Analysis of APN functions and functions of SMALL DIFFERENTIAL UNIFORMITY FROM THE Maiorana-McFarland CLASS

Nurdagül Anbar
(joint work with Tekgül Kalaycı and Wilfried Meidl)

Sabancı University, İstanbul

15-17 September 2020, BFA
\mathbb{V}_{n} : An n-dimensional vector space over \mathbb{F}_{2}
\langle,$\rangle : A non-degenerate inner product on \mathbb{V}_{n}$
In general, $\mathbb{V}_{n}=\mathbb{F}_{2}^{n}, \mathbb{F}_{2^{n}}$ or $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}, n=2 m$, and $\langle x, y\rangle=x \cdot y,\langle x, y\rangle=\operatorname{Tr}_{n}(x y)$ or $\langle(x, y),(z, w)\rangle=\operatorname{Tr}_{m}(x z+y w)$, respectively, where Tr_{n} is the absolute trace on $\mathbb{F}_{2^{n}}$.
\mathbb{V}_{n} : An n-dimensional vector space over \mathbb{F}_{2}
\langle,$\rangle : A non-degenerate inner product on \mathbb{V}_{n}$
In general, $\mathbb{V}_{n}=\mathbb{F}_{2}^{n}, \mathbb{F}_{2^{n}}$ or $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}, n=2 m$,
and $\langle x, y\rangle=x \cdot y,\langle x, y\rangle=\operatorname{Tr}_{n}(x y)$ or $\langle(x, y),(z, w)\rangle=\operatorname{Tr}_{m}(x z+y w)$, respectively, where Tr_{n} is the absolute trace on $\mathbb{F}_{2^{n}}$.

Main Interest: Functions $F: \mathbb{V}_{n} \rightarrow \mathbb{V}_{n}$, their non-linearity and differential uniformity

Recall:

$F_{\lambda}(X):=\langle F(X), \lambda\rangle: \mathbb{V}_{n} \mapsto \mathbb{F}_{2}$: The component function corresponding to $\lambda \in \mathbb{V}_{n} \backslash\{0\}$
$\mathcal{W}_{F_{\lambda}}(a)=\sum_{x \in \mathbb{V}_{n}}(-1)^{F_{\lambda}(x)+\langle a, x\rangle}$: The Walsh coefficient of F_{λ} at a
Definition: Non-linearity $\mathcal{N} \mathcal{L}(F)$ of F

$$
\mathcal{N} \mathcal{L}(F)=2^{n-1}-\frac{1}{2} \max _{a, \lambda \in \mathbb{V}_{n}, \lambda \neq 0}\left|\mathcal{W}_{F_{\lambda}}(a)\right|
$$

Definition: Derivative of F in the direction $u \in \mathbb{V}_{n}$ is $D_{u} F(X)=F(X+u)+F(X) . F$ is differentially k-uniform if $D_{u} F(X)=v$ has at most k solutions for all non-zero $u \in \mathbb{V}_{n}$.
F is APN if F is differentially 2-uniform.

Definition: Derivative of F in the direction $u \in \mathbb{V}_{n}$ is $D_{u} F(X)=F(X+u)+F(X)$. F is differentially k-uniform if $D_{u} F(X)=v$ has at most k solutions for all non-zero $u \in \mathbb{V}_{n}$.
F is APN if F is differentially 2-uniform.
Objective: The construction of functions $F: \mathbb{V}_{n} \rightarrow \mathbb{V}_{n}$ with high non-linearity and small differential uniformity

Main Tool: Quadratic Functions
(I) $D_{u} F(X)+F(u)$ is a linear function $(F(0)=0)$.
(II) $\left|\mathcal{W}_{F_{\lambda}}(a)\right| \in\left\{0,2^{(n+s) / 2}\right\}$, where $s=\operatorname{dim}\left(\Lambda_{F_{\lambda}}\right)$.

