = ψF (xd)
I d ′ is the inverse of d modulo |F ∗|

Thus we declare an exponent d ′ to be equivalent to d over F if
d ′ ≡ pkd (mod |F ∗|) or d ′ ≡ pk/d (mod |F ∗|) for some k ∈ Z

If d is equivalent to 1 (i.e., a power of p modulo q − 1), then

WF ,d(a) = WF ,1(a) =
∑
x∈F

ψF (x1 − ax) =

{
|F | if a = 1

0 otherwise

So the Walsh spectrum is {0, |F |} and we say that d and
f (x) = xd are degenerate over F

9
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Degeneracy and Number of Values

f (x) = xd is a power permutation of F = Fq = Fpn

WF ,d(a) =
∑

x∈F ψF (xd − ax)

If d is degenerate, then WF ,d(a) =

{
|F | if a = 1

0 otherwise

So the Weil spectrum {WF ,d(a) : a ∈ F ∗} has two values if d is
degenerate and |F | > 2 (and only one value if |F | = 2)

Helleseth (1976): Weil spectrum of power permutation has at least
three distinct values when d is nondegenerate

Research has often focused on F and d that produce Weil spectra
with few distinct values (e.g., 3, 4, or 5) and with values of small
magnitude (not much larger than

√
|F |)
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Niho Exponents
F = Fq = Fpn is a field of characteristic p and order q = pn

If F is of even degree over Fp (i.e., n = 2m for some positive
integer m), then we define the half field of F , written HF , to be
the unique subfield of index 2 in F

So HF = Fpn/2 = Fpm and |HF | =
√
|F |

A Niho exponent over F is a positive integer d that is
nondegenerate over F but is degenerate over HF , so

I d is not a power of p modulo |F ∗| = pn − 1, but
I d is a power of p modulo |H∗F | = pn/2 − 1 = pm − 1

Up to equivalence, we may assume that a Niho exponent d has
d ≡ 1 (mod |H∗F |), so there is some integer s ≥ 2 such that

d = 1 + s|H∗F | = 1 + s(pm − 1)

Then d is invertible over F if and only if gcd(2s − 1, pm + 1) = 1

Niho exponents can give Weil spectra with few distinct values
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Weil Spectra for Some Niho Exponents (s = 2)

F = Fq = Fpn = Fp2m is a field of characteristic p and order q = pn

and d = 1 + s(pm − 1) is a Niho exponent

I s = 2 produces d = 1 + 2(pm − 1)

This is invertible over F if and only if pm 6≡ 2 (mod 3)

So when p = 2, invertible over F if and only if m is even

Theorem (Niho, 1972)

If F = F22m , m is even, and d = 1 + 2(2m − 1), then

{WF ,d(a) : a ∈ F ∗} = {−2m, 0, 2m, 2 · 2m}.

So the Weil spectrum is 4-valued
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Weil Spectra for Some Niho Exponents (s = 3)
F = Fq = Fpn = Fp2m is a field of characteristic p and order q = pn

and d = 1 + s(pm − 1) is a Niho exponent

I s = 3 produces d = 1 + 3(pm − 1), which is invertible over F
if and only if pm 6≡ 4 (mod 5)

(so for p = 2, if and only if m 6≡ 2 (mod 4))

Theorem (Niho, 1972)

If F = F22m , m 6≡ 2 (mod 4), and d = 1 + 3(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 3 · 2m, 4 · 2m}.

Building on work of Dobbertin, Felke, Helleseth, Rosendahl (2006),
the exact values in the spectrum were determined.

Theorem (Xia-Li-Zeng-Helleseth, 2016)

If F = F22m , m 6≡ 2 (mod 4), m ≥ 3, and d = 1 + 3(2m − 1), then

{WF ,d(a) : a ∈ F ∗} = {−2m, 0, 2m, 2 · 2m, 4 · 2m} if m is even,

{WF ,d(a) : a ∈ F ∗} = {−2m, 0, 2m, 2 · 2m, 3 · 2m, 4 · 2m} if m is odd.
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Weil Spectra for Some Niho Exponents (s = 3)
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Weil Spectra for Some Niho Exponents (s = 4)
F = Fq = Fpn = Fp2m is a field of characteristic p and order q = pn

and d = 1 + s(pm − 1) is a Niho exponent

I s = 4 produces d = 1 + 4(pm − 1), which is invertible over F
if and only if pm 6≡ 6 (mod 7)

(so for p = 2, always invertible over F )

Theorem (Niho, 1972)

If F = F22m and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2·2m, 3·2m, 4·2m, 5·2m, 6·2m}.

So there are at most 8 distinct values. The very last conjecture in
Niho’s thesis concerns this spectrum when m is even.

Niho’s Last Conjecture (1972)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} contains at most 5 distinct values.
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The New Result

Theorem (Niho, 1972)

If F = F22m and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 3 · 2m, 4 · 2m, 5 · 2m, 6 · 2m}.

Niho’s Last Conjecture (1972)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} contains at most 5 distinct values.

We proved

Theorem (Helleseth-K.-Li)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 4 · 2m}.
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How to Begin: with the Unit Circle

F = Fp2m is a finite field

The half field HF = Fpm is the unique subfield with [F : HF ] = 2.