Recall:

$$
\Lambda_{F_{\lambda}}=\left\{u \in \mathbb{V}_{n} \mid D_{u} F_{\lambda}(X)=F_{\lambda}(X+u)+F_{\lambda}(X) \text { is constant }\right\}
$$

Bezout's Theorem:

Let $f(X, Y) \in \overline{\mathbb{F}}[X, Y]$, where $\overline{\mathbb{F}}$ is the algebraic closure \mathbb{F}_{2}. An (affine) curve \mathcal{X} is a zero set of $f(X, Y)$, i.e.,

$$
\mathcal{X}=\{P=(x, y) \in \overline{\mathbb{F}} \times \overline{\mathbb{F}} \mid f(x, y)=0\} .
$$

$\operatorname{deg}(\mathcal{X})=\operatorname{deg}(f(X, Y))$

Bezout's Theorem:

Let $f(X, Y) \in \overline{\mathbb{F}}[X, Y]$, where $\overline{\mathbb{F}}$ is the algebraic closure \mathbb{F}_{2}. An (affine) curve \mathcal{X} is a zero set of $f(X, Y)$, i.e.,

$$
\mathcal{X}=\{P=(x, y) \in \overline{\mathbb{F}} \times \overline{\mathbb{F}} \mid f(x, y)=0\} .
$$

$\operatorname{deg}(\mathcal{X})=\operatorname{deg}(f(X, Y))$
Let $P=(u, v) \in \mathcal{X}$, i.e., $f(u, v)=0$.

$$
f(X+u, Y+v)=f_{m}(X, Y)+f_{m+1}(X, Y)+\cdots+f_{d}(X, Y)
$$

where f_{i} is a form of degree i and $f_{m} \neq 0$.
$m_{P}(\mathcal{X}):=m$ multiplicity of P on \mathcal{X}

Bezout's Theorem: Let \mathcal{X} and \mathcal{Y} be two (projective) curves. If \mathcal{X} and \mathcal{Y} do not have a common component, then

$$
\sum_{P \in \mathcal{X} \cap \mathcal{Y}} m_{P}(\mathcal{X}) m_{P}(\mathcal{Y}) \leq \operatorname{deg}(\mathcal{X}) \operatorname{deg}(\mathcal{Y})
$$

Bezout's Theorem: Let \mathcal{X} and \mathcal{Y} be two (projective) curves. If \mathcal{X} and \mathcal{Y} do not have a common component, then

$$
\sum_{P \in \mathcal{X} \cap \mathcal{Y}} m_{P}(\mathcal{X}) m_{P}(\mathcal{Y}) \leq \operatorname{deg}(\mathcal{X}) \operatorname{deg}(\mathcal{Y})
$$

Aim: Use Bezout's Theorem to calculate the Walsh spectrum of known infinite classes of quadratic APN functions.

Example: $F(X, Y)=(X Y, G(X, Y)): \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}} \mapsto \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$
(I) $G(X, Y)=\alpha X^{2^{i}+2^{j}}+\beta X^{2^{i}} Y^{2^{j}}+\gamma X^{2^{j}} Y^{2^{i}}+\zeta X^{2^{i}+1}$ (Carlet, 2011)
(II) $G(X, Y)=X^{2^{i}+1}+\alpha Y^{\left(2^{i}+1\right) 2^{j}}$ (Pott-Zhou, 2013)
(III) $G(X, Y)=X^{2^{3 i}+2^{2 i}}+\alpha X^{2^{2 i}} Y^{2^{i}}+\beta Y^{2^{i}+1}$ (Taniguchi, 2019)

Theorem (Anbar, Kalayci, Meidl, 2019):
Taniguchi's APN functions F have the classical spectrum, i.e., a component of F is either bent or semibent.

Theorem (Anbar, Kalayci, Meidl, 2019):

Taniguchi's APN functions F have the classical spectrum, i.e., a component of F is either bent or semibent.

Idea of the proof:
For $\lambda, \mu \in \mathbb{F}_{2^{m}}$, let $F_{\lambda, \mu}=\operatorname{Tr}_{m}(\lambda X Y+\mu G(X, Y))$.
Aim: To determine the dimension over \mathbb{F}_{2} of the linear space of $F_{\lambda, \mu}$, i.e.,
$\Lambda=\left\{(u, v) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}} \mid D_{(u, v)} F_{\lambda, \mu}(X, Y)\right.$ is constant on $\left.\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}\right\}$.
Set
$\tilde{\Lambda}=\left\{(u, v) \in \mathbb{F}_{2^{m i}} \times \mathbb{F}_{2^{m i}} \mid D_{(u, v)} F_{\lambda, \mu}(X, Y)\right.$ is constant on $\left.\mathbb{F}_{2^{m i}} \times \mathbb{F}_{2^{m i}}\right\}$.

Theorem (Anbar, Kalayci, Meidl, 2019):

Taniguchi's APN functions F have the classical spectrum, i.e., a component of F is either bent or semibent.

Idea of the proof:
For $\lambda, \mu \in \mathbb{F}_{2^{m}}$, let $F_{\lambda, \mu}=\operatorname{Tr}_{m}(\lambda X Y+\mu G(X, Y))$.
Aim: To determine the dimension over \mathbb{F}_{2} of the linear space of $F_{\lambda, \mu}$, i.e.,
$\Lambda=\left\{(u, v) \in \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}} \mid D_{(u, v)} F_{\lambda, \mu}(X, Y)\right.$ is constant on $\left.\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}\right\}$.
Set
$\tilde{\Lambda}=\left\{(u, v) \in \mathbb{F}_{2^{m i}} \times \mathbb{F}_{2^{m i}} \mid D_{(u, v)} F_{\lambda, \mu}(X, Y)\right.$ is constant on $\left.\mathbb{F}_{2^{m i}} \times \mathbb{F}_{2^{m i}}\right\}$.

Observation: $\operatorname{gcd}(i, m)=1 \Longrightarrow \operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=\operatorname{dim}_{\mathbb{F}_{2^{i}}}(\tilde{\Lambda})$
$(u, v) \in \tilde{\Lambda}$ if and only if

$$
D_{(u, v)} F_{\lambda, \mu}(X, Y)+F_{\lambda, \mu}(u, v)=\operatorname{Tr}_{m}\left(f_{1} X^{2^{i}}\right)+\operatorname{Tr}_{m}\left(f_{2} Y^{2^{i}}\right)=0
$$

for all $X, Y \in \mathbb{F}_{2^{m}}$, where
$f_{1}=f_{1}(u, v)=\mu^{2^{-2 i}} u+\mu^{2-i} \alpha^{2^{-i}} v+\lambda^{2^{i}} v^{2^{i}}+\mu^{2-2 i} u^{2^{2 i}}$ and $f_{2}=f_{2}(u, v)=\mu \beta v+\lambda^{2^{i}} u^{2^{i}}+\mu \alpha u^{2^{2 i}}+\mu^{2^{i}} \beta^{2^{i}} v^{2^{2 i}}$.
$(u, v) \in \tilde{\Lambda}$ if and only if

$$
D_{(u, v)} F_{\lambda, \mu}(X, Y)+F_{\lambda, \mu}(u, v)=\operatorname{Tr}_{m}\left(f_{1} X^{2^{i}}\right)+\operatorname{Tr}_{m}\left(f_{2} Y^{2^{i}}\right)=0
$$

for all $X, Y \in \mathbb{F}_{2^{m}}$, where
$f_{1}=f_{1}(u, v)=\mu^{2^{-2 i}} u+\mu^{2-i} \alpha^{2^{-i}} v+\lambda^{2^{i}} v^{2^{i}}+\mu^{2-2 i} u^{2 i}$ and $f_{2}=f_{2}(u, v)=\mu \beta v+\lambda^{2^{i}} u^{2^{i}}+\mu \alpha u^{2^{2 i}}+\mu^{2^{i}} \beta^{2^{i}} v^{2^{2 i}}$.
That is, $(u, v) \in \tilde{\Lambda} \Longleftrightarrow f_{1}(u, v)=f_{2}(u, v)=0$.
$(u, v) \in \tilde{\Lambda}$ if and only if