Gal(F/HF ) is a cyclic group of order 2 generated by the
automorphism τF : F → F with τF (x) = x |HF | = xp

m

HF = {x ∈ F : τF (x) = x}

We also define the unit circle of F , which is

UF = {x ∈ F ∗ : τF (x) = 1/x} = {x ∈ F ∗ : xp
m+1 = 1}

This is the unique cyclic subgroup of order pm + 1 in F ∗

We sometimes call τF the conjugation map and abbreviate τF (x)
as x , so then

UF = {x ∈ F ∗ : xx = 1}.
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Niho’s Theorem
F = Fp2m is a finite field

The half field HF = Fpm is the unique subfield with [F : HF ] = 2

τF : F → F with τF (x) = xp
m

generates Gal(F/HF )

The unit circle UF = {x ∈ F ∗ : τF (x) = 1/x}

Theorem
Let F = Fp2m and d = s(pm − 1) + 1 and for a ∈ F , let ZF ,a be
the number of distinct roots of the polynomial

gF ,a(x) = x2s−1 − ax s − τF (a)x s−1 + 1

that lie on UF . Then

WF ,d(a) = (ZF ,a − 1)pm.

Originally proved by Niho (1972) for p = 2

Generalized by Rosendahl (2006) to all p
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Niho’s Proof that the Spectrum is at Most 8-Valued

Niho’s Theorem: Let F = Fp2m and d = s(pm − 1) + 1 and for
a ∈ F , let ZF ,a be the number of distinct roots of the polynomial

gF ,a(x) = x2s−1 − ax s − τF (a)x s−1 + 1

that lie on UF . Then WF ,d(a) = (ZF ,a − 1)pm.

When p = 2 and s = 4, the polynomial gF ,a has degree 7; this is
Niho’s proof that the Weil spectrum is at most 8-valued

Theorem (Niho, 1972)

If F = F22m and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 3 · 2m, 4 · 2m, 5 · 2m, 6 · 2m}.

Our result states that 3 · 2m, 5 · 2m, and 6 · 2m do not occur in the
Weil spectrum, so it suffices to prove that ZF ,a is never 4, 6, or 7.

18
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Equivalent Formulation of Our Result

Theorem (Helleseth-K.-Li, restated)

If F = F22m , m is even, d = 1 + 4(2m − 1), and for each a ∈ F ,

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

then gF ,a does not have precisely 4, 6, or 7 distinct roots on UF .

We call gF ,a the key polynomial for a over F .

Lemma
If F = F22m , m is even, and d = 1 + 4(2m − 1), then the key
polynomial gF ,a in inseparable if and only if a ∈ UF .

I If a = 1, then gF ,a(x) = (x + 1)5(x2 + x + 1) and 1 is the
only root of gF ,a on UF .

I If a ∈ UF r {1}, then gF ,a(x) = (x3 + a)(x4 + 1/a) has three
simple roots at the cube roots of a, exactly one of which lies
on UF , along with a root of multiplicity 4 at a−1/4 ∈ UF . So
there are two distinct roots on UF .
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Conjugate-Reciprocal Polynomials

Suffices to Show (Only the Separable Case Remains)

If F = F22m , m is even, d = 1 + 4(2m − 1), then for each a ∈ F
such that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

is separable, then gF ,a does not have precisely 4, 6, or 7 distinct
roots on UF .

If f (x) = f0 + f1x + · · ·+ fdx
d ∈ F [x ] with f0, fd 6= 0, then the

conjugate-reciprocal of f is the polynomial

f †(x) = τF (fd) + τF (fd−1)x + · · ·+ τF (f0)xd .

If f †(x) = f (x), we say that f (x) is self-conjugate-reciprocal

Notice that our key polynomials gF ,a are self-conjugate-reciprocal

If r is a root of a self-conjugate-reciprocal polynomial, then so is
1/τF (r).
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Conjugate-Reciprocal Action
F = Fp2m is a finite field

The half field HF = Fpm is the unique subfield with [F : HF ] = 2

τF : F → F with τF (x) = xp
m

generates Gal(F/HF )

The unit circle UF = {x ∈ F ∗ : τF (x) = 1/x}

Let F be the algebraic closure of F

Extend τF : F → F with τF (x) = xp
m

for all x ∈ F

Define the conjugate-reciprocal map πF : F
∗ → F

∗
by

πF (x) = 1/τF (x) = x−p
m

Then HF = {x ∈ F : τF (x) = x} and UF = {x ∈ F
∗

: πF (x) = x}

Let the conjugate-reciprocal group ΠF = {πkF : k ∈ Z} be the

cyclic group of permutations of F
∗

generated by πF

The set of roots of a self-conjugate-reciprocal polynomial is
ΠF -closed
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Orbits of the Conjugate-Reciprocal Action

F = Fp2m is a finite field

τF : F → F with τF (x) = xp
m

and
πF : F

∗ → F
∗

with πF (x) = x−p
m

ΠF = {πkF : k ∈ Z} acts on F
∗

The unit circle UF = {x ∈ F
∗

: πF (x) = x}

If r ∈ F
∗
, then we write ΠF · r for the orbit {πkF (r) : k ∈ Z} of r

under the conjugate-reciprocal action

The set of roots of a self-conjugate-reciprocal polynomial is a
union of such orbits

Two main facts:

I All orbits are finite

I An element x ∈ F
∗

lies in a singleton orbit (orbit of cardinality
1) if and only if x ∈ UF
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Counting Singleton Orbits

Suffices to Show (Only the Separable Case Remains)

If F = F22m , m is even, d = 1 + 4(2m − 1), then for each a ∈ F
such that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

is separable, then gF ,a does not have precisely 4, 6, or 7 distinct
roots on UF .

Let RF ,a denote the set of roots in F
∗

of the key polynomial gF ,a

Since gF ,a is self-conjugate-reciprocal, RF ,a is a union of ΠF -orbits.