$$
D_{(u, v)} F_{\lambda, \mu}(X, Y)+F_{\lambda, \mu}(u, v)=\operatorname{Tr}_{m}\left(f_{1} X^{2^{i}}\right)+\operatorname{Tr}_{m}\left(f_{2} Y^{2^{i}}\right)=0
$$

for all $X, Y \in \mathbb{F}_{2^{m}}$, where
$f_{1}=f_{1}(u, v)=\mu^{2^{-2 i}} u+\mu^{2^{-i}} \alpha^{2^{-i}} v+\lambda^{2^{i}} v^{2^{i}}+\mu^{2-2 i} u^{2 i}$ and $f_{2}=f_{2}(u, v)=\mu \beta v+\lambda^{2^{i}} u^{2^{i}}+\mu \alpha u^{2^{2 i}}+\mu^{2^{i}} \beta^{2^{i}} v^{2^{2 i}}$.
That is, $(u, v) \in \tilde{\Lambda} \Longleftrightarrow f_{1}(u, v)=f_{2}(u, v)=0$.
For $\mu \neq 0$, let \mathcal{X}_{1} and \mathcal{X}_{2} be the curves defined by f_{1} and f_{2}, respectively.
$P_{1}=(0: 1: 0)$ and $P_{2}=\left((\mu \beta)^{2^{-i}}:(\mu \alpha)^{2^{-2 i}}: 0\right)$ are the unique points of \mathcal{X}_{1} and \mathcal{X}_{2} at infinity, respectively.
$\beta \neq 0 \Longrightarrow P_{1} \neq P_{2} \Longrightarrow \mathcal{X}_{1}$ and \mathcal{X}_{2} do not have a common component.
$\Longrightarrow|\tilde{\Lambda}|=\left|\mathcal{X}_{1} \cap \mathcal{X}_{2}\right| \leq \operatorname{deg}\left(\mathcal{X}_{1}\right) \operatorname{deg}\left(\mathcal{X}_{2}\right)=2^{4 i}$ by Bezout's Theorem
$\Longrightarrow \operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=0,2$ or 4

Suppose that $\operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=4$, i.e., \mathcal{X}_{1} and \mathcal{X}_{2} intersects at exactly $2^{4 i}$ affine points.

Suppose that $\operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=4$, i.e., \mathcal{X}_{1} and \mathcal{X}_{2} intersects at exactly $2^{4 i}$ affine points.

Set $g_{1}(X, Y)=f_{1} f_{2}$ and $g_{2}(X, Y)=X f_{1}+f_{2}$. Let \mathcal{Y}_{1} and \mathcal{Y}_{2} be the curves defined by g_{1} and g_{2}, respectively.

Then

Suppose that $\operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=4$, i.e., \mathcal{X}_{1} and \mathcal{X}_{2} intersects at exactly $2^{4 i}$ affine points.

Set $g_{1}(X, Y)=f_{1} f_{2}$ and $g_{2}(X, Y)=X f_{1}+f_{2}$. Let \mathcal{Y}_{1} and \mathcal{Y}_{2} be the curves defined by g_{1} and g_{2}, respectively.

Then
(I) \mathcal{Y}_{1} and \mathcal{Y}_{2} are curves without a common component of degrees $2^{2 i+1}$ and $2^{2 i}+1$, respectively.
(ii) $P \in \mathcal{X}_{1} \cap \mathcal{X}_{2} \Longrightarrow P \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ and $m_{P}\left(\mathcal{Y}_{1}\right) \geq 2$.
(iii) $P_{1}=(0: 1: 0) \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ with $m_{P}\left(\mathcal{Y}_{1}\right)=2^{2 i}$ and $m_{P}\left(\mathcal{Y}_{2}\right)=2^{2 i}+1$.