Suffices to Show (Equivalent Orbital Formulation)

If F = F22m , m is even, d = 1 + 4(2m − 1), then for each a ∈ F
such that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

is separable, the partition of the set RF ,a of roots of gF ,a in F
∗
into

ΠF -orbits does not have precisely 4, 6, or 7 singleton orbits.
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A Sum Attached to a ΠF -closed Set
Let F = Fp2m , let R be a finite ΠF -closed subset of F

∗
and let

S =
∑

{u,v}⊆R
u 6=v

uv

(u − v)2
.

Then S ∈ HF .

Proof: Recall that x ∈ HF if and only if τF (x) = x , and note that

τF

(
uv

(u − v)2

)
=

τF (u)τF (v)

(τF (u)− τF (v))2

=
πF (u)−1πF (v)−1

(πF (u)−1 − πF (v)−1)2

=
πF (u)πF (v)

(πF (v)− πF (u))2

=
πF (u)πF (v)

(πF (u)− πF (v))2

So τF (S) = S , and so S ∈ HF
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Trace of the Sum with a Single Orbit
Let F = F22m , let r ∈ F

∗
, and let S =

∑
{u,v}⊆ΠF ·r

u 6=v

uv
(u−v)2 .

Then S ∈ HF

and TrHF /F2
(S) =

(|ΠF ·r |−1
2

)
(mod 2).

Proof: Notice that T = uv
(u−v)2 = u

u−v +
(

u
u−v

)2
.

So T + T 2 + · · ·+ T 2m−1
= u

u−v + τF

(
u

u−v

)
= u

u−v + πF (v)
πF (v)−πF (u) .

If we let M = |ΠF · r | and set rk = πkF (r), so that our orbit is
{r0 = r , r1, . . . , rM−1}, then

TrHF /F2
(S) =

∑
0≤i<j<M

(
ri

ri − rj
+

rj+1

rj+1 − ri+1

)
.

For the
(M−1

2

)
pairs (k , `) with 0 < k < ` < M both rk/(rk − r`)

and r`/(r` − rk) occur, which sum to 1.

For the remaining M − 1 pairs (k , `) with 0 = k < ` < M,
r0/(r0 − r`) occurs twice, which sums to 0.
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Trace of the Sum with Two Orbits
Let F = F22m , let r , s ∈ F

∗
belong to different ΠF -orbits, and let

S =
∑

(u,v)∈ΠF ·r×ΠF ·s

uv

(u − v)2
.

Then S ∈ HF

and

TrHF /F2
(S) = |ΠF · r ||ΠF · s| (mod 2).

Proof: As previously, if T = uv
(u−v)2 , then

T + T 2 + · · ·+ T 2m−1
=

u

u − v
+

πF (v)

πF (v)− πF (u)
,

and so

TrHF /F2
(S) =

∑
(u,v)∈ΠF ·r×ΠF ·s

(
u

u − v
+

πF (v)

πF (v)− πF (u)

)
,

For each of the |ΠF · r ||Π · s| pairs (u, v) ∈ ΠF · r × ΠF · s, both
u

u−v and v
v−u occur, which sum to 1.
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Trace of the Sum over a Union of Orbits
Let F = F22m , and let R be the union of N distinct ΠF -orbits in
F
∗
, and let S =

∑
{u,v}⊆R

u 6=v

uv
(u−v)2 . Then S ∈ HF and

TrHF /F2
(S) =

(
|R|+ 1

2

)
+ N (mod 2).

Proof: Let P be the partition of R into ΠF -orbits, so

S =
∑
P∈P

∑
{u,v}⊆P

u 6=v

uv

(u − v)2
+

∑
{P,Q}⊆P

P 6=Q

∑
(u,v)∈P×Q

uv

(u − v)2
.

If we apply TrHF /F2
to S , then by previous results

TrHF /F2
(S) =

∑
P∈P

(
|P| − 1

2

)
+

∑
{P,Q}⊆P

P 6=Q

|P||Q|.

If we had
(|P|

2

)
instead of

(|P|−1
2

)
, this would count all

(|R|
2

)
pairs of

elements from R, but we have
∑

P∈P(|P| − 1) = |R| − N fewer

pairs, so we get
(|R|

2

)
− |R|+ N.

28



Trace of the Sum over a Union of Orbits
Let F = F22m , and let R be the union of N distinct ΠF -orbits in
F
∗
, and let S =

∑
{u,v}⊆R

u 6=v

uv
(u−v)2 . Then S ∈ HF and

TrHF /F2
(S) =

(
|R|+ 1

2

)
+ N (mod 2).

Proof: Let P be the partition of R into ΠF -orbits, so

S =
∑
P∈P

∑
{u,v}⊆P

u 6=v

uv

(u − v)2
+

∑
{P,Q}⊆P

P 6=Q

∑
(u,v)∈P×Q

uv

(u − v)2
.

If we apply TrHF /F2
to S , then by previous results

TrHF /F2
(S) =

∑
P∈P

(
|P| − 1

2

)
+

∑
{P,Q}⊆P

P 6=Q

|P||Q|.

If we had
(|P|

2

)
instead of

(|P|−1
2

)
, this would count all

(|R|
2

)
pairs of

elements from R, but we have
∑

P∈P(|P| − 1) = |R| − N fewer

pairs, so we get
(|R|

2

)
− |R|+ N.

28



Trace of the Sum over a Union of Orbits
Let F = F22m , and let R be the union of N distinct ΠF -orbits in
F
∗
, and let S =

∑
{u,v}⊆R

u 6=v

uv
(u−v)2 . Then S ∈ HF and

TrHF /F2
(S) =

(
|R|+ 1

2

)
+ N (mod 2).

Proof: Let P be the partition of R into ΠF -orbits, so

S =
∑
P∈P

∑
{u,v}⊆P

u 6=v

uv

(u − v)2
+

∑
{P,Q}⊆P

P 6=Q

∑
(u,v)∈P×Q

uv

(u − v)2
.

If we apply TrHF /F2
to S , then by previous results

TrHF /F2
(S) =

∑
P∈P

(
|P| − 1

2

)
+

∑
{P,Q}⊆P

P 6=Q

|P||Q|.

If we had
(|P|

2

)
instead of

(|P|−1
2

)
, this would count all

(|R|
2

)
pairs of

elements from R, but we have
∑

P∈P(|P| − 1) = |R| − N fewer

pairs, so we get
(|R|

2

)
− |R|+ N.

28



Trace of the Sum over a Union of Orbits
Let F = F22m , and let R be the union of N distinct ΠF -orbits in
F
∗
, and let S =

∑
{u,v}⊆R

u 6=v

uv
(u−v)2 . Then S ∈ HF and

TrHF /F2
(S) =

(
|R|+ 1

2

)
+ N (mod 2).

Proof: Let P be the partition of R into ΠF -orbits, so

S =
∑
P∈P

∑
{u,v}⊆P

u 6=v

uv

(u − v)2
+

∑
{P,Q}⊆P

P 6=Q

∑
(u,v)∈P×Q

uv

(u − v)2
.

If we apply TrHF /F2
to S , then by previous results

TrHF /F2
(S) =

∑
P∈P

(
|P| − 1

2

)
+

∑
{P,Q}⊆P

P 6=Q

|P||Q|.

If we had
(|P|

2

)
instead of

(|P|−1
2

)
, this would count all

(|R|
2

)
pairs of

elements from R,

but we have
∑

P∈P(|P| − 1) = |R| − N fewer

pairs, so we get
(|R|

2

)
− |R|+ N.

28



Trace of the Sum over a Union of Orbits
Let F = F22m , and let R be the union of N distinct ΠF -orbits in
F
∗
, and let S =

∑
{u,v}⊆R

u 6=v

uv
(u−v)2 . Then S ∈ HF and

TrHF /F2
(S) =

(
|R|+ 1

2

)
+ N (mod 2).

Proof: Let P be the partition of R into ΠF -orbits, so

S =
∑
P∈P

∑
{u,v}⊆P

u 6=v

uv

(u − v)2
+

∑
{P,Q}⊆P

P 6=Q

∑
(u,v)∈P×Q

uv

(u − v)2
.

If we apply TrHF /F2
to S , then by previous results

TrHF /F2
(S) =

∑
P∈P

(
|P| − 1

2

)
+

∑
{P,Q}⊆P

P 6=Q

|P||Q|.

If we had
(|P|

2

)
instead of

(|P|−1
2

)
, this would count all

(|R|
2

)
pairs of

elements from R, but we have
∑

P∈P(|P| − 1) = |R| − N fewer

pairs, so we get
(|R|

2

)
− |R|+ N.

28



Where were we?

Suffices to Show (Equivalent Orbital Formulation)

If F = F22m , m is even, d = 1 + 4(2m − 1), then for each a ∈ F
such that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

is separable, the partition of the set RF ,a of roots of gF ,a in F
∗
into

ΠF -orbits does not have precisely 4, 6, or 7 singleton orbits.

RF ,a is a union of ΠF -orbits: let NF ,a be the number of orbits. Let

SF ,a =
∑

{u,v}⊆RF ,a

u 6=v

uv

(u − v)2
,

and then our recent result tells us that SF ,a ∈ HF and

TrHF /F2
(SF ,a) =

(
|RF ,a|+ 1

2

)
+ NF ,a

=

(
7 + 1

2

)
+ NF ,a = NF ,a (mod 2)
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SF ,a in Terms of Symmetric Functions
F = F22m and a ∈ F such that gF ,a is separable,

whose set RF ,a of roots is partitioned into NF ,a orbits,
NF ,a ≡ TrHF /F2

(SF ,a) (mod 2), where SF ,a =
∑
{u,v}⊆RF ,a

u 6=v

uv
(u−v)2

Let b(x) =
∏

1≤i<j≤7(xi − xj) ∈ F2[x1, . . . , x7] and let

c(x1, . . . , x7) = b(x1, . . . , x7)2
∑

1≤i<j≤7

xixj
(xi − xj)2

.

Write RF ,a = {r1, . . . , r7} so that SF ,a = c(r1,...,r7)
b(r1,...,r7)2 .

c(x1, . . . , x7) is homogeneous symmetric of degree 42

Let σk(x1, . . . , x7) be the degree k elementary symmetric poly., so

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ1
e1σ2

e2 · · ·σ7
e7 ,

with each λ(e1,...,e7) ∈ F2 (and 0 ∈ N).
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SF ,a in Terms of Symmetric Functions
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e1
1 σ

e2
2 · · ·σ

e7
7 ,

(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

1 0 0 0 0 2 3 2
2 0 0 0 0 3 1 3
3 0 0 0 0 6 2 0
4 0 0 0 0 7 0 1
5 0 0 0 1 4 3 0
6 0 0 0 1 5 1 1
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SF ,a in Terms of Symmetric Functions
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5 0 0 0 1 4 3 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