Suppose that $\operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=4$, i.e., \mathcal{X}_{1} and \mathcal{X}_{2} intersects at exactly $2^{4 i}$ affine points.

Set $g_{1}(X, Y)=f_{1} f_{2}$ and $g_{2}(X, Y)=X f_{1}+f_{2}$. Let \mathcal{Y}_{1} and \mathcal{Y}_{2} be the curves defined by g_{1} and g_{2}, respectively.

Then
(I) \mathcal{Y}_{1} and \mathcal{Y}_{2} are curves without a common component of degrees $2^{2 i+1}$ and $2^{2 i}+1$, respectively.
(iI) $P \in \mathcal{X}_{1} \cap \mathcal{X}_{2} \Longrightarrow P \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ and $m_{P}\left(\mathcal{Y}_{1}\right) \geq 2$.
(III) $P_{1}=(0: 1: 0) \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ with $m_{P}\left(\mathcal{Y}_{1}\right)=2^{2 i}$ and $m_{P}\left(\mathcal{Y}_{2}\right)=2^{2 i}+1$.
$\Longrightarrow \sum_{P \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}} m_{P}\left(\mathcal{Y}_{1}\right) m_{P}\left(\mathcal{Y}_{2}\right) \geq 2^{4 i+1}+2^{2 i}\left(2^{2 i}+1\right)>\operatorname{deg}\left(\mathcal{Y}_{1}\right) \operatorname{deg}\left(\mathcal{Y}_{2}\right)$, which is a contradiction to Bezout's Theorem.

Suppose that $\operatorname{dim}_{\mathbb{F}_{2}}(\Lambda)=4$, i.e., \mathcal{X}_{1} and \mathcal{X}_{2} intersects at exactly $2^{4 i}$ affine points.

Set $g_{1}(X, Y)=f_{1} f_{2}$ and $g_{2}(X, Y)=X f_{1}+f_{2}$. Let \mathcal{Y}_{1} and \mathcal{Y}_{2} be the curves defined by g_{1} and g_{2}, respectively.

Then
(I) \mathcal{Y}_{1} and \mathcal{Y}_{2} are curves without a common component of degrees $2^{2 i+1}$ and $2^{2 i}+1$, respectively.
(iI) $P \in \mathcal{X}_{1} \cap \mathcal{X}_{2} \Longrightarrow P \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ and $m_{P}\left(\mathcal{Y}_{1}\right) \geq 2$.
(III) $P_{1}=(0: 1: 0) \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}$ with $m_{P}\left(\mathcal{Y}_{1}\right)=2^{2 i}$ and $m_{P}\left(\mathcal{Y}_{2}\right)=2^{2 i}+1$.
$\Longrightarrow \sum_{P \in \mathcal{Y}_{1} \cap \mathcal{Y}_{2}} m_{P}\left(\mathcal{Y}_{1}\right) m_{P}\left(\mathcal{Y}_{2}\right) \geq 2^{4 i+1}+2^{2 i}\left(2^{2 i}+1\right)>\operatorname{deg}\left(\mathcal{Y}_{1}\right) \operatorname{deg}\left(\mathcal{Y}_{2}\right)$, which is a contradiction to Bezout's Theorem.

Remark: Similarly, one obtains simple proof for the Walsh spectrum of Carlet's and Pott-Zhou APN functions.

Common Phenomena: Many quadratic APN and differentially 4-uniform functions have a large amount of bent components.

Recall: Carlet, Pott-Zhou and Taniguchi use Maiorana-McFarland bent function $F(X, Y)=X Y$.

Common Phenomena: Many quadratic APN and differentially 4 -uniform functions have a large amount of bent components.

Recall: Carlet, Pott-Zhou and Taniguchi use Maiorana-McFarland bent function $F(X, Y)=X Y$.

Idea: To use functions having many bent components to construct functions having small differential uniformity.

Common Phenomena: Many quadratic APN and differentially 4 -uniform functions have a large amount of bent components.