7 0 0 1 0 1 1 4
8 0 0 1 0 5 0 2
9 0 0 1 1 3 1 2

10 0 0 2 0 2 2 2
11 0 0 2 0 3 0 3
12 0 0 2 1 0 3 2
13 0 0 2 1 1 1 3
14 0 0 3 0 3 3 0
15 0 0 3 2 1 1 2
16 0 0 4 0 0 5 0
17 0 0 4 0 1 3 1
18 0 0 4 2 2 2 0
19 0 0 4 2 3 0 1
20 0 0 4 3 0 3 0
21 0 0 4 3 1 1 1
22 0 0 5 0 3 2 0

32



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

23 0 0 5 1 1 3 0
24 0 1 0 0 0 2 4
25 0 1 0 0 1 0 5
26 0 1 0 1 2 2 2
27 0 1 0 1 3 0 3
28 0 1 1 0 5 2 0
29 0 1 1 1 1 0 4
30 0 1 1 2 3 0 2
31 0 1 2 0 2 4 0
32 0 1 2 0 3 2 1
33 0 1 2 2 0 2 2
34 0 1 2 2 1 0 3
35 0 1 3 0 1 2 2
36 0 1 3 1 3 2 0
37 0 1 3 3 1 0 2
38 0 1 4 1 0 4 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

39 0 1 4 1 1 2 1
40 0 2 0 0 2 0 4
41 0 2 0 0 4 3 0
42 0 2 0 1 0 1 4
43 0 2 0 2 2 1 2
44 0 2 2 0 1 1 3
45 0 2 2 0 5 0 1
46 0 2 2 1 3 1 1
47 0 2 2 2 2 0 2
48 0 2 2 3 0 1 2
49 0 2 3 0 3 0 2
50 0 2 3 1 1 1 2
51 0 3 0 0 2 2 2
52 0 3 0 1 4 2 0
53 0 3 0 2 0 0 4
54 0 3 0 3 2 0 2

34



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

55 0 3 1 0 1 0 4
56 0 3 2 1 1 0 3
57 0 3 2 2 2 2 0
58 0 3 2 4 0 0 2
59 0 3 4 0 0 4 0
60 0 4 0 0 0 1 4
61 0 5 0 0 4 2 0
62 0 5 0 1 0 0 4
63 0 5 0 2 2 0 2
64 0 7 0 0 0 0 4
65 1 0 0 0 0 1 5
66 1 0 0 0 4 0 3
67 1 0 0 1 2 1 3
68 1 0 1 0 2 0 4
69 1 0 1 0 4 3 0
70 1 0 1 1 0 1 4

35



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

71 1 0 1 2 2 1 2
72 1 0 2 0 2 3 1
73 1 0 2 2 0 1 3
74 1 0 3 0 0 3 2
75 1 0 3 0 4 2 0
76 1 0 3 1 2 3 0
77 1 0 3 2 2 0 2
78 1 0 3 3 0 1 2
79 1 0 4 0 2 2 1
80 1 0 4 1 0 3 1
81 1 1 0 0 4 2 1
82 1 1 0 1 0 0 5
83 1 1 0 2 2 0 3
84 1 1 1 0 2 2 2
85 1 1 1 1 4 2 0
86 1 1 1 2 0 0 4

36



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

87 1 1 1 3 2 0 2
88 1 1 2 0 0 2 3
89 1 1 2 1 2 2 1
90 1 1 2 3 0 0 3
91 1 1 3 1 0 2 2
92 1 1 3 2 2 2 0
93 1 1 3 4 0 0 2
94 1 1 5 0 0 4 0
95 1 2 1 0 0 1 4
96 1 2 2 0 2 0 3
97 1 2 2 1 0 1 3
98 1 3 0 0 0 0 5
99 1 3 1 0 4 2 0

100 1 3 1 1 0 0 4
101 1 3 1 2 2 0 2
102 1 5 1 0 0 0 4

37



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

103 2 0 0 0 0 2 4
104 2 0 0 0 1 0 5
105 2 0 0 0 2 5 0
106 2 0 0 0 3 3 1
107 2 0 0 2 0 3 2
108 2 0 0 2 1 1 3
109 2 0 1 1 3 3 0
110 2 0 1 3 1 1 2
111 2 0 2 1 0 5 0
112 2 0 2 1 1 3 1
113 2 0 2 2 0 2 2
114 2 0 2 2 1 0 3
115 2 0 3 0 1 2 2
116 2 1 0 1 2 4 0
117 2 1 0 1 3 2 1
118 2 1 0 3 0 2 2
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

119 2 1 0 3 1 0 3
120 2 1 1 2 3 2 0
121 2 1 1 4 1 0 2
122 2 1 3 0 1 4 0
123 2 2 0 0 3 0 3
124 2 2 0 1 0 3 2
125 2 2 0 1 1 1 3
126 2 2 0 2 0 0 4
127 2 2 0 2 2 3 0
128 2 2 0 4 0 1 2
129 2 2 1 0 1 0 4
130 2 2 1 0 3 3 0
131 2 2 1 2 1 1 2
132 2 2 2 0 1 3 1
133 2 2 2 2 3 0 1
134 2 2 2 3 0 3 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

135 2 2 2 3 1 1 1
136 2 2 2 4 0 0 2
137 2 2 3 0 3 2 0
138 2 2 3 1 1 3 0
139 2 2 4 0 0 4 0
140 2 3 0 0 3 2 1
141 2 3 0 2 1 0 3
142 2 3 0 3 2 2 0
143 2 3 0 5 0 0 2
144 2 3 1 0 1 2 2
145 2 3 1 1 3 2 0
146 2 3 1 3 1 0 2
147 2 3 2 1 1 2 1
148 2 4 0 0 1 1 3
149 2 4 0 0 4 2 0
150 2 4 0 0 5 0 1

40



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

151 2 4 0 1 3 1 1
152 2 4 0 3 0 1 2
153 2 4 1 0 3 0 2
154 2 4 1 1 1 1 2
155 2 5 0 1 1 0 3
156 2 6 0 0 0 0 4
157 3 0 0 1 2 3 1
158 3 0 0 3 0 1 3
159 3 0 1 0 2 2 2
160 3 0 1 2 0 0 4
161 3 0 1 2 2 3 0
162 3 0 1 4 0 1 2
163 3 0 2 0 0 2 3
164 3 0 3 0 0 5 0
165 3 0 3 2 2 2 0
166 3 0 3 4 0 0 2

41



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

167 3 0 5 0 0 4 0
168 3 1 0 2 2 2 1
169 3 1 0 4 0 0 3
170 3 1 1 0 2 4 0
171 3 1 1 2 0 2 2
172 3 1 1 3 2 2 0
173 3 1 1 5 0 0 2
174 3 1 2 0 0 4 1
175 3 1 3 1 0 4 0
176 3 2 0 0 0 0 5
177 3 2 0 0 2 3 1
178 3 2 0 2 0 1 3
179 3 2 1 0 0 3 2
180 3 2 1 1 2 3 0
181 3 2 1 3 0 1 2
182 3 2 2 0 2 2 1

42



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

183 3 2 2 1 0 3 1
184 3 3 0 0 0 2 3
185 3 3 0 1 2 2 1
186 3 3 0 3 0 0 3
187 3 3 1 1 0 2 2
188 3 4 0 0 2 0 3
189 3 4 0 1 0 1 3
190 3 4 1 0 0 0 4
191 4 0 0 2 0 5 0
192 4 0 0 2 1 3 1
193 4 0 0 4 2 2 0
194 4 0 0 4 3 0 1
195 4 0 0 5 0 3 0
196 4 0 0 5 1 1 1
197 4 0 1 0 1 5 0
198 4 0 1 3 1 3 0

43



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

199 4 0 1 4 1 0 2
200 4 0 3 0 1 4 0
201 4 1 0 0 0 6 0
202 4 1 0 0 1 4 1
203 4 1 0 3 0 4 0
204 4 1 0 3 1 2 1
205 4 1 1 1 1 4 0
206 4 2 0 1 1 3 1
207 4 2 0 2 1 0 3
208 4 2 1 0 1 2 2
209 5 0 0 0 0 5 1
210 5 0 0 3 0 3 1
211 5 0 0 4 0 0 3
212 5 0 1 1 0 5 0
213 5 0 1 2 0 2 2
214 5 0 2 0 0 4 1

44



(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 0 0 6 0
218 6 0 0 0 1 4 1

F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

Key fact: if λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is
positive.
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

199 4 0 1 4 1 0 2
200 4 0 3 0 1 4 0
201 4 1 0 0 0 6 0
202 4 1 0 0 1 4 1
203 4 1 0 3 0 4 0
204 4 1 0 3 1 2 1
205 4 1 1 1 1 4 0
206 4 2 0 1 1 3 1
207 4 2 0 2 1 0 3
208 4 2 1 0 1 2 2
209 5 0 0 0 0 5 1
210 5 0 0 3 0 3 1
211 5 0 0 4 0 0 3
212 5 0 1 1 0 5 0
213 5 0 1 2 0 2 2
214 5 0 2 0 0 4 1
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

183 3 2 2 1 0 3 1
184 3 3 0 0 0 2 3
185 3 3 0 1 2 2 1
186 3 3 0 3 0 0 3
187 3 3 1 1 0 2 2
188 3 4 0 0 2 0 3
189 3 4 0 1 0 1 3
190 3 4 1 0 0 0 4
191 4 0 0 2 0 5 0
192 4 0 0 2 1 3 1
193 4 0 0 4 2 2 0
194 4 0 0 4 3 0 1
195 4 0 0 5 0 3 0
196 4 0 0 5 1 1 1
197 4 0 1 0 1 5 0
198 4 0 1 3 1 3 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

167 3 0 5 0 0 4 0
168 3 1 0 2 2 2 1
169 3 1 0 4 0 0 3
170 3 1 1 0 2 4 0
171 3 1 1 2 0 2 2
172 3 1 1 3 2 2 0
173 3 1 1 5 0 0 2
174 3 1 2 0 0 4 1
175 3 1 3 1 0 4 0
176 3 2 0 0 0 0 5
177 3 2 0 0 2 3 1
178 3 2 0 2 0 1 3
179 3 2 1 0 0 3 2
180 3 2 1 1 2 3 0
181 3 2 1 3 0 1 2
182 3 2 2 0 2 2 1
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

151 2 4 0 1 3 1 1
152 2 4 0 3 0 1 2
153 2 4 1 0 3 0 2
154 2 4 1 1 1 1 2
155 2 5 0 1 1 0 3
156 2 6 0 0 0 0 4
157 3 0 0 1 2 3 1
158 3 0 0 3 0 1 3
159 3 0 1 0 2 2 2
160 3 0 1 2 0 0 4
161 3 0 1 2 2 3 0
162 3 0 1 4 0 1 2
163 3 0 2 0 0 2 3
164 3 0 3 0 0 5 0
165 3 0 3 2 2 2 0
166 3 0 3 4 0 0 2
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