Recall: Carlet, Pott-Zhou and Taniguchi use Maiorana-McFarland bent function $F(X, Y)=X Y$.

Idea: To use functions having many bent components to construct functions having small differential uniformity.

Theorem:(Pott et al., 2018) A function $\mathcal{F}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}, n=2 m$, can have at most $2^{n}-2^{m}$ bent components. Moreover, $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}(X)=X^{2^{r}}\left(X+X^{2^{m}}\right)$ has $2^{n}-2^{m}$ bent components. \mathcal{F}_{γ} is bent for $\gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$, i.e., $F(X)=\operatorname{Tr}_{m}^{n}(\gamma \mathcal{F}(X))$ is a vectorial bent function.

Remark: For $r=0, \mathcal{F}$ is equivalent to $X^{2^{m}+1}$.

Theorem:(Mesnager et al., 2019)
(I) Having the maximum number of bent components invariant under the CCZ-equivalence.
(II) $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}\left(X+\sum_{j=1}^{\sigma} \alpha_{j} X^{2^{t_{j}}}\right), \alpha_{j} \in \mathbb{F}_{2^{m}}$, has the maximum number of bent components if $\mathcal{A}_{1}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-t}} X^{2^{m-t_{j}}-1}$ and $\mathcal{A}_{2}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-r}} X^{2^{t_{j}}-1}$ has no zero in $\mathbb{F}_{2^{m}} . \mathcal{F}_{\gamma}$ is bent for $\gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$.

Theorem:(Mesnager et al., 2019)
(I) Having the maximum number of bent components invariant under the CCZ-equivalence.
(II) $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}\left(X+\sum_{j=1}^{\sigma} \alpha_{j} X^{2^{t_{j}}}\right), \alpha_{j} \in \mathbb{F}_{2^{m}}$, has the maximum number of bent components if $\mathcal{A}_{1}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-t_{j}}} X^{2^{m-t_{j}}-1}$ and $\mathcal{A}_{2}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-r}} X^{2^{t_{j}}-1}$ has no zero in $\mathbb{F}_{2^{m}} . \mathcal{F}_{\gamma}$ is bent for $\gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$.

Theorem:(Anbar, Kalaycı, Meidl, 2020)
(I) Let $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{n}}, n=2 m$, be a plateaued vectorial function with the maximal number of bent components. Then the non-linearity of F is at most $2^{n-1}-2^{\left\lfloor\frac{n+m}{2}\right\rfloor}$.
(iI) $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))$ on $\mathbb{F}_{2^{n}}$, where $\Lambda \in \mathbb{F}_{2^{m}}[X]$ linearized, have maximal number of bent components if and only if Λ is a permutation of $\mathbb{F}_{2^{m}}$.

Theorem:(Mesnager et al., 2019)
(I) Having the maximum number of bent components invariant under the CCZ-equivalence.
(II) $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}\left(X+\sum_{j=1}^{\sigma} \alpha_{j} X^{2^{t_{j}}}\right), \alpha_{j} \in \mathbb{F}_{2^{m}}$, has the maximum number of bent components if $\mathcal{A}_{1}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-t}} X^{2^{m-t}}-1$ and $\mathcal{A}_{2}=1+\sum_{j=1}^{\sigma} \alpha_{j}^{2^{m-r}} X^{2^{t_{j}}-1}$ has no zero in $\mathbb{F}_{2^{m}} . \mathcal{F}_{\gamma}$ is bent for $\gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$.

Theorem:(Anbar, Kalaycı, Meidl, 2020)
(I) Let $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{n}}, n=2 m$, be a plateaued vectorial function with the maximal number of bent components. Then the non-linearity of F is at most $2^{n-1}-2^{\left\lfloor\frac{n+m}{2}\right\rfloor}$.
(iI) $\mathcal{F}(X)=X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))$ on $\mathbb{F}_{2^{n}}$, where $\Lambda \in \mathbb{F}_{2^{m}}[X]$ linearized, have maximal number of bent components if and only if Λ is a permutation of $\mathbb{F}_{2^{m}}$.