135 2 2 2 3 1 1 1
136 2 2 2 4 0 0 2
137 2 2 3 0 3 2 0
138 2 2 3 1 1 3 0
139 2 2 4 0 0 4 0
140 2 3 0 0 3 2 1
141 2 3 0 2 1 0 3
142 2 3 0 3 2 2 0
143 2 3 0 5 0 0 2
144 2 3 1 0 1 2 2
145 2 3 1 1 3 2 0
146 2 3 1 3 1 0 2
147 2 3 2 1 1 2 1
148 2 4 0 0 1 1 3
149 2 4 0 0 4 2 0
150 2 4 0 0 5 0 1
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

119 2 1 0 3 1 0 3
120 2 1 1 2 3 2 0
121 2 1 1 4 1 0 2
122 2 1 3 0 1 4 0
123 2 2 0 0 3 0 3
124 2 2 0 1 0 3 2
125 2 2 0 1 1 1 3
126 2 2 0 2 0 0 4
127 2 2 0 2 2 3 0
128 2 2 0 4 0 1 2
129 2 2 1 0 1 0 4
130 2 2 1 0 3 3 0
131 2 2 1 2 1 1 2
132 2 2 2 0 1 3 1
133 2 2 2 2 3 0 1
134 2 2 2 3 0 3 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

103 2 0 0 0 0 2 4
104 2 0 0 0 1 0 5
105 2 0 0 0 2 5 0
106 2 0 0 0 3 3 1
107 2 0 0 2 0 3 2
108 2 0 0 2 1 1 3
109 2 0 1 1 3 3 0
110 2 0 1 3 1 1 2
111 2 0 2 1 0 5 0
112 2 0 2 1 1 3 1
113 2 0 2 2 0 2 2
114 2 0 2 2 1 0 3
115 2 0 3 0 1 2 2
116 2 1 0 1 2 4 0
117 2 1 0 1 3 2 1
118 2 1 0 3 0 2 2
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

87 1 1 1 3 2 0 2
88 1 1 2 0 0 2 3
89 1 1 2 1 2 2 1
90 1 1 2 3 0 0 3
91 1 1 3 1 0 2 2
92 1 1 3 2 2 2 0
93 1 1 3 4 0 0 2
94 1 1 5 0 0 4 0
95 1 2 1 0 0 1 4
96 1 2 2 0 2 0 3
97 1 2 2 1 0 1 3
98 1 3 0 0 0 0 5
99 1 3 1 0 4 2 0

100 1 3 1 1 0 0 4
101 1 3 1 2 2 0 2
102 1 5 1 0 0 0 4
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

71 1 0 1 2 2 1 2
72 1 0 2 0 2 3 1
73 1 0 2 2 0 1 3
74 1 0 3 0 0 3 2
75 1 0 3 0 4 2 0
76 1 0 3 1 2 3 0
77 1 0 3 2 2 0 2
78 1 0 3 3 0 1 2
79 1 0 4 0 2 2 1
80 1 0 4 1 0 3 1
81 1 1 0 0 4 2 1
82 1 1 0 1 0 0 5
83 1 1 0 2 2 0 3
84 1 1 1 0 2 2 2
85 1 1 1 1 4 2 0
86 1 1 1 2 0 0 4
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

55 0 3 1 0 1 0 4
56 0 3 2 1 1 0 3
57 0 3 2 2 2 2 0
58 0 3 2 4 0 0 2
59 0 3 4 0 0 4 0
60 0 4 0 0 0 1 4
61 0 5 0 0 4 2 0
62 0 5 0 1 0 0 4
63 0 5 0 2 2 0 2
64 0 7 0 0 0 0 4
65 1 0 0 0 0 1 5
66 1 0 0 0 4 0 3
67 1 0 0 1 2 1 3
68 1 0 1 0 2 0 4
69 1 0 1 0 4 3 0
70 1 0 1 1 0 1 4
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

39 0 1 4 1 1 2 1
40 0 2 0 0 2 0 4
41 0 2 0 0 4 3 0
42 0 2 0 1 0 1 4
43 0 2 0 2 2 1 2
44 0 2 2 0 1 1 3
45 0 2 2 0 5 0 1
46 0 2 2 1 3 1 1
47 0 2 2 2 2 0 2
48 0 2 2 3 0 1 2
49 0 2 3 0 3 0 2
50 0 2 3 1 1 1 2
51 0 3 0 0 2 2 2
52 0 3 0 1 4 2 0
53 0 3 0 2 0 0 4
54 0 3 0 3 2 0 2
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

23 0 0 5 1 1 3 0
24 0 1 0 0 0 2 4
25 0 1 0 0 1 0 5
26 0 1 0 1 2 2 2
27 0 1 0 1 3 0 3
28 0 1 1 0 5 2 0
29 0 1 1 1 1 0 4
30 0 1 1 2 3 0 2
31 0 1 2 0 2 4 0
32 0 1 2 0 3 2 1
33 0 1 2 2 0 2 2
34 0 1 2 2 1 0 3
35 0 1 3 0 1 2 2
36 0 1 3 1 3 2 0
37 0 1 3 3 1 0 2
38 0 1 4 1 0 4 0
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

7 0 0 1 0 1 1 4
8 0 0 1 0 5 0 2
9 0 0 1 1 3 1 2

10 0 0 2 0 2 2 2
11 0 0 2 0 3 0 3
12 0 0 2 1 0 3 2
13 0 0 2 1 1 1 3
14 0 0 3 0 3 3 0
15 0 0 3 2 1 1 2
16 0 0 4 0 0 5 0
17 0 0 4 0 1 3 1
18 0 0 4 2 2 2 0
19 0 0 4 2 3 0 1
20 0 0 4 3 0 3 0
21 0 0 4 3 1 1 1
22 0 0 5 0 3 2 0
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SF ,a in Terms of Symmetric Functions
F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