Aim: Investigate the differential uniformity and non-linearity of functions $H(X)=(F(X), G(X)): \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$ for $F(X)=\operatorname{Tr}_{m}^{n}(\gamma \mathcal{F}(X)), \gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}$.

The Solution Space of $D_{u} F(X)+F(u)=F(X+u)+F(X)+F(u)=0$:
For $z \in \mathbb{F}_{2^{m}}$, set $U_{z}=\left\{x \in \mathbb{F}_{2^{n}} \mid \operatorname{Tr}_{m}^{n}(\gamma x)+z \operatorname{Tr}_{m}^{n}(\Lambda(x))=0\right\}$.
Lemma: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))\right)$. The solution space of $D_{u} F(X)+F(u)=0$ is
(I) $\mathbb{F}_{2^{m}}$ if and only if $u \in \mathbb{F}_{2^{m}}^{*}$, and
(II) U_{z} if and only if $u \in U_{z}$.
(III) $U_{0}=\beta \mathbb{F}_{2^{m}}$, where $\beta=\gamma^{2^{-r}}$.
(IV) $\alpha \in U_{z}, z \neq 0$, if and only if $c \alpha \in U_{c^{2 r}-1}$.

The Solution Space of $D_{u} F(X)+F(u)=F(X+u)+F(X)+F(u)=0$:
For $z \in \mathbb{F}_{2^{m}}$, set $U_{z}=\left\{x \in \mathbb{F}_{2^{n}} \mid \operatorname{Tr}_{m}^{n}(\gamma x)+z \operatorname{Tr}_{m}^{n}(\Lambda(x))=0\right\}$.
Lemma: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))\right)$. The solution space of $D_{u} F(X)+F(u)=0$ is
(I) $\mathbb{F}_{2^{m}}$ if and only if $u \in \mathbb{F}_{2^{m}}^{*}$, and
(II) U_{z} if and only if $u \in U_{z}$.
(III) $U_{0}=\beta \mathbb{F}_{2^{m}}$, where $\beta=\gamma^{2^{-r}}$.
(IV) $\alpha \in U_{z}, z \neq 0$, if and only if $c \alpha \in U_{c^{2^{r}-1} z}$.

Corollary: $\mathbb{F}_{2^{m}}$ and the subspaces $U_{z}, z \in \mathbb{F}_{2^{m}}$, form a spread of $\mathbb{F}_{2^{n}}$.

The Solution Space of $D_{u} F(X)+F(u)=F(X+u)+F(X)+F(u)=0$:
For $z \in \mathbb{F}_{2^{m}}$, set $U_{z}=\left\{x \in \mathbb{F}_{2^{n}} \mid \operatorname{Tr}_{m}^{n}(\gamma x)+z \operatorname{Tr}_{m}^{n}(\Lambda(x))=0\right\}$.
Lemma: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))\right)$. The solution space of $D_{u} F(X)+F(u)=0$ is
(I) $\mathbb{F}_{2^{m}}$ if and only if $u \in \mathbb{F}_{2^{m}}^{*}$, and
(II) U_{z} if and only if $u \in U_{z}$.
(III) $U_{0}=\beta \mathbb{F}_{2^{m}}$, where $\beta=\gamma^{2^{-r}}$.
(IV) $\alpha \in U_{z}, z \neq 0$, if and only if $c \alpha \in U_{c^{2^{r}-1} z}$.

Corollary: $\mathbb{F}_{2^{m}}$ and the subspaces $U_{z}, z \in \mathbb{F}_{2^{m}}$, form a spread of $\mathbb{F}_{2^{n}}$.
Remark: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{3}\right), m$ odd and γ non-cube. Set $S_{u}=\left\{x \in \mathbb{F}_{2^{n}} \mid D_{u} F(x)+F(u)=0\right\}$. By Bezout's Theorem, if $u \neq v$, then $\left|S_{u} \cap S_{v}\right| \leq 4$.

The Solution Space of $D_{u} F(X)+F(u)=F(X+u)+F(X)+F(u)=0$:
For $z \in \mathbb{F}_{2^{m}}$, set $U_{z}=\left\{x \in \mathbb{F}_{2^{n}} \mid \operatorname{Tr}_{m}^{n}(\gamma x)+z \operatorname{Tr}_{m}^{n}(\Lambda(x))=0\right\}$.
Lemma: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}} \operatorname{Tr}_{m}^{n}(\Lambda(X))\right)$. The solution space of $D_{u} F(X)+F(u)=0$ is
(I) $\mathbb{F}_{2^{m}}$ if and only if $u \in \mathbb{F}_{2^{m}}^{*}$, and
(II) U_{z} if and only if $u \in U_{z}$.
(III) $U_{0}=\beta \mathbb{F}_{2^{m}}$, where $\beta=\gamma^{2^{-r}}$.
(IV) $\alpha \in U_{z}, z \neq 0$, if and only if $c \alpha \in U_{c^{2^{r}-1} z}$.

Corollary: $\mathbb{F}_{2^{m}}$ and the subspaces $U_{z}, z \in \mathbb{F}_{2^{m}}$, form a spread of $\mathbb{F}_{2^{n}}$.
Remark: Let $F(X)=\operatorname{Tr}_{m}^{n}\left(\gamma X^{3}\right), m$ odd and γ non-cube. Set $S_{u}=\left\{x \in \mathbb{F}_{2^{n}} \mid D_{u} F(x)+F(u)=0\right\}$. By Bezout's Theorem, if $u \neq v$, then $\left|S_{u} \cap S_{v}\right| \leq 4$.

We investigate $H(X)=(F(X), G(X))$ for $G(X)=\operatorname{Tr}_{m}^{n}\left(\sigma X^{2^{i}+1}\right)$ and $G(X)=\operatorname{Tr}_{m}^{n}\left(\sigma X^{2^{i}+1}+\tau X^{2^{m+i}+1}\right)$.

Theorem (Anbar, Kalayci, Meidl, 2020):

Let $\gamma, \sigma \in \mathbb{F}_{2^{n}}$, where $n=2 m$ for an odd integer m, and r be a positive integer relatively prime to m. If $\gamma, \sigma, \sigma \gamma^{-\left(2^{r}+1\right) 2^{r}}, \sigma \gamma^{-1}, \gamma^{2^{r}} \sigma^{-\left(2^{r}-1\right)} \notin \mathbb{F}_{2^{m}}$ and $\gamma^{-1} \notin U_{1}^{2^{r}-1}$, then

$$
H(X)=\left(\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}}\left(X+X^{2^{m}}\right)\right), \operatorname{Tr}_{m}^{n}\left(\sigma X^{2^{r}+1}\right)\right)
$$

is differentially 4 -uniform and has the classical spectrum.

Theorem (Anbar, Kalayci, Meidl, 2020):

Let $\operatorname{gcd}(r, m)=1, \gamma \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{2^{m}}, \tau \in \mathbb{F}_{2^{m}}^{*}$ such that $\tau^{-1} \neq \operatorname{Tr}_{m}^{n}\left(\gamma^{-1}\right)$, and $\sigma=\gamma+\tau$. Then

$$
H(X)=\left(\operatorname{Tr}_{m}^{n}\left(\gamma X^{2^{r}} \operatorname{Tr}_{m}^{n}(X)\right), \operatorname{Tr}_{m}^{n}\left(\sigma X^{2^{r}+1}+\tau X^{2^{m+r}+1}\right)\right)
$$

is differentially $2^{2 \operatorname{gcd}(m, 2)}$-uniform, and any component function of H is at most $2 \operatorname{gcd}(2, m)$-plateaued. In particular, if m is odd, then $H(X)$ is differentially 4 -uniform and has the classical spectrum.

We wish you healthy days!