1 0 0 0 0 2 3 2
2 0 0 0 0 3 1 3
3 0 0 0 0 6 2 0
4 0 0 0 0 7 0 1
5 0 0 0 1 4 3 0
6 0 0 0 1 5 1 1
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(e1, . . . , e7) such
Term that λ(e1,...,e7) 6= 0

Number e1 e2 e3 e4 e5 e6 e7

215 5 1 0 1 0 4 1
216 5 2 0 0 0 2 3
217 6 0 0 0 0 6 0
218 6 0 0 0 1 4 1

F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

Key fact: if λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is
positive.
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F = F22m and a ∈ F such that gF ,a is separable, whose
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If λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is positive.

Notice that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1

= (x − r1) · · · (x − r7)

= x7 − σ1(r1, . . . , r7)x6 + σ2(r1, . . . , r7)x5 − · · · − σ7(r1, · · · , r7).

So σk(r1, . . . , r7) = 0 for k ∈ {1, 2, 5, 6}.

Every term in c(r1, . . . , r7) is a product of σk(r1, . . . , r7)’s with at
least one k ∈ {1, 2, 5, 6}, so SF ,a = 0, and so NF ,a is even

62



F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

If λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is positive.

Notice that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1

= (x − r1) · · · (x − r7)

= x7 − σ1(r1, . . . , r7)x6 + σ2(r1, . . . , r7)x5 − · · · − σ7(r1, · · · , r7).

So σk(r1, . . . , r7) = 0 for k ∈ {1, 2, 5, 6}.

Every term in c(r1, . . . , r7) is a product of σk(r1, . . . , r7)’s with at
least one k ∈ {1, 2, 5, 6}, so SF ,a = 0, and so NF ,a is even

62



F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

If λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is positive.

Notice that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1

= (x − r1) · · · (x − r7)

= x7 − σ1(r1, . . . , r7)x6 + σ2(r1, . . . , r7)x5 − · · · − σ7(r1, · · · , r7).

So σk(r1, . . . , r7) = 0 for k ∈ {1, 2, 5, 6}.

Every term in c(r1, . . . , r7) is a product of σk(r1, . . . , r7)’s with at
least one k ∈ {1, 2, 5, 6}, so SF ,a = 0, and so NF ,a is even

62



F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

If λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is positive.

Notice that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1

= (x − r1) · · · (x − r7)

= x7 − σ1(r1, . . . , r7)x6 + σ2(r1, . . . , r7)x5 − · · · − σ7(r1, · · · , r7).

So σk(r1, . . . , r7) = 0 for k ∈ {1, 2, 5, 6}.

Every term in c(r1, . . . , r7) is a product of σk(r1, . . . , r7)’s with at
least one k ∈ {1, 2, 5, 6}, so SF ,a = 0,

and so NF ,a is even

62



F = F22m and a ∈ F such that gF ,a is separable, whose

set RF ,a = {r1, . . . , r7} of roots is partitioned into NF ,a orbits,

NF ,a ≡ TrHF /F2
(SF ,a) (mod 2), where

SF ,a = c(r1, . . . , r7)/(b(r1, . . . , r7))2 with

c(x1, . . . , xn) =
∑

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σ

e7
7 ,

If λ(e1,...,e7) 6= 0, then at least one of e1, e2, e5, or e6 is positive.

Notice that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1

= (x − r1) · · · (x − r7)

= x7 − σ1(r1, . . . , r7)x6 + σ2(r1, . . . , r7)x5 − · · · − σ7(r1, · · · , r7).

So σk(r1, . . . , r7) = 0 for k ∈ {1, 2, 5, 6}.

Every term in c(r1, . . . , r7) is a product of σk(r1, . . . , r7)’s with at
least one k ∈ {1, 2, 5, 6}, so SF ,a = 0, and so NF ,a is even

62



And Now...

Suffices to Show (Equivalent Orbital Formulation)

If F = F22m , m is even, d = 1 + 4(2m − 1), then for each a ∈ F
such that

gF ,a(x) = x7 − ax4 − τF (a)x3 + 1,

is separable, the partition of the set RF ,a of roots of gF ,a in F
∗
into

ΠF -orbits does not have precisely 4, 6, or 7 singleton orbits.

Now we know that the set RF ,a of seven roots is partitioned into
an even number of ΠF -orbits
I So there cannot be precisely 7 singleton orbits, since that

would be 7 total orbits (not even!),
I nor can there be 6 singleton orbits, since that would place the

final element also into a singleton orbit
I nor can there be 4 singleton orbits, since the total number of

orbits is even, so the remaining 3 elements would need to be
partitioned into an even number of orbits, which would
introduce another singleton orbit.
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Recap

Niho’s Last Conjecture (1972)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} contains at most 5 distinct values.

Theorem (Helleseth-K.-Li)

If F = F22m , m is even, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 4 · 2m}.

Theorem (Helleseth-K.-Li)

If F = F22m , m is odd, m > 1, and d = 1 + 4(2m − 1), then

{WF ,d(a) : a ∈ F ∗} ⊆ {−2m, 0, 2m, 2 · 2m, 3 · 2m, 4 · 2m}.

(m = 1 makes d degenerate, with Weil spectrum {0, 4})
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